My All 2020 Mathematics A to Z: Big-O and Little-O Notation


Mr Wu, author of the Singapore Maths Tuition blog, asked me to explain a technical term today. I thought that would be a fun, quick essay. I don’t learn very fast, do I?

A note on style. I make reference here to “Big-O” and “Little-O”, capitalizing and hyphenating them. This is to give them visual presence as a name. In casual discussion they’re just read, or said, as the two words or word-and-a-letter. Often the Big- or Little- gets dropped and we just talk about O. An O, without further context, in my experience means Big-O.

The part of me that wants smooth consistency in prose urges me to write “Little-o”, as the thing described is represented with a lowercase ‘o’. But Little-o sounds like a midway game or an Eyerly Aircraft Company amusement park ride. And I never achieve consistency in my prose anyway. Maybe for the book publication. Until I’m convinced another is better, though, “Little-O” it is.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Big-O and Little-O Notation.

When I first went to college I had a campus post office box. I knew my box number. I also knew the length of the sluggish line for the combination lock code. The lock was a dial, lettered A through J. Being a young STEM-class idiot I thought, boy, would it actually be quicker to pick the lock than wait for the line? A three-letter combination, of ten options? That’s 1,000 possibilities. If I could try five a minute that’s, at worst, three hours 20 minutes. Combination might be anywhere in that set; I might get lucky. I could expect to spend 80 minutes picking my lock.

I decided to wait in line instead, and good that I did. I was unaware combination might not be a letter, like ‘A’. It could be the midway point between adjacent letters, like ‘AB’. That meant there were eight times as many combinations as I estimated, and I could expect to spend over ten hours. Even the slow line was faster than that. It transpired that my combination had two of these midway letters.

But that’s a little demonstration of algorithmic complexity. Also in cracking passwords by trial-and-error. Doubling the set of possible combination codes octuples the time it takes to break into the set. Making the combination longer would also work; each extra letter would multiply the cracking time by twenty. So you understand why your password should include “special characters” like punctuation, but most of all should be long.

We’re often interested in how long to expect a task to take. Sometimes we’re interested in the typical time it takes. Often we’re interested in the longest it could ever take. If we have a deterministic algorithm, we can say. We can count how many steps it takes. Sometimes this is easy. If we want to add two two-digit numbers together we know: it will be, at most, three single-digit additions plus, maybe, writing down a carry. (To add 98 and 37 is adding 8 + 7 to get 15, to add 9 + 3 to get 12, and to take the carry from the 15, so, 1 + 12 to get 13, so we have 135.) We can get a good quarrel going about what “a single step” is. We can argue whether that carry into the hundreds column is really one more addition. But we can agree that there is some smallest bit of arithmetic work, and work from that.

For any algorithm we have something that describes how big a thing we’re working on. It’s often ‘n’. If we need more than one variable to describe how big it is, ‘m’ gets called up next. If we’re estimating how long it takes to work on a number, ‘n’ is the number of digits in the number. If we’re thinking about a square matrix, ‘n’ is the number of rows and columns. If it’s a not-square matrix, then ‘n’ is the number of rows and ‘m’ the number of columns. Or vice-versa; it’s your matrix. If we’re looking for an item in a list, ‘n’ is the number of items in the list. If we’re looking to evaluate a polynomial, ‘n’ is the order of the polynomial.

In normal circumstances we don’t work out how many steps some operation does take. It’s more useful to know that multiplying these two long numbers would take about 900 steps than that it would need only 816. And so this gives us an asymptotic estimate. We get an estimate of how much longer cracking the combination lock will take if there’s more letters to pick from. This allowing that some poor soul will get the combination A-B-C.

There are a couple ways to describe how long this will take. The more common is the Big-O. This is just the letter, like you find between N and P. Since that’s easy, many have taken to using a fancy, vaguely cursive O, one that looks like \mathcal{O} . I agree it looks nice. Particularly, though, we write \mathcal{O}(f(n)) , where f is some function. In practice, we’ll see functions like \mathcal{O}(n) or \mathcal{O}(n^2 \log(n)) or \mathcal{O}(n^3) . Usually something simple like that. It can be tricky. There’s a scheme for multiplying large numbers together that’s \mathcal{O}(n 2^{\sqrt{2 log (n)}} log(n)) . What you will not see is something like \mathcal{O}(\sin (n)) , or \mathcal{O}(n^3 - n^4) or such. This comes to what we mean by the Big-O.

It’ll be convenient for me to have a name for the actual number of steps the algorithm takes. Let me call the function describing that g(n). Then g(n) is \mathcal{O}(f(n)) if once n gets big enough, g(n) is always less than C times f(n). Here c is some constant number. Could be 1. Could be 1,000,000. Could be 0.00001. Doesn’t matter; it’s some positive number.

There’s some neat tricks to play here. For example, the function ‘n ‘ is \mathcal{O}(n) . It’s also \mathcal{O}(n^2) and \mathcal{O}(n^9) and \mathcal{O}(e^{n}) . The function ‘n^2 is also \mathcal{O}(n^2) and those later terms, but it is not \mathcal{O}(n) . And you can see why \mathcal{O}(\sin(n)) is right out.

There is also a Little-O notation. It, too, is an upper bound on the function. But it is a stricter bound, setting tighter restrictions on what g(n) is like. You ask how it is the stricter bound gets the minuscule letter. That is a fine question. I think it’s a quirk of history. Both symbols come to us through number theory. Big-O was developed first, published in 1894 by Paul Bachmann. Little-O was published in 1909 by Edmund Landau. Yes, the one with the short Hilbert-like list of number theory problems. In 1914 G H Hardy and John Edensor Littlewood would work on another measure and they used Ω to express it. (If you see the letter used for Big-O and Little-O as the Greek omicron, then you see why a related concept got called omega.)

What makes the Little-O measure different is its sternness. g(n) is o(f(n)) if, for every positive number C, whenever n is large enough g(n) is less than or equal to C times f(n). I know that sounds almost the same. Here’s why it’s not.

If g(n) is \mathcal{O}(f(n)) , then you can go ahead and pick a C and find that, eventually, g(n) \le C f(n) . If g(n) is o(f(n)) , then I, trying to sabotage you, can go ahead and pick a C, trying my best to spoil your bounds. But I will fail. Even if I pick, like a C of one millionth of a billionth of a trillionth, eventually f(n) will be so big that g(n) \le C f(n) . I can’t find a C small enough that f(n) doesn’t eventually outgrow it, and outgrow g(n).

This implies some odd-looking stuff. Like, that the function n is not o(n) . But the function n is at least o(n^2) , and o(n^9) and those other fun variations. Being Little-O compels you to be Big-O. Big-O is not compelled to be Little-O, although it can happen.

These definitions, for Big-O and Little-O, I’ve laid out from algorithmic complexity. It’s implicitly about functions defined on the counting numbers. But there’s no reason I have to limit the ideas to that. I could define similar ideas for a function g(x), with domain the real numbers, and come up with an idea of being on the order of f(x).

We make some adjustments to this. The important one is that, with algorithmic complexity, we assumed g(n) had to be a positive number. What would it even mean for something to take minus four steps to complete? But a regular old function might be zero or negative or change between negative and positive. So we look at the absolute value of g(x). Is there some value of C so that, when x is big enough, the absolute value of g(x) stays less than C times f(x)? If it does, then g(x) is \mathcal{O}(f(x)) . Is it the case that for every positive number C it’s true that g(x) is less than C times f(x), once x is big enough? Then g(x) is o(f(x)) .

Fine, but why bother defining this?

A compelling answer is that it gives us a way to describe how different a function is from an approximation to that function. We are always looking for approximations to functions because most functions are hard. We have a small set of functions we like to work with. Polynomials are great numerically. Exponentials and trig functions are great analytically. That’s about all the functions that are easy to work with. Big-O notation particularly lets us estimate how bad an error we make using the approximation.

