From my Fourth A-to-Z: Open Set


It’s quite funny to notice the first paragraph’s shame at missing my self-imposed schedule. I still have not found confirmation of my hunch that “open” and “closed”, as set properties, were named independently. I haven’t found evidence I’m wrong, though, either.


Today’s glossary entry is another request from Elke Stangl, author of the Elkemental Force blog. I’m hoping this also turns out to be a well-received entry. Half of that is up to you, the kind reader. At least I hope you’re a reader. It’s already gone wrong, as it was supposed to be Friday’s entry. I discovered I hadn’t actually scheduled it while I was too far from my laptop to do anything about that mistake. This spoils the nice Monday-Wednesday-Friday routine of these glossary entries that dates back to the first one I ever posted and just means I have to quit forever and not show my face ever again. Sorry, Ulam Spiral. Someone else will have to think of you.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Open Set.

Mathematics likes to present itself as being universal truths. And it is. At least if we allow that the rules of logic by which mathematics works are universal. Suppose them to be true and the rest follows. But we start out with intuition, with things we observe in the real world. We’re happy when we can remove the stuff that’s clearly based on idiosyncratic experience. We find something that’s got to be universal.

Sets are pretty abstract things, as mathematicians use the term. They get to be hard to talk about; we run out of simpler words that we can use. A set is … a bunch of things. The things are … stuff that could be in a set, or else that we’d rule out of a set. We can end up better understanding things by drawing a picture. We draw the universe, which is a rectangular block, sometimes with dashed lines as the edges. The set is some blotch drawn on the inside of it. Some shade it in to emphasize which stuff we want in the set. If we need to pick out a couple things in the universe we drop in dots or numerals. If we’re rigorous about the drawing we could create a Venn Diagram.

When we do this, we’re giving up on the pure mathematical abstraction of the set. We’re replacing it with a territory on a map. Several territories, if we have several sets. The territories can overlap or be completely separate. We’re subtly letting our sense of geography, our sense of the spaces in which we move, infiltrate our understanding of sets. That’s all right. It can give us useful ideas. Later on, we’ll try to separate out the ideas that are too bound to geography.

A set is open if whenever you’re in it, you can’t be on its boundary. We never quite have this in the real world, with territories. The border between, say, New Jersey and New York becomes this infinitesimally slender thing, as wide in space as midnight is in time. But we can, with some effort, imagine the state. Imagine being as tiny in every direction as the border between two states. Then we can imagine the difference between being on the border and being away from it.

And not being on the border matters. If we are not on the border we can imagine the problem of getting to the border. Pick any direction; we can move some distance while staying inside the set. It might be a lot of distance, it might be a tiny bit. But we stay inside however we might move. If we are on the border, then there’s some direction in which any movement, however small, drops us out of the set. That’s a difference in kind between a set that’s open and a set that isn’t.

I say “a set that’s open and a set that isn’t”. There are such things as closed sets. A set doesn’t have to be either open or closed. It can be neither, a set that includes some of its borders but not other parts of it. It can even be both open and closed simultaneously. The whole universe, for example, is both an open and a closed set. The empty set, with nothing in it, is both open and closed. (This looks like a semantic trick. OK, if you’re in the empty set you’re not on its boundary. But you can’t be in the empty set. So what’s going on? … The usual. It makes other work easier if we call the empty set ‘open’. And the extra work we’d have to do to rule out the empty set doesn’t seem to get us anything interesting. So we accept what might be a trick.) The definitions of ‘open’ and ‘closed’ don’t exclude one another.

I’m not sure how this confusing state of affairs developed. My hunch is that the words ‘open’ and ‘closed’ evolved independent of each other. Why do I think this? An open set has its openness from, well, not containing its boundaries; from the inside there’s always a little more to it. A closed set has its closedness from sequences. That is, you can consider a string of points inside a set. Are these points leading somewhere? Is that point inside your set? If a string of points always leads to somewhere, and that somewhere is inside the set, then you have closure. You have a closed set. I’m not sure that the terms were derived with that much thought. But it does explain, at least in terms a mathematician might respect, why a set that isn’t open isn’t necessarily closed.

Back to open sets. What does it mean to not be on the boundary of the set? How do we know if we’re on it? We can define sets by all sorts of complicated rules: complex-valued numbers of size less than five, say. Rational numbers whose denominator (in lowest form) is no more than ten. Points in space from which a satellite dropped would crash into the moon rather than into the Earth or Sun. If we have an idea of distance we could measure how far it is from a point to the nearest part of the boundary. Do we need distance, though?

No, it turns out. We can get the idea of open sets without using distance. Introduce a neighborhood of a point. A neighborhood of a point is an open set that contains that point. It doesn’t have to be small, but that’s the connotation. And we get to thinking of little N-balls, circle or sphere-like constructs centered on the target point. It doesn’t have to be N-balls. But we think of them so much that we might as well say it’s necessary. If every point in a set has a neighborhood around it that’s also inside the set, then the set’s open.

You’re going to accuse me of begging the question. Fair enough. I was using open sets to define open sets. This use is all right for an intuitive idea of what makes a set open, but it’s not rigorous. We can give in and say we have to have distance. Then we have N-balls and we can build open sets out of balls that don’t contain the edges. Or we can try to drive distance out of our idea of open sets.

We can do it this way. Start off by saying the whole universe is an open set. Also that the union of any number of open sets is also an open set. And that the intersection of any finite number of open sets is also an open set. Does this sound weak? So it sounds weak. It’s enough. We get the open sets we were thinking of all along from this.

This works for the sets that look like territories on a map. It also works for sets for which we have some idea of distance, however strange it is to our everyday distances. It even works if we don’t have any idea of distance. This lets us talk about topological spaces, and study what geometry looks like if we can’t tell how far apart two points are. We can, for example, at least tell that two points are different. Can we find a neighborhood of one that doesn’t contain the other? Then we know they’re some distance apart, even without knowing what distance is.

That we reached so abstract an idea of what an open set is without losing the idea’s usefulness suggests we’re doing well. So we are. It also shows why Nicholas Bourbaki, the famous nonexistent mathematician, thought set theory and its related ideas were the core of mathematics. Today category theory is a more popular candidate for the core of mathematics. But set theory is still close to the core, and much of analysis is about what we can know from the fact of sets being open. Open sets let us explain a lot.

Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there. He/him.

Please Write Something Good

This site uses Akismet to reduce spam. Learn how your comment data is processed.