Reading the Comics, November 30, 2019: Big Embarrassing Mistake Edition


See if you can spot where I discover my having made a big embarrassing mistake. It’s fun! For people who aren’t me!

Lincoln Peirce’s Big Nate for the 24th has boy-genius Peter drawing “electromagnetic vortex flow patterns”. Nate, reasonably, sees this sort of thing as completely abstract art. I’m not precisely sure what Peirce means by “electromagnetic vortex flow”. These are all terms that mathematicians, and mathematical physicists, would be interested in. That specific combination, though, I can find only a few references for. It seems to serve as a sensing tool, though.

Nate: 'Ah, now that's what I'm talking about! A boy, paper, and crayons, the simple pleasures. I know you're a genius, Peter, but it's great to see you just being a kid for a change! And you're really letting it rip! You're not trying to make something that looks real! It's just colors and shapes and --- ' Peter: 'This is a diagram of electromagnetic vortex flow patterns.' Nate: 'I knew that.' Peter: 'Hand me the turquoise.'
Lincoln Peirce’s Big Nate for the 24th of November, 2019. So, did you know I’ve been spelling Lincoln Peirce’s name wrong all this time? Yeah, I didn’t realize either. But look at past essays with Big Nate discussed in them and you’ll see. I’m sorry for this and embarrassed to have done such a lousy job looking at the words in front of me for so long.

No matter. Electromagnetic fields are interesting to a mathematical physicist, and so mathematicians. Often a field like this can be represented as a system of vortices, too, points around which something swirls and which combine into the field that we observe. This can be a way to turn a continuous field into a set of discrete particles, which we might have better tools to study. And to draw what electromagnetic fields look like — even in a very rough form — can be a great help to understanding what they will do, and why. They also can be beautiful in ways that communicate even to those who don’t undrestand the thing modelled.

Megan Dong’s Sketchshark Comics for the 25th is a joke based on the reputation of the Golden Ratio. This is the idea that the ratio, 1:\frac{1}{2}\left(1 + \sqrt{5}\right) (roughly 1:1.6), is somehow a uniquely beautiful composition. You may sometimes see memes with some nice-looking animal and various boxes superimposed over it, possibly along with a spiral. The rectangles have the Golden Ratio ratio of width to height. And the ratio is kind of attractive since \frac{1}{2}\left(1 + \sqrt{5}\right) is about 1.618, and 1 \div \frac{1}{2}\left(1 + \sqrt{5}\right) is about 0.618. It’s a cute pattern, and there are other similar cute patterns.. There is a school of thought that this is somehow transcendently beautiful, though.

Man, shooing off a woman holding a cat: 'I don't like cute animals. I like BEAUTIFUL animals.' In front of portraits of an eagle, lion, and whale: 'Animals with golden-ratio proportions and nice bone-structure.'
Megan Dong’s Sketchshark Comics for the 25th of November, 2019. So far I’m aware I have never discussed this comic before, making this another new-tag day. This and future essays with Sketchshark Comics in them should be at this link.

It’s all bunk. People may find stuff that’s about one-and-a-half times as tall as it is wide, or as wide as it is tall, attractive. But experiments show that they aren’t more likely to find something with Golden Ratio proportions more attractive than, say, something with 1:1.5 proportions, or 1:1.8 , or even to be particularly consistent about what they like. You might be able to find (say) that the ratio of an eagle’s body length to the wing span is something close to 1:1.6 . But any real-world thing has a lot of things you can measure. It would be surprising if you couldn’t find something near enough a ratio you liked. The guy is being ridiculous.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 26th builds on the idea that everyone could be matched to a suitable partner, given a proper sorting algorithm. I am skeptical of any “simple algorithm” being any good for handling complex human interactions such as marriage. But let’s suppose such an algorithm could exist.