For example, the Runge-Kutta method numerically approximates solutions to ordinary differential equations. It does this by taking the information we have about the function at some point x to approximate its value at a point x + h. ‘h’ is some number. The difference between the actual answer and the Runge-Kutta approximation is \mathcal{O}(h^4) . We use this knowledge to make sure our error is tolerable. Also, we don’t usually care what the function is at x + h. It’s just what we can calculate. What we want is the function at some point a fair bit away from x, call it x + L. So we use our approximate knowledge of conditions at x + h to approximate the function at x + 2h. And use x + 2h to tell us about x + 3h, and from that x + 4h and so on, until we get to x + L. We’d like to have as few of these uninteresting intermediate points as we can, so look for as big an h as is safe.

That context may be the more common one. We see it, particularly, in Taylor Series and other polynomial approximations. For example, the sine of a number is approximately:

\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \mathcal{O}(x^{11})

This has consequences. It tells us, for example, that if x is about 0.1, this approximation is probably pretty good. So it is: the sine of 0.1 (radians) is about 0.0998334166468282 and that’s exactly what five terms here gives us. But it also warns that if x is about 10, this approximation may be gibberish. And so it is: the sine of 10.0 is about -0.5440 and the polynomial is about 1448.27.

The connotation in using Big-O notation here is that we look for small h’s, and for \mathcal{O}(x) to be a tiny number. It seems odd to use the same notation with a large independent variable and with a small one. The concept carries over, though, and helps us talk efficiently about this different problem.


I hope this week to post the Playful Math Education Blog Carnival for September. Any educational or recreational or fun mathematics sites you know about would be greatly helpful to me and them. Thanks for your help.

Today’s and all the other 2020 A-to-Z essays should appear at this link. Both the 2020 and all past A-to-Z essays ought to be at this link.

Lastly, I am open for mathematics topics starting with P, Q, and R to write about next month. I’ve basically chosen my ‘P’ subject, though I’d be happy to hear alternatives for ‘Q’ and ‘R’ yet.

Thank you for reading.

Using my A to Z Archives: Nearest Neighbor Model


For the 2018 A-to-Z I spent some time talking about a big piece of thermodynamics. Anyone taking a statistical mechanics course learns about the Nearest Neighbor Model. It’s a way of handling big systems of things that all interact. This is really hard to do. But if you make the assumption that the nearest pairs are the most important ones, and everything else is sort of a correction or meaningless noise? You get … a problem that’s easier to simulate on a computer. It’s not necessarily easier to solve. But it’s a good starting point for a lot of systems.

The restaurant I was thinking of, when I wrote this, was Woody’s Oasis, which had been kicked out of East Lansing as part of the stage in gentrification where all the good stuff gets the rent raised out from under it, and you get chain restaurants instead. They had a really good vegetarian … thing … called smead, that we guess was some kind of cracked-wheat sandwich filling. No idea what it was. There are other Woody’s Oasises in the area, somehow all different and before the pandemic we kept figuring we’d go and see if they had smead, sometime.

I’d like to know of any playful, educational mathematics you’ve seen


I am hosting, later this month, the 141st installment of Denise Gaskins’s Playful Math Education Blog Carnival. If you’ve seen recently any mathematics piece — a blog, a YouTube video, a magazine article — that you found educational or enlightening or just fun, please, share it with me in comments so I can share it with the wider world.

The current carnival, #140, is at Iva Sallay’s Find The Factors blog. The next one, #142, is scheduled to be at Denise Gaskins’ own Let’s Play Math blog. And if you would like the challenge and excitement of hosting one yourself, there are always months available. You might enjoy the time spent looking at your mathematics reading with a different focus. Thank you all.

Using my A to Z Archives: N-tuple


The Summer 2015 A-to-Z was the first I’d done. Its essays tended to be shorter and narrower in focus than what I write these days. But another feature is that they tended to be more practical, like, something that you could use to read a mathematics paper with better understanding. N-tuple is an example this. N-tuples are ordered bunches of numbers, and turn up in many places. They’re not quite vectors and matrices. But the ordinary use of vectors and matrices we represent with n-tuples.

My All 2020 Mathematics A to Z: John von Neumann


Mr Wu, author of the Singapore Maths Tuition blog, suggested another biographical sketch for this year of biographies. Once again it’s of a person too complicated to capture in full in one piece, even at the length I’ve been writing. So I take a slice out of John von Neumann’s life here.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

John von Neumann.

In March 1919 the Hungarian People’s Republic, strained by Austria-Hungary’s loss in the Great War, collapsed. The Hungarian Soviet Republic, the world’s second Communist state, replaced it. It was a bad time to be a wealthy family in Budapest. The Hungarian Soviet lasted only a few months. It was crushed by the internal tension between city and countryside. By poorly-fought wars to restore the country’s pre-1914 borders. By the hostility of the Allied Powers. After the Communist leadership fled came a new Republic, and a pogrom. Europeans are never shy about finding reasons to persecute Jewish people. It was a bad time to be a Jewish family in Budapest.

Von Neumann was born to a wealthy, (non-observant) Jewish family in Budapest, in 1903. He acquired the honorific “von” in 1913. His father Max Neumann was honored for service to the Austro-Hungarian Empire and paid for a hereditary appellation.

It is, once again, difficult to encompass von Neumann’s work, and genius, in one piece. He was recognized as genius early. By 1923 he published a logical construction for the counting numbers that’s still the modern default. His 1926 doctoral thesis was in set theory. He was invited to lecture on quantum theory at Princeton by 1929. He was one of the initial six mathematics professors at the Institute for Advanced Study. We have a thing called von Neumann algebras after his work. He gave the first rigorous proof of an ergodic theorem. He partly solved one of Hilbert’s problems. He studied non-linear partial differential equations. He was one of the inventors of the electronic computer as we know it, both the theoretical and the practical ideas.

And, the sliver I choose to focus on today, he made game theory into a coherent field.

The term “game theory” makes it sound like a trifle. We don’t call “genius” anyone who comes up with a better way to play tic-tac-toe. The utility of the subject appears when we notice what von Neumann thought he was writing about. Von Neumann’s first paper on this came in 1928. In 1944 he with Oskar Morgenstern published the textbook Theory Of Games And Economic Behavior. In Chapter 1, Section 1, they set their goals:

The purpose of this book is to present a discussion of some fundamental questions of economic theory which require a treatment different from that which they have found thus far in the literature. The analysis is concerned with some basic problems arising from a study of economic behavior which have been the center of attention of economists for a long time. They have their origin in the attempts to find an exact description of the endeavor of the individual to obtain a maximum of utility, or in the case of the entrepreneur, a maximum of profit.

Somewhere along the line von Neumann became interested in how economics worked. Perhaps because his family had money. Perhaps because he saw how one could model an “ideal” growing economy — matching price and production and demand — as a linear programming question. Perhaps because economics is a big, complicated field with many unanswered questions. There was, for example, little good idea of how attendees at an auction should behave. What is the rational way to bid, to get the best chances of getting the things one wants at the cheapest price?

In 1928, von Neumann abstracted all sorts of economic questions into a basic model. The model has almost no features, so very many games look like it. In this, you have a goal, and a set of options for what to do, and an opponent, who also has options of what to do. Also some rounds to achieve your goal. You see how this abstract a structure describes many things one could do, from playing Risk to playing the stock market.

And von Neumann discovered that, in the right circumstances, you can find a rational way to bid at an auction. Or, at least, to get your best possible outcome whatever the other person does. The proof has the in-retrospect obviousness of brilliance. von Neumann used a fixed-point theorem. Fixed point theorems came to mathematics from thinking of functions as mappings. Functions match elements in a set called the domain to those in a set called the range. The function maps the domain into the range. If the range is also the domain? Then we can do an iterated mapping. Under the right circumstances, there’s at least one point that maps to itself.

In the light of game theory, a function is the taking of a turn. The domain and the range are the states of whatever’s in play. In this type of game, you know all the options everyone has. You know the state of the game. You know what the past moves have all been. You know what you and your opponent hope to achieve. So you can predict your opponent’s strategy. And therefore pick a strategy that gets you the best option available given your opponent is trying to do the same. So will your opponent. So you both end up with the best attainable outcome for the both of you; this is the minimax theorem.

It may strike you that, given this, the game doesn’t need to be played anymore. Just pick your strategy, let your opponent pick one, and the winner is determined. So it would, if we played our strategies perfectly, and if we didn’t change strategies mid-game. I would chuckle at the mathematical view that we study a game to relieve ourselves of the burden of playing. But I know how many grand strategy video games I have that I never have time to play.

After this 1928 paper von Neumann went on to other topics for about a dozen years. Why create a field of mathematics and then do nothing with it? For one, we see it as a gap only because we are extracting, after the fact, this thread of his life. He had other work, particularly in quantum mechanics, operators, measure theory, and lattice theory. He surely did not see himself abandoning a new field. He saw, having found an interesting result, new interesting questions..

But Philip Mirowski’s 1992 paper What Were von Neumann and Morgenstern Trying to Accomplish? points out some context. In September 1930 Kurt Gödel announced his incompleteness proof. Any logical system complex enough has things which are true and can’t be proven. The system doesn’t have to be that complex. Mathematical rigor must depend on something outside mathematics. This shook von Neumann. He would say that after Gödel published, von Neumann never bothered reading another paper on symbolic logic. Mirowski believes this drove von Neumann into what we now call artificial intelligence. At least, into mathematics that draws from empirical phenomena. von Neumann needed time to recover from the shock. And needed the prodding of Morgenstern to return to economics.

After publishing Theory Of Games And Economic Behavior the book … well, Mirowski calls it more “cited in reverence than actually read”. But game theory, as a concept? That took off. It seemed to offer a way to rationalize the world.

von Neumann would become a powerful public intellectual. He would join the Manhattan Project. He showed that the atomic bomb would be more destructive if it exploded kilometers above the ground, rather than at ground level. He was on the target selection committee which, ultimately, slated Hiroshima and Nagasaki for mass murder. He would become a consultant for the Weapons System Evaluation Group. They advised the United States Joint Chiefs of Staff on developing and using new war technology. He described himself, to a Senate committee, as “violently anti-communist and much more militaristic than the norm”. He is quoted in 1950 as remarking, “if you say why not bomb [ the Soviets ] tomorrow, I say, why not today? If you say today at five o’clock, I say why not one o’clock?”

The quote sounds horrifying. It makes game-theory sense, though. If war is inevitable, it is better fought when your opponent is weaker. And while the Soviet Union had won World War II, it was also ruined in the effort.

There is another game-theory-inspired horror for which we credit von Neumann. This is Mutual Assured Destruction. If any use of an atomic, or nuclear, weapon would destroy the instigator in retaliation, then no one would instigate war. So the nuclear powers need, not just nuclear arsenals. They need such vast arsenals that the remnant which survives the first strike can destroy the other powers in the second strike.

Perhaps the reasoning holds together. We did reach the destruction of the Soviet Union without using another atomic weapon in anger. But it is hard to say that was rationally accomplished. There were at least two points, in 1962 and in 1983, when a world-ruining war could too easily have happened, by people following the “obvious” strategy.

Which brings a flaw of game theory, at least as applied to something as complicated as grand strategy. Game theory demands the rules be known, and agreed on. (At least that there is a way of settling rule disputes.) It demands we have the relevant information known truthfully. It demands we know what our actual goals are. It demands that we act rationally, and that our opponent acts rationally. It demands that we agree on what rational is. (Think of, in Doctor Strangelove, the Soviet choice to delay announcing its doomsday machine’s completion.) Few of these conditions obtain in grand strategy. They barely obtain in grand strategy games. von Neumann was aware of at least some of these limitations, though he did not live long enough to address them. He died of either bone, pancreatic, or prostate cancer, likely caused by radiation exposure working at Los Alamos.

Game theory has been, and is, a great tool in many fields. It gives us insight into human interactions. It does good work in economics, in biology, in computer science, in management. But we can come to very bad conditions when we forget the difference between the game we play and the game we modelled. And if we forget that the game is value-indifferent. The theory makes no judgements about the ethical nature of the goal. It can’t, any more than the quadratic equation can tell us whether ‘x’ is which fielder will catch the fly ball or which person will be killed by a cannonball.

It makes an interesting parallel to the 19th century’s greatest fusion of mathematics and economics. This was utilitarianism, the attempt to bring scientific inquiry to the study of how society should be set up. Utilitarianism offers exciting insights into, say, how to allocate public services. But it struggles to explain why we should refrain from murdering someone whose death would be convenient. We need a reason besides the maximizing of utility.

No war is inevitable. One comes about only after many choices. Some are grand choices, such as a head of government issuing an ultimatum. Some are petty choices, such as the many people who enlist as the sergeants that make an army exist. We like to think we choose rationally. Psychological experiments, and experience, and introspection tell us we more often choose and then rationalize.

von Neumann was a young man, not yet in college, during the short life of the Hungarian Soviet Republic, and the White Terror that followed. I do not know his biography well enough to say how that experience motivated his life’s reasoning. I would not want to say that 1919 explained it all. The logic of a life is messier than that. I bring it up in part to fight the tendency of online biographic sketches to write as though he popped into existence, calculated a while, inspired a few jokes, and vanished. And to reiterate that even mathematics never exists without context. Even what seem to be pure questions on an abstract idea of a game is often inspired by a practical question. And that work is always done in a context that affects how we evaluate it.


Thank you all for reading. This grew a bit more serious than I had anticipated. This and all the other 2020 A-to-Z essays should appear at this link. Both the 2020 and all past A-to-Z essays should be at this link.

I am hosting the Playful Math Education Blog Carnival at the end of September, so appreciate any educational or recreational or fun mathematics material you know about. I’m hoping to publish next week and so hope that you can help me this week.

And, finally, I am open for mathematics topics starting with P, Q, and R to write about next month. I should be writing about them this month and getting ahead of deadline, but that seems not to be happening.

Using my A to Z Archives: Matrix


One of the pieces I wrote for the Leap Day 2016 A-to-Z was to explain the Matrix. Matrices turn up a lot in mathematics. They’re nice things. They organize a lot of information economically. They’re vector spaces, so that a lot of really nice tools come along with their existence. They don’t have much to do with what I’ve been writing about this year, but, so what? I can bring back from obscurity pieces I just liked, too.

All my A-to-Z pieces, from every year, should be at this link. And all of the 2020 A-to-Z pieces should be at this link. Also please let me know if you have ideas for the letters P, Q, and R. I’m also still eagerly looking for Playful Math Education Blog Carnival-ready pieces. Thank you.

Using my A to Z Archives: Manifold


I avoided most of the technical talk when I discussed the Möbius strip the other day. You — well, a mathematician — could describe the strip as a non-orientable compact manifold with boundary. The boundary part is obvious. The non-orientable bit is easy enough to understand, when you remember that thing about it being a one-sided surface. Compact is an idea worth its own essay sometime. In this context it amounts to “there aren’t any gaps inside it”. Manifold, too, is worth an essay, and I wrote one in 2018 about it. Thanks for reading.

I’m looking for P, Q, and R topics for the All 2020 A-to-Z


And now I am at the actual halfway point in the year’s A-to-Z. I’m still not as far ahead of deadline as I want to be, but I am getting at least a little better.

As I continue to try to build any kind of publication buffer, I’d like to know of any mathematical terms starting with the letters P, Q, or R that you’d like me to try writing. I might write about anything, of course; my criteria is what topic I think I could write something interesting about. But that’s a pretty broad set of things. Part of the fun of an A-to-Z series is learning enough about a subject I haven’t thought about much, in time to write a thousand-or-more words about it.

So please leave a comment with any topics you’d like to see discussed. Also please leave a mention of your own blog or YouTube channel or Twitter account or anything else you do that’s worth some attention. I’m happy giving readers new things to pay attention to, even when it’s not me.

It hasn’t happened yet, but I am open to revisiting a topic I’ve written about before, in case I think I can do better. My list of past topics may let you know if something satisfactory’s already been written about, say, quaternions. But if you don’t like what I already have about something, make a suggestion. I might do better.

Topics I’ve already covered, starting with the letter ‘P’, are:


Topics I’ve already covered, starting with the letter ‘Q’, are:


Topics I’ve already covered, starting with the letter ‘R’, are:

Thanks for reading and thanks for your thoughts.

My All 2020 Mathematics A to Z: Möbius Strip


Jacob Siehler suggested this topic. I had to check several times that I hadn’t written an essay about the Möbius strip already. While I have talked about it some, mostly in comic strip essays, this is a chance to specialize on the shape in a way I haven’t before.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Möbius Strip.

I have ridden at least 252 different roller coasters. These represent nearly every type of roller coaster made today, and most of the types that were ever made. One type, common in the 1920s and again since the 70s, is the racing coaster. This is two roller coasters, dispatched at the same time, following tracks that are as symmetric as the terrain allows. Want to win the race? Be in the train with the heavier passenger load. The difference in the time each train takes amounts to losses from friction, and the lighter train will lose a bit more of its speed.

There are three special wooden racing coasters. These are Racer at Kennywood Amusement Park (Pittsburgh), Grand National at Blackpool Pleasure Beach (Blackpool, England), and Montaña Rusa at La Feria Chapultepec Magico (Mexico City). I’ve been able to ride them all. When you get into the train going up, say, the left lift hill, you return to the station in the train that will go up the right lift hill. These racing roller coasters have only one track. The track twists around itself and becomes a Möbius strip.

Picture of some of the Grand National track, at Blackpool Pleasure Beach, showing off particularly a sign with an illustration of the launch station and 'What The Papers Say', showing the British national papers' 'reviews' of the roller coaster.
I’m not surprised I don’t have good pictures of Grand National. I’ve only been able to visit Blackpool Pleasure Beach the one time. And a few days before my camera had just been thoroughly soaked in heavy rain. I could only take a picture by turning it on; the camera would power up, take a picture as soon as it was ready, and power down again. It’s the other parks I’m surprised I lack better pictures for.

This is a fun use of the Möbius strip. The shape is one of the few bits of advanced mathematics to escape into pop culture. Maybe dominates it, in a way nothing but the blackboard full of calculus equations does. In 1958 the public intellectual and game show host Clifton Fadiman published the anthology Fantasia Mathematica. It’s all essays and stories and poems with some mathematical element. I no longer remember how many of the pieces were about the Möbius strip one way or another. The collection does include A J Deutschs’s classic A Subway Named Möbius. In this story the Boston subway system achieves hyperdimensional complexity. It does not become a Möbius strip, though, in that story. It might be one in reality anyway.

The Möbius strip we name for August Ferdinand Möbius, who in 1858 was the second person known to have noticed the shape’s curious properties. The first — to notice, in 1858, and to publish, in 1862 — was Johann Benedict Listing. Listing seems to have coined the term “topology” for the field that the Möbius strip would be emblem for. He wrote one of the first texts on the field. He also seems to have coined terms like “entrophic phenomena” and “nodal points” and “geoid” and “micron”, for a millionth of a meter. It’s hard to say why we don’t talk about Listing strips instead. Mathematical fame is a strange, unpredictable creature. There is a topological invariant, the Listing Number, named for him. And he’s known to ophthalmologists for Listing’s Law, which describes how human eyes orient themselves.

The Möbius strip is an easy thing to construct. Loop a ribbon back to itself, with an odd number of half-twist before you fasten the ends together. Anyone could do it. So it seems curious that for all recorded history nobody thought to try. Not until 1858 when Lister and then Möbius hit on the same idea.

Kennywood Racer blue roller coaster train, leaving the station on the (camera) left track.
It’s Kennywood’s Racer I’m surprised I don’t have a picture that shows what I really want. We get to Kennywood basically every year, 2020 excepted for obvious reasons. But there also really aren’t good observation tower-type attractions that let you get a photograph of Racer as a whole, I’ll tell myself is the problem.

An irresistible thing, while riding these roller coasters, is to try to find the spot where you “switch”, where you go from being on the left track to the right. You can’t. The track is — well, the track is a series of metal straps bolted to a base of wood. (The base the straps are bolted to is what makes it a wooden roller coaster. The great lattice holding the tracks above ground have nothing to do with it.) But the path of the tracks is a continuous whole. To split it requires the same arbitrariness with which mapmakers pick a prime meridian. It’s obvious that the “longitude” of a cylinder or a rubber ball is arbitrary. It’s not obvious that roller coaster tracks should have the same property. Until you draw the shape in that ∞-loop figure we always see. Then you can get lost imagining a walk along the surface.

And it’s not true that nobody thought to try this shape before 1858. Julyan H E Cartwright and Diego L González wrote a paper searching for pre-Möbius strips. They find some examples. To my eye not enough examples to support their abstract’s claim of “lots of them”, but I trust they did not list every example. One example is a Roman mosaic showing Aion, the God of Time, Eternity, and the Zodiac. He holds a zodiac ring that is either a Möbius strip or cylinder with artistic errors. Cartwright and González are convinced. I’m reminded of a Looks Good On Paper comic strip that forgot to include the needed half-twist.

Mobius Trip. A car, loaded for vacation, with someone in it asking 'Are we there yet? Are we there yet? Are we there yet?' The road is along a Mobius strip, with roadside bits like deer or road signs or opossums crossing the road on the margins.
Dan Collins’s Looks Good on Paper for the 10th of September, 2018. It originally ran the 10th of September, 2016. It falls a half-twist short of being the Möbius strip it intends to be. Essays in which I discuss Looks Good On Paper are at this link.

Islamic science gives us a more compelling example. We have a book by Ismail al-Jazari dated 1206, The Book of Knowledge of Ingenious Mechanical Devices. Some manuscripts of it illustrate a chain pump, with the chain arranged as a Möbius strip. Cartwright and González also note discussions in Scientific American, and other engineering publications in the United States, about drive and conveyor belts with the Möbius strip topology. None of those predate Lister or Möbius, or apparently credit either. And they do come quite soon after. It’s surprising something might leap from abstract mathematics to Yankee ingenuity that fast.

If it did. It’s not hard to explain why mechanical belts didn’t consider Möbius strip shapes before the late 19th century. Their advantage is that the wear of the belt distributes over twice the surface area, the “inside” and “outside”. A leather belt has a smooth and a rough side. Many other things you might make a belt from have a similar asymmetry. By the late 19th century you could make a belt of rubber. Its grip and flexibility and smoothness is uniform on all sides. “Balancing” the use suddenly could have a point.

I still find it curious almost no one drew or speculated about or played with these shapes until, practically, yesterday. The shape doesn’t seem far away from a trefoil knot. The recycling symbol, three folded-over arrows, suggests a Möbius strip. The strip evokes the ∞ symbol, although that symbol was not attached to the concept of “infinity” until John Wallis put it forth in 1655.

Kennywood Racer blue roller coaster train arriving at the station on the (camera) right track; the red train is approaching the (camera) left track.
Also Racer is usually quite packed, and we’d rather put time into Jackrabbit (100 years old this year) and Thunderbolt (originally built in 1924 as Pippin and extensively rebuilt in 1967). Still, people attending as part of special events can get more revealing photographs.

Even with the shape now familiar, and loved, there are curious gaps. Consider game design. If you play on a board that represents space you need to do something with the boundaries. The easiest is to make the boundaries the edges of playable space. The game designer has choices, though. If a piece moves off the board to the right, why not have it reappear on the left? (And, going off to the left, reappear on the right.) This is fine. It gives the game board, a finite rectangle, the topology of a cylinder. If this isn’t enough? Have pieces that go off the top edge reappear at the bottom, and vice-versa. Doing this, along with matching the left to the right boundaries, makes the game board a torus, a doughnut shape.

A Möbius strip is easy enough to code. Make the top and bottom impenetrable borders. And match the left to the right edges this way: a piece going off the board at the upper half of the right edge reappears at the lower half of the left edge. Going off the lower half of the right edge brings the piece to the upper half of the left edge. And so on. It isn’t hard, but I’m not aware of any game — board or computer — that uses this space. Maybe there’s a backgammon variant which does.

Still, the strip defies our intuition. It has one face and one edge. To reflect a shape across the width of the strip is the same as sliding a shape along its length. Cutting the strip down the center unfurls it into a cylinder. Cutting the strip down, one-third of the way from the edge, divides it into two pieces, a skinnier Möbius strip plus a cylinder. If we could extract the edge we could tug and stretch it until it was a circle.

And it primes our intuition. Once we understand there can be shapes lacking sides we can look for more. Anyone likely to read a pop mathematics blog about the Möbius strip has heard of the Klein bottle. This is a three-dimensional surface that folds back on itself in the fourth dimension of space. The shape is a jug with no inside, or with nothing but inside. Three-dimensional renditions of this get suggested as gifts to mathematicians. This for your mathematician friend who’s already got a Möbius scarf.

Log flume car splashing down at the bottom of its hill. In the background is the rust-red track and structure of the Racer roller coaster.
Anyway the roller coaster in background is Racer. This is a view from the Log Jammer, a log flume ride that Kennywood removed in 2018.

Though a Möbius strip looks — at any one spot — like a plane, the four-color map theorem doesn’t hold for it. Even the five-color theorem won’t do. You need six colors to cover maps on such a strip. A checkerboard drawn on a Möbius strip can be completely covered by T-shape pentominoes or Tetris pieces. You can’t do this for a checkerboard on the plane. In the mathematics of music theory the organization of dyads — two-tone “chords” — has the structure of a Möbius strip. I do not know music theory or the history of music theory. I’m curious whether Möbius strips might have been recognized by musicians before the mathematicians caught on.

And they inspire some practical inventions. Mechanical belts are obvious, although I don’t know how often they’re used. More clever are designs for resistors that have no self-inductance. They can resist electric flow without causing magnetic interference. I can look up the patents; I can’t swear to how often these are actually used. There exist — there are made — Möbius aromatic compounds. These are organic compounds with rings of carbon and hydrogen. I do not know a use for these. That they’ve only been synthesized this century, rather than found in nature, suggests they are more neat than practical.

Perhaps this shape is most useful as a path into a particular type of topology, and for its considerable artistry. And, with its “late” discovery, a reminder that we do not yet know all that is obvious. That is enough for anything.

Photograph of a model of the Montana Rusa roller coaster, under glass, and watched over by a Alebrije-styled dragon-ish figure. It sits on the platform for a roller coaster.
Montaña Rusa, sad to say, when we visited La Feria Chapultepec Magico in 2018 was running only one train at a time. It did have this gorgeous model of the roller coaster, although under plexiglass and roped off so that it was difficult to photograph.

There are three steel roller coasters with a Möbius strip track. That is, the metal rail on which the coaster runs is itself braced directly by metal. One of these is in France, one in Italy, and one in Iran. One in Liaoning, China has been under construction for five years. I can’t say when it might open. I have yet to ride any of them.


This and all the other 2020 A-to-Z essays should be at this link. Both the 2020 and all past A-to-Z essays should be at this link. I am hosting the Playful Math Education Blog Carnival at the end of September, so appreciate any educational or recreational or simply fun mathematics material you know about. And, goodness, I’m actually overdue to ask for topics for the latters P through R; I’ll have a post for that tomorrow, I hope. Thank you for your reading and your help.

Using my A to Z Archives: Limit


I did not mean my archive pieces this week to all be patching up stuff omitted from my Leibniz essay. But that essay touched a bunch of mathematical points, some of which I already had essays about. One of them was published in the 2018 A-to-Z. We really, really want to use the idea of an infinitesimally tiny change to understand how calculus works. But we can’t do that with logical rigor. (Unless we redefine what “real numbers” are, and some mathematicians go in for that.) Ah, but: what if we could get all the things these infinitesimals give us without having to do anything weird? And that is the modern idea of the limit, which we sorted out about 150 years ago and are pretty satisfied with.

Using my A to Z Archives: Linear Programming


While talking about Leibniz, who isn’t the inventor of calculus — but is the person I’d credit most with showing us how calculus could be — I made some speculations unsupported by evidence about whether he looked into optimization problems. This because of the philosophical work that he’s famous for among lay audiences, the proposition that God’s will implies this must be the best possible universe. (I don’t know what he’s most famous for among professional philosophers.)

I don’t have an essay specifically on optimization theory, as mathematicians see it. Not exactly. But last year I did write about linear programming, which is a particular type of optimization problem. It’s a kind that’s often the best we can do in a complex circumstance. And it lets me introduce you to the word “simplex”, which is fun to say.

How August 2020 Saw People Finding Non-Comics Things Here


I’d like to take another quick look at my readership the past month. It’s the third without my doing regular comics posts, although they do creep in here and there.

I posted 19 things in August. That’s slightly up from July. I’m not aiming to do a post-a-day-all-month as I have in past A-to-Z sessions. It’s just too much work. Still, two posts every three days is fairly significant too.

There were 2,040 page views in August, a third month of increasing numbers. It’s below the twelve-month running average of 2,340.3, but that twelve months includes October 2019 when everybody in the world read something. Well, when six thousand people read something, anyway. There were 1,384 unique visitors, as WordPress figures them, in August. Again that’s below the twelve-month running average of 1,590.3. But, you know, the October 2019 anomaly and all that. Both these monthly totals are above the medians, for what that’s worth.

Bar chart of monthly readership for the last two and a half years. There's a slight increase in August compared to July 2020.
I couldn’t wait for 8:00 pm exactly. … Also, hey, exactly 888 followers, says the ticker, although I know that includes people who forgot they had a WordPress account back in 2013. It’s still a nice round number.

65 things got liked in August, barely above the 62.8 running average. There were 18 comments, a touch above the running average of 16.8.

Prorating things per post, eh, everything is basically the same. 107.4 views per posting, compared to an average of 126.2. 72.8 unique visitors per post, compared to a running average of 85.3. 3.4 likes per posting, compared to an average of 3.5. 0.9 comments per posting, compared to an average 1.0.

The most popular post in August was an old Reading the Comics post. The most popular posts from August this past month were:

You see what I mean about comics posts sneaking back in. Apparently I could have a quite nice, low-effort blog if I just shared mathematics comics without writing anything in depth. Well, I know it’s not fair use if I don’t add something to posting the comic.

As of the start of September I’d had 1,517 posts total here. They’d gathered 111,336 views from a logged 62.216 unique visitors.

I posted 12,051 words in August, my most verbose month by about 800 words. The average post was 634.3 words, which is well down from the start of the year. It’s all those Using My A to Z Archive posts. An A-to-Z essay I always aim for being about 1,200 words and it always ends up about 2,000. And it keeps getting worse.

This coming month I’m still planning to do an A-to-Z post every Wednesday. All of this year’s A-to-Z essays should go at this link. This year’s and all previous A-to-Z essays should be at this link. Also, I’m hosting the Playful Math Education Blog Carnival later this month and would appreciate any suggested blogs worth reading. Please give a mention in comments here.

And I’m always glad to have you as a regular reader. You can be one by clicking the “Follow Nebusresearch” button on the page. Or you can add the RSS feed for essays to whatever your reader is. If you don’t have an RSS reader, get a free account at Dreamwidth or Livejournal. You can add any RSS feed to your friends page from https://www.dreamwidth.org/feeds/ or https://www.livejournal.com/syn as you like.

My essays are announced on Twitter as @nebusj, However, Twitter doesn’t like working with Safari regularly, so I don’t read it. If you actually want to social-media talk with me look to the mathematics-themed Mathstodon and my account @nebusj@mathstodon.xyz. It’s low-volume over there, but it’s pleasant. Thank you for reading.

My All 2020 Mathematics A to Z: Leibniz


Today’s topic suggestion was suggested by bunnydoe. I know of a project bunnydoe runs, but not whether it should be publicized. It is another biographical piece. Biographies and complex numbers, that seems to be the theme of this year.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Gottfried Wilhelm Leibniz.

The exact suggestion I got for L was “Leibniz, the inventor of Calculus”. I can’t in good conscience offer that. This isn’t to deny Leibniz’s critical role in calculus. We rely on many of the ideas he’d had for it. We especially use his notation. But there are few great big ideas that can be truly credited to an inventor, or even a team of inventors. Put aside the sorry and embarrassing priority dispute with Isaac Newton. Many mathematicians in the 16th and 17th century were working on how to improve the Archimedean “method of exhaustion”. This would find the areas inside select curves, integral calculus. Johannes Kepler worked out the areas of ellipse slices, albeit with considerable luck. Gilles Roberval tried working out the area inside a curve as the area of infinitely many narrow rectangular strips. We still learn integration from this. Pierre de Fermat recognized how tangents to a curve could find maximums and minimums of functions. This is a critical piece of differential calculus. Isaac Barrow, Evangelista Torricelli (of barometer fame), Pietro Mengoli, and Stephano Angeli all pushed mathematics towards calculus. James Gregory proved, in geometric form, the relationship between differentiation and integration. That relationship is the Fundamental Theorem of Calculus.

This is not to denigrate Leibniz. We don’t dismiss the Wright Brothers though we know that without them, Alberto Santos-Dumont or Glenn Curtiss or Samuel Langley would have built a workable airplane anyway. We have Leibniz’s note, dated the 29th of October, 1675 (says Florian Cajori), writing out \int l to mean the sum of all l’s. By mid-November he was integrating functions, and writing out his work as \int f(x) dx . Any mathematics or physics or chemistry or engineering major today would recognize that. A year later he was writing things like d(x^n) = n x^{n - 1} dx , which we’d also understand if not quite care to put that way.

Though we use his notation and his basic tools we don’t exactly use Leibniz’s particular ideas of what calculus means. It’s been over three centuries since he published. It would be remarkable if he had gotten the concepts exactly and in the best of all possible forms. Much of Leibniz’s calculus builds on the idea of a differential. This is a quantity that’s smaller than any positive number but also larger than zero. How does that make sense? George Berkeley argued it made not a lick of sense. Mathematicians frowned, but conceded Berkeley was right. By the mid-19th century they had a rationale for differentials that avoided this weird sort of number.

It’s hard to avoid the differential’s lure. The intuitive appeal of “imagine moving this thing a tiny bit” is always there. In science or engineering applications it’s almost mandatory. Few things we encounter in the real world have the kinds of discontinuity that create logic problems for differentials. Even in pure mathematics, we will look at a differential equation like \frac{dy}{dx} = x and rewrite it as dy = x dx . Leibniz’s notation gives us the idea that taking derivatives is some kind of fraction. It isn’t, but in many problems we act as though it were. It works out often enough we forget that it might not.

Better, though. From the 1960s Abraham Robinson and others worked out a different idea of what real numbers are. In that, differentials have a rigorous logical definition. We call the mathematics which uses this “non-standard analysis”. The name tells something of its use. This is not to call it wrong. It’s merely not what we learn first, or necessarily at all. And it is Leibniz’s differentials. 304 years after his death there is still a lot of mathematics he could plausibly recognize.

There is still a lot of still-vital mathematics that he touched directly. Leibniz appears to be the first person to use the term “function”, for example, to describe that thing we’re plotting with a curve. He worked on systems of linear equations, and methods to find solutions if they exist. This technique is now called Gaussian elimination. We see the bundling of the equations’ coefficients he did as building a matrix and finding its determinant. We know that technique, today, as Cramer’s Rule, after Gabriel Cramer. The Japanese mathematician Seki Takakazu had discovered determinants before Leibniz, though.

Leibniz tried to study a thing he called “analysis situs”, which two centuries on would be a name for topology. My reading tells me you can get a good fight going among mathematics historians by asking whether he was a pioneer in topology. So I’ll decline to take a side in that.

In the 1680s he tried to create an algebra of thought, to turn reasoning into something like arithmetic. His goal was good: we see these ideas today as Boolean algebra, and concepts like conjunction and disjunction and negation and the empty set. Anyone studying logic knows these today. He’d also worked in something we can see as symbolic logic. Unfortunately for his reputation, the papers he wrote about that went unpublished until late in the 19th century. By then other mathematicians, like Gottlob Frege and Charles Sanders Peirce, had independently published the same ideas.

We give Leibniz’ name to a particular series that tells us the value of π:

1 - \frac13 + \frac15 - \frac17 + \frac19 - \frac{1}{11} + \cdots = \frac{\pi}{4}

(The Indian mathematician Madhava of Sangamagrama knew the formula this comes from by the 14th century. I don’t know whether Western Europe had gotten the news by the 17th century. I suspect it hadn’t.)

The drawback to using this to figure out digits of π is that it takes forever to use. Taking ten decimal digits of π demands evaluating about five billion terms. That’s not hyperbole; it just takes like forever to get its work done.

Which is something of a theme in Leibniz’s biography. He had a great many projects. Some of them even reached a conclusion. Many did not, and instead sprawled out with great ambition and sometimes insight before getting lost. Consider a practical one: he believed that the use of wind-driven propellers and water pumps could drain flooded mines. (Mines are always flooding.) In principle, he was right. But they all failed. Leibniz blamed deliberate obstruction by administrators and technicians. He even blamed workers afraid that new technologies would replace their jobs. Yet even in this failure he observed and had bracing new thoughts. The geology he learned in the mines project made him hypothesize that the Earth had been molten. I do not know the history of geology well enough to say whether this was significant to that field. It may have been another frustrating moment of insight (lucky or otherwise) ahead of its time but not connected to the mainstream of thought.

Another project, tantalizing yet incomplete: the “stepped reckoner”, a mechanical arithmetic machine. The design was to do addition and subtraction, multiplication and division. It’s a breathtaking idea. It earned him election into the (British) Royal Society in 1673. But it never was quite complete, never getting carries to work fully automatically. He never did finish it, and lost friends with the Royal Society when he moved on to other projects. He had a note describing a machine that could do some algebraic operations. In the 1690s he had some designs for a machine that might, in theory, integrate differential equations. It’s a fantastic idea. At some point he also devised a cipher machine. I do not know if this is one that was ever used in its time.

His greatest and longest-lasting unfinished project was for his employer, the House of Brunswick. Three successive Brunswick rulers were content to let Leibniz work on his many side projects. The one that Ernest Augustus wanted was a history of the Guelf family, in the House of Brunswick. One that went back to the time of Charlemagne or earlier if possible. The goal was to burnish the reputation of the house, which had just become a hereditary Elector of the Holy Roman Empire. (That is, they had just gotten to a new level of fun political intriguing. But they were at the bottom of that level.) Starting from 1687 Leibniz did good diligent work. He travelled throughout central Europe to find archival materials. He studied their context and meaning and relevance. He organized it. What he did not do, by his death in 1716, was write the thing.

It is always difficult to understand another person. Moreso someone you know only through biography. And especially someone who lived in very different times. But I do see a particular an modern personality type here. We all know someone who will work so very hard getting prepared to do a project Right that it never gets done. You might be reading the words of one right now.

Leibniz was a compulsive Society-organizer. He promoted ones in Brandenberg and Berlin and Dresden and Vienna and Saint Petersburg. None succeeded. It’s not obvious why. Leibniz was well-connected enough; he’s known to have over six hundred correspondents. Even for a time of great letter-writing, that’s a lot.

But it does seem like something about him offended others. Failing to complete big projects, like the stepped reckoner or the History of the Guelf family, seems like some of that. Anyone who knows of calculus knows of the dispute about the Newton-versus-Leibniz priority dispute. Grant that Leibniz seems not to have much fueled the quarrel. (And that modern historians agree Leibniz did not steal calculus from Newton.) Just being at the center of Drama causes people to rate you poorly.

There seems like there’s more, though. He was liked, for example, by the Electress Sophia of Hanover and her daughter Sophia Charlotte. These were the mother and the sister of Britain’s King George I. When George I ascended to the British throne he forbade Leibniz coming to London until at least one volume of the history was written. (The restriction seems fair, considering Leibniz was 27 years into the project by then.)

There are pieces in his biography that suggest a person a bit too clever for his own good. His first salaried position, for example, was as secretary to a Nuremberg alchemical society. He did not know alchemy. He passed himself off as deeply learned, though. I don’t blame him. Nobody would ever pass a job interview if they didn’t pretend to have expertise. Here it seems to have worked.

But consider, for example, his peace mission to Paris. Leibniz was born in the last years of the Thirty Years War. In that, the Great Powers of Europe battled each other in the German states. They destroyed Germany with a thoroughness not matched until World War II. Leibniz reasonably feared France’s King Louis XIV had designs on what was left of Germany. So his plan was to sell the French government on a plan of attacking Egypt and, from there, the Dutch East Indies. This falls short of an early-Enlightenment idea of rational world peace and a congress of nations. But anyone who plays grand strategy games recognizes the “let’s you and him fight” scheming. (The plan became irrelevant when France went to war with the Netherlands. The war did rope Brandenberg-Prussia, Cologne, Münster, and the Holy Roman Empire into the mess.)

God: 'T-Rex remember the other day when you said you wanted to enhance the timeline?' T-Rex: 'Absolutely!' God: 'Well why enhance it only once?' T-Rex: 'Holy cow! Why indeed? I enhance the past so there's holodecks in the present. And then I teach cavepeeps to invent those, and then return to the future and find new entertainment technology so amazing I can't even imagine it right now! I could enhance the timeline over and over until me and all the other time travellers conclude it can't possibly be enhanced any more!!' Utahraptor: 'Which leaves us with two possibilities.' T-Rex: 'Oh?' Utahraptor: 'One: time travel isn't possible and we're stuck with this timeline.' T-Rex: 'Boo! Let's ignore that one!' Utahraptor: 'Two: time travel is possible, and this timeline is absolutely the best one anyone could come up with' T-Rex: 'Boo! That one --- that one gave me the sad feelings.'
Ryan North’s Dinosaur Comics for the 20th of August, 2020. (Spoiler: time travel isn’t possible.) And while I am still just reading the comics for fun, I have a number of essays discussing aspects of Dinosaur Comics at this link.

And I have not discussed Leibniz’s work in philosophy, outside his logic. He’s respected for the theory of monads, part of the long history of trying to explain how things can have qualities. Like many he tried to find a deductive-logic argument about whether God must exist. And he proposed the notion that the world that exists is the most nearly perfect that can possibly be. Everyone has been dragging him for that ever since he said it, and they don’t look ready to stop. It’s an unfair rap, even if it makes for funny spoofs of his writing.

The optimal world may need to be badly defective in some ways. And this recognition inspires a question in me. Obviously Leibniz could come to this realization from thinking carefully about the world. But anyone working on optimization problems knows the more constraints you must satisfy, the less optimal your best-fit can be. Some things you might like may end up being lousy, because the overall maximum is more important. I have not seen anything to suggest Leibniz studied the mathematics of optimization theory. Is it possible he was working in things we now recognize as such, though? That he has notes in the things we would call Lagrange multipliers or such? I don’t know, and would like to know if anyone does.

Leibniz’s funeral was unattended by any dignitary or courtier besides his personal secretary. The Royal Academy and the Berlin Academy of Sciences did not honor their member’s death. His grave was unmarked for a half-century. And yet historians of mathematics, philosophy, physics, engineering, psychology, social science, philology, and more keep finding his work, and finding it more advanced than one would expect. Leibniz’s legacy seems to be one always rising and emerging from shade, but never being quite where it should.


And that’s enough for one day. All of the 2020 A-to-Z essays should be at this link. Both 2020 and all past A-to-Z essays should be at this link. And, as I am hosting the Playful Math Education Blog Carnival at the end of September, I am looking for any blogs, videos, books, anything educational or recreational or just interesting to read about. Thank you for your reading and your help.

So I’m hosting the 141th Playful Math Education Blog Carnival


I mentioned yesterday Iva Sallay’s hosting of the 140th Playful Math Education Blog Carnival. This is a collection of pieces of educational, recreational, or otherwise just delightful mathematics posts. I’d said I hoped I might have the energy to host one again this year and, you know? Denise Gaskins, who organizes this monthly event, took me up on the offer.

So, if you write, or read, or are just aware of a good mathematics or mathematics-related blog, please, leave me a comment! I’ll need all the help I can get finding things worth sharing. Anything that you’ve learned from, or that’s delighted you, is worth it. It’ll teach and delight other people too.

And if you have a blog and would like to try out hosting it, please do! There are always months available, and it’s a neat different sort of blogging challenge.

FindTheFactors hosts the 140th Playful Math Education Blog Carnival


Iva Sallay’s Find the Factors recreational mathematics puzzle blog is once again host to the Playful Math Education Blog Carnival. It’s the 140th installment of this blog series, this month, and you might find several pieces of mathematics instruction or trivia or recreation or just play worth reading. It’s been a while since I had the energy to host one but I hope to be able to again this year. Enjoy, I hope.

Using my A to Z Archives: Kelvin (the scientist)


If complex numbers aren’t the dominant theme of this year’s A-to-Z, then biographies are. I’ve written biographies for past series, though. Here, from 2018, is a tiny slice about William Thompson, Lord Kelvin, and one of those bits of his work that is mathematical and important and had a huge effect on the world. But it’s also become invisible. So please consider a couple hundred words about that.

Using my A to Z Archives: Kernel


In writing about K-theory I mentioned the “kernel”. I didn’t have space to describe what that was, and I failed to link to the essay I wrote in late 2016 about what kernels were and why we care. Let me fix that now. We’re introduced to kernels in group theory, where, for the simple groups, they seem like a complicated way to talk about “zero”. But we also see them in linear algebra. And between those, we get them in analysis. That then leads into not quite all of modern mathematics. But a lot of it.

Meanwhile, in sandwich news


This is a slight thing that crossed my reading yesterday. You might enjoy. The question is a silly one: what’s the “optimal” way to slice banana onto a peanut-butter-and-banana sandwich?

Here’s Ethan Rosenthal’s answer. The specific problem this is put to is silly. The optimal peanut butter and banana sandwich is the one that satisfies your desire for a peanut butter and banana sandwich. However, the approach to the problem demonstrates good mathematics, and numerical mathematics, practices. Particularly it demonstrates defining just what your problem is, and what you mean by “optimal”, and how you can test that. And then developing a numerical model which can optimize it.

And the specific question, how much of the sandwich can you cover with banana slices, one of actual interest. A good number of ideas in analysis involve thinking of cover sets: what is the smallest collection of these things which will completely cover this other thing? Concepts like this give us an idea of how to define area, also, as the smallest number of standard reference shapes which will cover the thing we’re interested in. The basic problem is practical too: if we wish to provide something, and have units like this which can cover some area, how can we arrange them so as to miss as little as possible? Or use as few of the units as possible?

My All 2020 Mathematics A to Z: K-Theory


I should have gone with Vayuputrii’s proposal that I talk about the Kronecker Delta. But both Jacob Siehler and Mr Wu proposed K-Theory as a topic. It’s a big and an important one. That was compelling. It’s also a challenging one. This essay will not teach you K-Theory, or even get you very far in an introduction. It may at least give some idea of what the field is about.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

K-Theory.

This is a difficult topic to discuss. It’s an important theory. It’s an abstract one. The concrete examples are either too common to look interesting or are already deep into things like “tangent bundles of Sn-1”. There are people who find tangent bundles quite familiar concepts. My blog will not be read by a thousand of them this month. Those who are familiar with the legends grown around Alexander Grothendieck will nod on hearing he was a key person in the field. Grothendieck was of great genius, and also spectacular indifference to practical mathematics. Allegedly he once, pressed to apply something to a particular prime number for an example, proposed 57, which is not prime. (One does not need to be a genius to make a mistake like that. If I proposed 447 or 449 as prime numbers, how long would you need to notice I was wrong?)

K-Theory predates Grothendieck. Now that we know it’s a coherent mathematical idea we can find elements leading to it going back to the 19th century. One important theorem has Bernhard Riemann’s name attached. Henri Poincaré contributed early work too. Grothendieck did much to give the field a particular identity. Also a name, the K coming from the German Klasse. Grothendieck pioneered what we now call Algebraic K-Theory, working on the topic as a field of abstract algebra. There is also a Topological K-Theory, early work on which we thank Michael Atiyah and Friedrick Hirzebruch for. Topology is, popularly, thought of as the mathematics of flexible shapes. It is, but we get there from thinking about relationships between sets, and these are the topologies of K-Theory. We understand these now as different ways of understandings structures.

Still, one text I found described (topological) K-Theory as “the first generalized cohomology theory to be studied thoroughly”. I remember how much handwaving I had to do to explain what a cohomology is. The subject looks intimidating because of the depth of technical terms. Every field is deep in technical terms, though. These look more rarefied because we haven’t talked much, or deeply, into the right kinds of algebra and topology.

You find at the center of K-Theory either “coherent sheaves” or “vector bundles”. Which alternative depends on whether you prefer Algebraic or Topological K-Theory. Both alternatives are ways to encode information about the space around a shape. Let me talk about vector bundles because I find that easier to describe. Take a shape, anything you like. A closed ribbon. A torus. A Möbius strip. Draw a curve on it. Every point on that curve has a tangent plane, the plane that just touches your original shape, and that’s guaranteed to touch your curve at one point. What are the directions you can go in that plane? That collection of directions is a fiber bundle — a tangent bundle — at that point. (As ever, do not use this at your thesis defense for algebraic topology.)

Now: what are all the tangent bundles for all the points along that curve? Does their relationship tell you anything about the original curve? The question is leading. If their relationship told us nothing, this would not be a subject anyone studies. If you pick a point on the curve and look at its tangent bundle, and you move that point some, how does the tangent bundle change?

If we start with the right sorts of topological spaces, then we can get some interesting sets of bundles. What makes them interesting is that we can form them into a ring. A ring means that we have a set of things, and an operation like addition, and an operation like multiplication. That is, the collection of things works somewhat like the integers do. This is a comfortable familiar behavior after pondering too much abstraction.

Why create such a thing? The usual reasons. Often it turns out calculating something is easier on the associated ring than it is on the original space. What are we looking to calculate? Typically, we’re looking for invariants. Things that are true about the original shape whatever ways it might be rotated or stretched or twisted around. Invariants can be things as basic as “the number of holes through the solid object”. Or they can be as ethereal as “the total energy in a physics problem”. Unfortunately if we’re looking at invariants that familiar, K-Theory is probably too much overhead for the problem. I confess to feeling overwhelmed by trying to learn enough to say what it is for.

There are some big things which it seems well-suited to do. K-Theory describes, in its way, how the structure of a set of items affects the functions it can have. This links it to modern physics. The great attention-drawing topics of 20th century physics were quantum mechanics and relativity. They still are. The great discovery of 20th century physics has been learning how much of it is geometry. How the shape of space affects what physics can be. (Relativity is the accessible reflection of this.)

And so K-Theory comes to our help in string theory. String theory exists in that grand unification where mathematics and physics and philosophy merge into one. I don’t toss philosophy into this as an insult to philosophers or to string theoreticians. Right now it is very hard to think of ways to test whether a particular string theory model is true. We instead ponder what kinds of string theory could be true, and how we might someday tell whether they are. When we ask what things could possibly be true, and how to tell, we are working for the philosophy department.

My reading tells me that K-Theory has been useful in condensed matter physics. That is, when you have a lot of particles and they interact strongly. When they act like liquids or solids. I can’t speak from experience, either on the mathematics or the physics side.

I can talk about an interesting mathematical application. It’s described in detail in section 2.3 of Allen Hatcher’s text Vector Bundles and K-Theory, here. It comes about from consideration of the Hopf invariant, named for Heinz Hopf for what I trust are good reasons. It also comes from consideration of homomorphisms. A homomorphism is a matching between two sets of things that preserves their structure. This has a precise definition, but I can make it casual. If you have noticed that, every (American, hourlong) late-night chat show is basically the same? The host at his desk, the jovial band leader, the monologue, the show rundown? Two guests and a band? (At least in normal times.) Then you have noticed the homomorphism between these shows. A mathematical homomorphism is more about preserving the products of multiplication. Or it preserves the existence of a thing called the kernel. That is, you can match up elements and how the elements interact.

What’s important is Adams’ Theorem of the Hopf Invariant. I’ll write this out (quoting Hatcher) to give some taste of K-Theory:

The following statements are true only for n = 1, 2, 4, and 8:
a. R^n is a division algebra.
b. S^{n - 1} is parallelizable, ie, there exist n – 1 tangent vector fields to S^{n - 1} which are linearly independent at each point, or in other words, the tangent bundle to S^{n - 1} is trivial.

This is, I promise, low on jargon. “Division algebra” is familiar to anyone who did well in abstract algebra. It means a ring where every element, except for zero, has a multiplicative inverse. That is, division exists. “Linearly independent” is also a familiar term, to the mathematician. Almost every subject in mathematics has a concept of “linearly independent”. The exact definition varies but it amounts to the set of things having neither redundant nor missing elements.

The proof from there sprawls out over a bunch of ideas. Many of them I don’t know. Some of them are simple. The conditions on the Hopf invariant all that S^{n - 1} stuff eventually turns into finding values of n for for which 2^n divides 3^n - 1 . There are only three values of ‘n’ that do that. For example.

What all that tells us is that if you want to do something like division on ordered sets of real numbers you have only a few choices. You can have a single real number, R^1 . Or you can have an ordered pair, R^2 . Or an ordered quadruple, R^4 . Or you can have an ordered octuple, R^8 . And that’s it. Not that other ordered sets can’t be interesting. They will all diverge far enough from the way real numbers work that you can’t do something that looks like division.

And now we come back to the running theme of this year’s A-to-Z. Real numbers are real numbers, fine. Complex numbers? We have some ways to understand them. One of them is to match each complex number with an ordered pair of real numbers. We have to define a more complicated multiplication rule than “first times first, second times second”. This rule is the rule implied if we come to R^2 through this avenue of K-Theory. We get this matching between real numbers and the first great expansion on real numbers.

The next great expansion of complex numbers is the quaternions. We can understand them as ordered quartets of real numbers. That is, as R^4 . We need to make our multiplication rule a bit fussier yet to do this coherently. Guess what fuss we’d expect coming through K-Theory?

R^8 seems the odd one out; who does anything with that? There is a set of numbers that neatly matches this ordered set of octuples. It’s called the octonions, sometimes called the Cayley Numbers. We don’t work with them much. We barely work with quaternions, as they’re a lot of fuss. Multiplication on them doesn’t even commute. (They’re very good for understanding rotations in three-dimensional space. You can also also use them as vectors. You’ll do that if your programming language supports quaternions already.) Octonions are more challenging. Not only does their multiplication not commute, it’s not even associative. That is, if you have three octonions — call them p, q, and r — you can expect that p times the product of q-and-r would be different from the product of p-and-q times r. Real numbers don’t work like that. Complex numbers or quaternions don’t either.

Octonions let us have a meaningful division, so we could write out p \div q and know what it meant. We won’t see that for any bigger ordered set of R^n . And K-Theory is one of the tools which tells us we may stop looking.

This is hardly the last word in the field. It’s barely the first. It is at least an understandable one. The abstractness of the field works against me here. It does offer some compensations. Broad applicability, for example; a theorem tied to few specific properties will work in many places. And pure aesthetics too. Much work, in statements of theorems and their proofs, involve lovely diagrams. You’ll see great lattices of sets relating to one another. They’re linked by chains of homomorphisms. And, in further aesthetics, beautiful words strung into lovely sentences. You may not know what it means to say “Pontryagin classes also detect the nontorsion in \pi_k(SO(n)) outside the stable range”. I know I don’t. I do know when I hear a beautiful string of syllables and that is a joy of mathematics never appreciated enough.


Thank you for reading. The All 2020 A-to-Z essays should be available at this link. The essays from all A-to-Z sequence, 2015 to present, should be at this link. And I am still open for M, N, and O essay topics. Thanks for your attention.

Using my A to Z Archives: Jump (discontinuity)


In my first A-to-Z I wrote a good number of pieces about the kinds of functions there are. For example, jump, a particular kind of discontinuity in functions. This is useful because there are a lot of pieces of functional analysis where we know things are true for continuous functions. And if a function has a jump discontinuity? Usually we know the thing is true except at the discontinuity. There’s more rules, of course. And, like, Fourier series will get strange around jump discontinuities.

I’d have written the essay a bit different today, but I am in awe of a time I could wrap up the point within six hundred words. That never happens anymore.