Today’s quartet of mathematically-themed comic strips doesn’t have an overwhelming theme. There’s some bits about the mathematics that young people do, so, that’s enough to separate this from any other given day’s comics essay.

Zach Weinersmith’s **Saturday Morning Breakfast Cereal** for the 14th is built on a bit of mathematical folklore. As Weinersmith’s mathematician (I don’t remember that we’ve been given her name) mentions, there is a belief that “revolutionary” mathematics is done by young people. That isn’t to say that older mathematicians don’t do great work. But the stereotype is that an older mathematician will produce masterpieces in already-established fields. It’s the young that establish new fields. Indeed, one of mathematics’s most prestigious awards, the Fields Medal, is only awarded to mathematicians under the age of forty. I was cheated of mine. Long story.

There’s intuitive appeal in the idea that revolutions in thinking are for the young. We *think* that people get set in their ways as they develop their careers. We have a couple dramatic examples, most notably Évariste Galois, who developed what we now see as foundations of group theory and died at twenty. While the idea is commonly held, I don’t know that it’s actually true. That is, that it holds up to scrutiny. It seems hard to create a definition for “revolutionary mathematics” that could be agreed upon by two people. So it would be difficult to test at what age people do their most breathtaking work, and whether it is what they do when young or when experienced.

Is there harm to believing an unprovable thing? If it makes you give up on trying, yes. My suspicion is that true revolutionary work happens when a well-informed, deep thinker comes to a field that hasn’t been studied in that way before. And when it turns out to be a field well-suited to study that way. That doesn’t require youth. It requires skill in one field, and an understanding that there’s another field ready to be studied that way.

Will Henry’s **Wallace the Brave** for the 14th is a mathematics anxiety joke. Wallace tries to help by turning an abstract problem into a concrete one. This is often a good way to approach a problem. Even in more advanced mathematics, one can often learn the way to solve a general problem by trying a couple of specific examples. It’s almost as though there’s only a certain amount of abstraction people can deal with, and you need to re-cast problems so they stay within your limits.

Yes, the comments turn to complaining about Common Core. I’m not sure what would help Spud work through this problem (or problems in general). But thinking of alternate problems that estimated or approached what he really wanted might help. If he noticed, for example, that 10 + 12 has to be a little more than 10 + 10, and he found 10 + 10 easy, then he’d be close to a right answer. If he noticed that 10 + 12 had to be 10 + 10 + 2, and he found 10 + 10 easy, then he might find 20 + 2 easy as well. Maybe Spud would be better off thinking of ways to rewrite a problem without changing the result.

Wiley Miller’s **Non Sequitur** for the 15th mentions calculus. It’s more of a probability joke. To speak of a calculated risk is to speak of doing something that’s not certain, but that has enough of a payoff to be worth the cost of failure. But one problem with this attitude is that people are very, very bad at estimating probabilities. We have terrible ideas of how likely losses are and how uncertain rewards can be. But even if we allow that the risks and rewards are calculated right, there’s a problem with things you only do once. Or only can do once. You can get into a good debate about whether there’s even a meaningful idea of probability for things that happen only the one time. Life’s among them.

Bob Weber Sr’s **Moose and Molly** for the 16th is a homework joke. It does actually depend on being mathematics homework, though, or there’d be no grounds for Moose’s kid to go to the savings and loan clerk who’ll help with “money problems”.

I think there’s one more batch of comic strips to discuss this week. When I’ve published it, you should find the essay at this link. And then there’ll be Sunday again.