Mathematician: 'Thanks to computer science we no longer need dating. We can produce perfect marriages with simple algorithms.' Assistant: 'ooh!' [ AND SO ] Date-o-Tron, to the mathematician and her assistant: 'There are many women you'd be happier with, but they're already with people whom they prefer to you. Thus, you will be paired with your 4,291th favorite choice. We have a stable equilibrium.' Mathematician: 'Hooray!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 26th of November, 2019. Someday I’ll go a week without an essay mentioning Saturday Morning Breakfast Cereal, but this is not that day. Or week. The phrasing gets a little necessarily awkward here.

This turns matchmaking into a problem of linear programming. Arguably it always was. But the best possible matches for society might not — likely will not be — the matches everyone figures to be their first choices. Or even top several choices. For one, our desired choices are not necessarily the ones that would fit us best. And as the punch line of the comic implies, what might be the globally best solution, the one that has the greatest number of people matched with their best-fit partners, would require some unlucky souls to be in lousy fits.

Although, while I believe that’s the intention of the comic strip, it’s not quite what’s on panel. The assistant is told he’ll be matched with his 4,291th favorite choice, and I admit having to go that far down the favorites list is demoralizing. But there are about 7.7 billion people in the world. This is someone who’ll be a happier match with him than 6,999,995,709 people would be. That’s a pretty good record, really. You can fairly ask how much worse that is than the person who “merely” makes him happier than 6,999,997,328 people would


And that’s all I have for last week. Sunday I hope to publish another Reading the Comics post, one way or another. And later this week I’ll have closing thoughts on the Fall 2019 A-to-Z sequence. And I do sincerely apologize to Lincoln Peirce for getting his name wrong, and this on a comic strip I’ve been reading since about 1991.

The Set Tour, Part 10: Lots of Spheres


The next exhibit on the Set Tour here builds on a couple of the previous ones. First is the set Sn, that is, the surface of a hypersphere in n+1 dimensions. Second is Bn, the ball — the interior — of a hypersphere in n dimensions. Yeah, it bugs me too that Sn isn’t the surface of Bn. But it’d be too much work to change things now. The third has lurked implicitly since all the way back to Rn, a set of n real numbers for which the ordering of the numbers matters. (That is, that the set of numbers 2, 3 probably means something different than the set 3, 2.) And fourth is a bit of writing we picked up with matrices. The selection is also dubiously relevant to my own thesis from back in the day.

Sn x m and Bn x m

Here ‘n’ and ‘m’ are whole numbers, and I’m not saying which ones because I don’t need to tie myself down. Just as with Rn and with matrices this is a whole family of sets. Each different pair of n and m gives us a different set Sn x m or Bn x m, but they’ll all look quite similar.

The multiplication symbol here is a kind of multiplication, just as it was in matrices. That kind is called a “direct product”. What we mean by Sn x m is that we have a collection of items. We have the number m of them. Each one of those items is in Sn. That’s the surface of the hypersphere in n+1 dimensions. And we want to keep track of the order of things; we can’t swap items around and suppose they mean the same thing.

So suppose I write S2 x 7. This is an ordered collection of seven items, every one of which is on the surface of a three-dimensional sphere. That is, it’s the location of seven spots on the surface of the Earth. S2 x 8 offers similar prospects for talking about the location of eight spots.

With that written out, you should have a guess what Bn x m means. Your guess is correct. It’s a collection of m things, each of them within the interior of the n-dimensional ball.

Now the dubious relevance to my thesis. My problem was modeling a specific layer of planetary atmospheres. The model used for this was to pretend the atmosphere was made up of some large number of vortices, of whirlpools. Just like you see in the water when you slide your hand through the water and watch the little whirlpools behind you. The winds could be worked out as the sum of the winds produced by all these little vortices.

In the model, each of these vortices was confined to a single distance from the center of the planet. That’s close enough to true for planetary atmospheres. A layer in the atmosphere is not thick at all, compared to the planet. So every one of these vortices could be represented as a point in S2, the surface of a three-dimensional sphere. There would be some large number of these points. Most of my work used a nice round 256 points. So my model of a planetary atmosphere represented the system as a point in the domain S2 x 256. I was particularly interested in the energy of this set of 256 vortices. That was a function which had, as its domain, S2 x 256, and as range, the real numbers R.

But the connection to my actual work is dubious. I was doing numerical work, for the most part. I don’t think my advisor or I ever wrote S2 x 256 or anything like that when working out what I ought to do, much less what I actually did. Had I done a more analytic thesis I’d surely have needed to name this set. But I didn’t. It was lurking there behind my work nevertheless.

The energy of this system of vortices looked a lot like the potential energy for a bunch of planets attracting each other gravitationally, or like point charges repelling each other electrically. We work it out by looking at each pair of vortices. Work out the potential energy of those two vortices being that strong and that far apart. We call that a pairwise interaction. Then add up all the pairwise interactions. That’s it. [1] The pairwise interaction is stronger as each vortex is stronger; it gets weaker as the vortices get farther apart.

In gravity or electricity problems the strength falls off as the reciprocal of the distance between points. In vortices, the strength falls off as minus one times the logarithm of the distance between points. That’s a difference, and it meant that a lot of analytical results known for electric charges didn’t apply to my problem exactly. That was all right. I didn’t need many. But it does mean that I was fibbing up above, when I said I was working with S2 x 256. Pause a moment. Do you see what the fib was?

I’ll put what would otherwise be a footnote here so folks have a harder time reading right through to the answer.

[1] Physics majors may be saying something like: “wait, I see how this would be the potential energy of these 256 vortices, but where’s the kinetic energy?” The answer is, there is none. It’s all potential energy. The dynamics of point vortices are weird. I didn’t have enough grounding in mechanics when I went into them.

That’s all to the footnote.

Here’s where the fib comes in. If I’m really picking sets of vortices from all of the set S2 x 256, then, can two of them be in the exact same place? Sure they can. Why couldn’t they? For precedent, consider R3. In the three-dimensional vectors I can have the first and third numbers “overlap” and have the same value: (1, 2, 1) is a perfectly good vector. Why would that be different for an ordered set of points on the surface of the sphere? Why can’t vortex 1 and vortex 3 happen to have the same value in S2?

The problem is if two vortices were in the exact same position then the energy would be infinitely large. That’s not unique to vortices. It would be true for masses and gravity, or electric charges, if they were brought perfectly on top of each other. Infinitely large energies are a problem. We really don’t want to deal with them.

We could deal with this by pretending it doesn’t happen. Imagine if you dropped 256 poker chips across the whole surface of the Earth. Would you expect any two to be on top of each other? Would you expect two to be exactly and perfectly on top of each other, neither one even slightly overhanging the other? That’s so unlikely you could safely ignore it, for the same reason you could ignore the chance you’ll toss a coin and have it come up tails 56 times in a row.

And if you were interested in modeling the vortices moving it would be incredibly unlikely to have one vortex collide with another. They’d circle around each other, very fast, almost certainly. So ignoring the problem is defensible in this case.

Or we could be proper and responsible and say, “no overlaps” and “no collisions”. We would define some set that represents “all the possible overlaps and arrangements that give us a collision”. Then we’d say we’re looking at S2 x 256 except for those. I don’t think there’s a standard convention for “all the possible overlaps and collisions”, but Ω is a reasonable choice. Then our domain would be S2 x 256 \ Ω. The backslash means “except for the stuff after this”. This might seem unsatisfying. We don’t explicitly say what combinations we’re excluding. But go ahead and try listing all the combinations that would produce trouble. Try something simple, like S2 x 4. This is why we hide all the complicated stuff under a couple ordinary sentences.

It’s not hard to describe “no overlaps” mathematically. (You would say something like “vortex number j and vortex number k are not at the same position”, with maybe a rider of “unless j and k are the same number”. Or you’d put it in symbols that mean the same thing.) “No collisions” is harder. For gravity or electric charge problems we can describe at least some of them. And I realize now I’m not sure if there is an easy way to describe vortices that collide. I have difficulty imagining how they might, since vortices that are close to one another are pushing each other sideways quite intently. I don’t think that I can say they can’t, though. Not without more thought.

%d bloggers like this: