Breaking Andertoons News: Wavehead has a name


I will be late with this week’s A-to-Z essay. I’ve had more demands on my time and my ability to organize thoughts than I could manage and something had to yield. I’m sorry for that but figure to post on Friday something for the letter ‘Y’.

But there is some exciting news in one of my regular Reading the Comics features. It’s about the kid who shows up often in Mark Anderson’s Andertoons. At the nomination of — I want to say Ray Kassinger? — I’ve been calling him “Wavehead”. Last week, though, the strip gave his name. I don’t know if this is the first time we’ve seen it. It is the first time I’ve noticed. He turns out to be Tommy.

Wavehead meeting the substitute teacher: 'I'm Tommy. You're going to read all about me in the sub notes. I just wanted to say welcome, remember to breathe, and good luck. The game is afoot.'
Mark Anderson’s Andertoons for the 3rd of December, 2020. All the many times I write something about Andertoons and we get this news on a completely mathematics-free panel? It hardly seems fair.

And what about my Reading the Comics posts, which have been on suspension since the 2020 A-to-Z started? I’m not sure. I figure to resume them after the new year. I don’t know that it’ll be quite the same, though. A lot of mathematics mentions in comic strips are about the same couple themes. It is exhausting to write about the same thing every time. But I have, I trust, a rotating readership. Someone may not know, or know how to find, a decent 200-word piece about lotteries published four months in the past. I need to better balance not repeating myself.

Also a factor is lightening my overhead. Most of my strips come from Comics Kingdom or GoComics. Both of them also cull strips from their archives occasionally, leaving me with dead links. (GoComics particularly is dropping a lot of strips by the end of 2020. I understand them dumping, say, The Sunshine Club, which has been in reruns since 2007. But Dave Kellett’s Sheldon?)

The only way to make sure a strip I write about remains visible to my readers is to include it here. But to make my including the strip fair use requires that I offer meaningful commentary. I have to write something substantial, and something that’s worsened without the strip to look at. You see how this builds to a workload spiral, especially for strips where all there is to say is it’s a funny story problem. (If any cartoonists are up for me being another, unofficial archive for their mathematics-themed strips? Drop me a comment, Bill Amend, we can work something out if it doesn’t involve me sending more money than I’m taking in.)

So I don’t know how I’ll resolve all this. Key will be remembering that I can just not do the stuff I find tedious here. I will not, in fact, remember that.

Sally Brown knows some imaginary numbers too


I had remembered this comic strip, and I hoped to use it for yesterday’s A-to-Z essay about Imaginary Numbers. But I wasn’t able to find it before publishing deadline. I figured I could go back and add this to the essay once I found it, and I likely will anyway. (The essay is quite long and any kind of visual appeal helps.)

But I also wanted folks to have the chance to notice it, and an after-the-fact addition doesn’t give that chance.

Charlie Brown: 'You really need to work on your times tables, Sally, I can see that. Let's try the threes. How much is three times zero?' Sally: 'Four thousand? Six? Eleventy-twelve? Fifty-quillion? Overly-eight? Twiddely-two? Well? Am I getting closer?' Charlie Brown: 'Actually, it's kind of hard to say!'
Charles Schulz’s Peanuts for the 14th of October, 1967. You appreciate Schulz’s talent as a writer when you realize what a good nonsense word “Quillion” is. It sounds so plausible it’s easier to believe it is a number. “Overly-Eight” is another first-rate nonsense word and it’s just a shame that it’s so close to “Quillion” that it gets overshadowed. Reading the Comics essays with some mention of Peanuts are at this link.

It is almost certain that Bill Watterson read this strip, and long before his own comic with eleventeen and thirty-twelve and such. Watterson has spoken of Schulz’s influence. That isn’t to say that he copied the joke. “Gibberish number-like words” is not a unique idea, and it’s certainly not original to Schulz. I’d imagine a bit of effort could find prior examples even within comic strips. (I’m reminded in Pogo of Howland Owl describing the Groundhog Child’s gibberish as first-rate algebra.) It’s just fun to see great creative minds working out similar ideas, and how they use those ideas for different jokes.

Reading the Comics, June 7, 2020: Hiatus Edition


I think of myself as not a prescriptivist blogger. Here and on my humor blog I do what I feel like, and if that seems to work, I do more of it if I can. If I do enough of it, I try to think of a title, give up and use the first four words that kind of fit, and then ask Thomas K Dye for header art. If it doesn’t work, I drop it without mention. Apart from appealing for A-to-Z topics I don’t usually declare what I intend to do.

This feels different. One of the first things I fell into here, and the oldest hook in my blogging, is Reading the Comics. It’s mostly fun. But it is also work. 2020 is not a year when I am capable of expanding my writing work without bounds. Something has to yield, and my employers would rather it not be my day job. So, at least through the completion of the All 2020 Mathematics A-to-Z, I’ll just be reading the comics. Not Reading the Comics for posting here.

And this is likely a good time for a hiatus. There is much that’s fun about Reading the Comics. First is the comic strips, a lifelong love. Second is that they solve the problem of what to blog about. During the golden age of Atlantic City, there was a Boardwalk performer whose gimmick was to drag a trap along the seabed, haul it up, and identify every bit of sea life caught up in that. My schtick is of a similar thrill, with less harm required of the sea life.

But I have felt bored by this the last several months. Boredom is not a bad thing, of course. And if you are to be a writer, you must be able to write something competent and fresh about a topic you are tired of. Admitting that: I do not have one more sentence in me about kids not buying into the story problem. Or observing that yes, that is a blackboard full of mathematics symbols. Or that lotteries exist and if you play them infinitely many times strange conclusions seem to follow. An exercise that is tiring can be good; an exercise that is painful is not. I will put the painful away and see what I feel like later.

For the time being I figure to write only the A-to-Z essays. And, since I have them, to post references back to old A-to-Z essays. These recaps seemed to be received well enough last year. So why not repeat something that was fine when it was just one of many things?

And after all, the A-to-Z theme is still at heart hauling up buckets of sea life and naming everything in it. It’s just something that I can write farther ahead of deadline, but will not.

Thanks all for reading.

The Boardwalk performer would, if stumped, make up stuff. What patron was going to care if they went away ill-informed? It was a show. The performer just needed a confident air.

Reading the Comics, June 6, 2020: Wrapping Up The Week Edition


Let’s see if I can’t close out the first week of June’s comics. I’d rather have published this either Tuesday or Thursday, but I didn’t have the time to write my statistics post for May, not yet. I’ll get there.

One of Gary Larson’s The Far Side reprints for the 4th is one I don’t remember seeing before. The thing to notice is the patient has a huge right brain and a tiny left one. The joke is about the supposed division between left-brained and right-brained people. There are areas of specialization in the brain, so that the damage or destruction of part can take away specific abilities. The popular imagination has latched onto the idea that people can be dominated by specialties of the either side of the brain. I’m not well-versed in neurology. I will hazard the guess that neurologists see “left-brain” and “right-brain” as amusing stuff not to be taken seriously. (My understanding is the division of people into “type A” and “type B” personalities is also entirely bunk unsupported by any psychological research.)

Psychiatrist talking to a patient whose head is enormously tall on the right and shorter than normal on the left: 'You're a right-brained sort of person, Mr Sommersby. Very creative, artistic, etc ... Unfortunately, I think I also see why you're having trouble figuring out your gas mileage.'
Gary Larson’s The Far Side reprint for the 4th of June, 2020. Essays that showcase something inspired by The Far Side I’ve gathered at this link.

Samson’s Dark Side of the Horse for the 5th is wordplay. It builds on the use of “problem” to mean both “something to overcome” and “something we study”. The mathematics puzzle book is a fanciful creation. The name Lucien Kastner is a Monty Python reference. (I thank the commenters for spotting that.)

Horace, walking and reflecting: 'My childhood wasn't easy. There were all these problems.' Flashback to a childhood Christmas and young Horace delighted to open the book: '1000 Math Problems to Enjoy, by Prof Lucien Kastner.'
Samson’s Dark Side of the Horse for the 5th of June, 2020. This and other essays based on Dark Side of the Horse are at this link.

Dan Collins’s Looks Good on Paper for the 5th is some wordplay on the term “Möbius Strip”, here applied to a particular profession.

A woman on stage is seen from the knees down. Title: 'Mobius Stripper'. Man in the audience thinking: 'I can't tell if she's taking her clothes off or putting them on!'
Dan Collins’s Looks Good on Paper for the 5th of June, 2020. The full, I think, exploration of Looks Good on Paper doing Möbius Strip jokes are gathered at this link.

Bud Blake’s Tiger rerun for the 6th has Tiger complaining about his arithmetic homework. And does it in pretty nice form, really, doing some arithmetic along the way. It does imply that he’s starting his homework at 1 pm, though, so I guess it’s a weekend afternoon. It seems like rather a lot of homework for that age. Maybe he’s been slacking off on daily work and trying to make up for it.

Tiger: 'I've got two plus four hours of homework. I won't be finished until ten minus three o'clock. Or maybe even six plus one and a half o'clock.' Punkinhead: 'What subject?' Tiger: 'Arithmetic, stupid!'
Bud Blake’s Tiger for the 6th of June, 2020. Essays showing off Tiger should all appear at this link.

John McPherson’s Close To Home for the 6th has a cheat sheet skywritten. It’s for a geometry exam. Any subject would do, but geometry lets cues be written out in very little space. The formulas are disappointingly off, though. We typically use ‘r’ to mean the radius of a circle or sphere, but then would use C for its circumference. That would be c = 2\pi r . The area of a circle, represented with A, would be \pi r^2 . I’m not sure what ‘Vol.C’ would mean, although ‘Volume of a cylinder’ would make sense … if the next line didn’t start “Vol.Cyl”. The volume of a circular cylinder is \pi r^2 h , where r is the radius and h the height. For a non-circular cylinder, it’s the area of a cross-section times the height. So that last line may be right, if it extends out of frame.

Kid in school, staring out the window. A cloud skywrites: 'C = pi * r^2', 'Vol C = pi r^2', 'vol. cyl = pi r ... ' Caption: 'With a bit of help from his uncle's skywriting business, Dale was able to pass the geometry final.'
John McPherson’s Close To Home for the 6th of June, 2020. Essays that feature something explored by Close to Home should be at this link.

Granted, though, a cheat sheet does not necessarily make literal sense. It needs to prompt one to remember what one needs. Notes that are incomplete, or even misleading, may be all that one needs.


And this wraps up the comics. This and other Reading the Comics posts are gathered at this link. Next week, I’ll get the All 2020 A-to-Z under way. Thanks once again for all your reading.

Reading the Comics, June 3, 2020: Subjective Opinions Edition


Thanks for being here for the last week before my All-2020 Mathematics A to Z starts. By the time this posts I should have decided on the A-topic, but I’m still up for B or C topics, if you’d be so kind as to suggest things.

Bob Weber Jr’s Slylock Fox for the 1st of June sees Reeky Rat busted for speeding on the grounds of his average speed. It does make the case that Reeky Rat must have travelled faster than 20 miles per hour at some point. There’s no information about when he did it, just the proof that there must have been some time when he drove faster than the speed limit. One can find loopholes in the reasoning, but, it’s a daily comic strip panel for kids. It would be unfair to demand things like proof there’s no shorter route from the diner and that the speed limit was 20 miles per hour the whole way.

Ted Shearer’s Quincy for the 1st originally ran the 7th of April, 1981. Quincy and his friend ponder this being the computer age, and whether they can let computers handle mathematics.

Jef Mallett’s Frazz for the 2nd has the characters talk about how mathematics offers answers that are just right or wrong. Something without “subjective grading”. It enjoys that reputation. But it’s not so, and that’s obvious when you imagine grading. How would you grade an answer that has the right approach, but makes a small careless error? Or how would you grade an approach that doesn’t work, but that plausibly could?

Kid: 'I hate essay assignments. They're so open to subjective grading. It would be a lot simpler if answers would just be right or wrong.' Frazz: 'You're in luck. I understand there's a math test coming up.' Kid: 'What's the lucky part?'
Jef Mallett’s Frazz for the 2nd of June, 2020. Other essays featuring something discussed in Frazz appear at this link.

And how do you know that the approach wouldn’t work? Even in non-graded mathematics, we have subjectivity. Much of mathematics is a search for convincing arguments about some question. What we hope to be convinced of is that there is a sound logical argument making the same conclusions. Whether the argument is convincing is necessarily subjective.

Yes, in principle, we could create a full deductive argument. It will take forever to justify every step from some axiom or definition or rule of inference. And even then, how do we know a particular step is justified? It’s because we think we understand what the step does, and how it conforms to one (or more) rule. That’s again a judgement call.

(The grading of essays is also less subjective than you might think if you haven’t been a grader. The difference between an essay worth 83 points and one worth 85 points may be trivial, yes. But you will rarely see an essay that reads as an A-grade one day and a C-grade the next. This is not to say that essay grading is not subject to biases. Some of these are innocent, such as the way the grader’s mood will affect the grade. Or how the first several papers, or the last couple, will be less consistently graded than the ones done in the middle of the project. Some are pernicious, such as under-rating the work done by ethnic minority students. But these biases affect the way one would grade, say, the partial credit for an imperfectly done algebra problem too.)

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. I could also swear that I’ve featured it here before. I can’t find it, if I have discussed this strip before. I may not have. Wavehead’s observing the difference between zero as an additive identity and its role in multiplication.

On the blackboard are written 7 + 0 = 7, 7 - 0 = 7, and 7 x 0 = 0. Wavehead: 'So the takeaway ehre is, if I'm the number 7, avoid multiplication at all costs.'
Mark Anderson’s Andertoons for the 3rd of June, 2020. When I have an essay that features something mentioned in Andertoons the essay’s put up at this link.

Ryan Pagelow’s Buni for the 3rd fits into the anthropomorphic-numerals category of joke. It’s really more of a representation of the year as the four horsemen of the Apocalypse.

Dan Collins’s Looks Good on Paper for the 3rd has a cook grilling a “Möbius Strip Steak”. It’s a good joke for putting on a mathematics instructor’s door.

Doug Savage’s Savage Chickens for the 3rd has, as part of animal facts, the assertion that “llamas have basic math skills”. I don’t know of any specific research on llama mathematics skills. But animals do have mathematics skills. Often counting. Some amount of reasoning. Social animals often have an understanding of transitivity, as well, especially if the social groups have a pecking order.


And this wraps up half of the past week’s mathematically-themed comic strips. I hope to have the rest in a Reading the Comics post at this link in a few days. Thanks for reading.

Reading the Comics, May 29, 2020: Slipping Into Summer More Edition


This is the slightly belated close of last week’s topics suggested by Comic Strip Master Command. For the week we’ve had, I am doing very well.

Werner Wejp-Olsen’s Inspector Danger’s Crime Quiz for the 25th of May sees another mathematician killed, and “identifying” his killer in a dying utterance. Inspector Danger has followed killer mathematicians several times before: the 9th of July, 2012, for instance. Or the 4th of July, 2016, for a case so similar that it’s almost a Slylock Fox six-differences puzzle. Apparently realtors and marine biologists are out for mathematicians’ blood. I’m not surprised by the realtors, but hey, marine biology, what’s the deal? The same gimmick got used the 15th of May, 2017, too. (And in fairness to the late Wejp-Olsen, who could possibly care that similar names are being used in small puzzles used years apart? It only stands out because I’m picking out things that no reasonable person would notice.)

Monty, to his robot pal: 'During a plague, Sir Isaac Newton invented calculus! Shakespeare wrote Lear and Macbeth!' (Two panels of Monty thinking hard and struggling to compose anything.) Monty: 'Maybe I'm more like Charles Darwin. I think he wrote 'On the Origin of Species' when everything was pretty normal.'
Jim Meddick’s Monty for the 25th of May, 2020. Essays with some mention of topics from Monty are at this link.

Jim Meddick’s Monty for the 25th has the title character inspired by the legend of genius work done during plague years. A great disruption in life is a great time to build new habits, and if Covid-19 has given you the excuse to break bad old habits, or develop good new ones, great! Congratulations! If it has not, though? That’s great too. You’re surviving the most stressful months of the 21st century, I hope, not taking a holiday.

Anyway, the legend mentioned here includes Newton inventing Calculus while in hiding from the plague. The actual history is more complicated, and ambiguous. (You will not go wrong supposing that the actual history of a thing is more complicated and ambiguous than you imagine.) The Renaissance Mathematicus describes, with greater authority and specificity than I could, what Newton’s work was more like. And some of how we have this legend. This is not to say that the 1660s were not astounding times for Newton, nor to deny that he worked with a rare genius. It’s more that we are lying to imagine that Newton looked around, saw London was even more a deathtrap than usual, and decided to go off to the country and toss out a new and unique understanding of the infinitesimal and the continuum.

Classroom. The teacher has drawn a geometric ray on the blackboard. Student: 'So that goes on forever? Should we warn people in the hallway?!'
Mark Anderson’s Andertoons rerun for the 27th of May, 2020. It ran at least as recently as the 3rd of August, 2017. and I noticed it then. This, that, and other essays featuring Andertoons can be found at this link.

Mark Anderson’s Andertoons for the 27th is the Mark Anderson’s Andertoons for the week. One of the students — not Wavehead — worries that a geometric ray, going on forever, could endanger people. There’s some neat business going on here. Geometry, like much mathematics, works on abstractions that we take to be universally true. But it also seems to have a great correspondence to ordinary real-world stuff. We wouldn’t study it if it didn’t. So how does that idealization interact with the reality? If the ray represented by those marks on the board goes on to do something, do we have to take care in how it’s used?

Olivia Jaimes’s Nancy for the 29th is set in a (virtual) arithmetic class. It builds on the conflation between “nothing” and “zero”.


And that wraps up my week in comic strips. I keep all my Reading the Comics posts at this link. I am also hoping to start my All 2020 Mathematics A-to-Z shortly, and am open for nominations for topics for the first couple letters. Thank you for reading.

Reading the Comics, May 25, 2020: Slipping into Summer Edition


Comic Strip Master Command wanted to give me a break as I ready for the All 2020 A-to-Z. I appreciate the gesture, especially given the real-world events of the past week. I get to spend this week mostly just listing appearances, even if they don’t inspire deeper thought.

Gordon Bess’s vintage Redeye for the 24th has one of his Cartoon Indians being lousy at counting. Talking about his failures at arithmetic, with how he doesn’t count six shots off well. There’s a modest number of things that people are, typically, able to perceive at once. Six can be done, although it’s easy for a momentary loss of focus to throw you off. This especially for things that have to be processed in sequence, rather than perceived all together.

Wulff and Morgenthaler’s WuMo for the 24th shows a parent struggling with mathematics, billed as part of “the terrible result of homeschooling your kids”. It’s a cameo appearance. It’d be the same if Mom were struggling with history or English. This is just quick for the comic strip reader to understand.

Andrés J. Colmenares’s Wawawiwa for the 25th sets several plants in a classroom. They’re doing arithmetic. This, too, could be any course; it just happens to be mathematics.

Sam Hurt’s Eyebeam for the 25th is built on cosmology. The subject is a blend of mathematics, observation, and metaphysics. The blackboard full of mathematical symbols gets used as shorthand for describing the whole field, not unfairly. The symbols as expressed don’t come together to mean anything. I don’t feel confident saying they don’t mean anything, though.


This is enough for today. I keep all my Reading the Comics posts at this link, and should have another one later this week. And I am trying to get my All 2020 Mathematics A-to-Z ready, with nominations open for the first several letters of the alphabet already. Thank you for reading.

Reading the Comics, May 23, 2020: Parents Can’t Do Math Edition


This was a week of few mathematically-themed comic strips. I don’t mind. If there was a recurring motif, it was about parents not doing mathematics well, or maybe at all. That’s not a very deep observation, though. Let’s look at what is here.

Liniers’s Macanudo for the 18th puts forth 2020 as “the year most kids realized their parents can’t do math”. Which may be so; if you haven’t had cause to do (say) long division in a while then remembering just how to do it is a chore. This trouble is not unique to mathematics, though. Several decades out of regular practice they likely also have trouble remembering what the 11th Amendment to the US Constitution is for, or what the rule is about using “lie” versus “lay”. Some regular practice would correct that, though. In most cases anyway; my experience suggests I cannot possibly learn the rule about “lie” versus “lay”. I’m also shaky on “set” as a verb.

Triptych of pictures: In the first a parent confidently points at the child's homework In the second the parent sits down, having displaced the child, and is working hard. In the third the child is gone; the parent is grimacing, head in hands, frustrated. The heading: '2020: The Year Most Kids Realized Their Parents Can't Do Math'.
Liniers’s Macanudo for the 18th of May, 2020. Essays inspired by something mentioned in Macanudo are gathered at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th shows a mathematician talking, in the jargon of first and second derivatives, to support the claim there’ll never be a mathematician president. Yes, Weinersmith is aware that James Garfield, 20th President of the United States, is famous in trivia circles for having an original proof of the Pythagorean theorem. It would be a stretch to declare Garfield a mathematician, though, except in the way that anyone capable of reason can be a mathematician. Raymond Poincaré, President of France for most of the 1910s and prime minister before and after that, was not a mathematician. He was cousin to Henri Poincaré, who founded so much of our understanding of dynamical systems and of modern geometry. I do not offhand know what presidents (or prime ministers) of other countries have been like.

Weinersmith’s mathematician uses the jargon of the profession. Specifically that of calculus. It’s unlikely to communicate well with the population. The message is an ordinary one, though. The first derivative of something with respect to time means the rate at which things are changing. The first derivative of a thing, with respect to time being positive means that the quantity of the thing is growing. So, that first half means “things are getting more bad”.

Mathematician giving a speech: 'Things are bad in this country, and the first derivative of badness with respect to time is also positive. But, there is good news --- with your help the *second derivative* of badness can be turned negative!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th of May, 2020. I feel sometimes like I’m always writing about this strip, but it’s been over a month since the last time I did. Anyway essays inspired by Saturday Morning Breakfast Cereal appear at this link.

The second derivative of a thing with respect to time, though … this is interesting. The second derivative is the same thing as the first derivative with respect to time of “the first derivative with respect to time”. It’s what the change is in the rate-of-change. If that second derivative is negative, then the first derivative will, in time, change from being positive to being negative. So the rate of increase of the original thing will, in time, go from a positive to a negative number. And so the quantity will eventually decline.

So the mathematician is making a this-is-the-end-of-the-beginning speech. The point at which the the second derivative of a quantity changes sign is known as the “inflection point”. Reaching that is often seen as the first important step in, for example, disease epidemics. It is usually the first good news, the promise that there will be a limit to the badness. It’s also sometimes mentioned in economic crises or sometimes demographic trends. “Inflection point” is likely as technical a term as one can expect the general public to tolerate, though. Even that may be pushing things.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th has a father who can’t help his son do mathematics. In this case, finding square roots. There are many ways to find square roots by hand. Some are iterative, in which you start with an estimate and do a calculation that (typically) gets you a better estimate of the square root you want. And then repeat the calculation, starting from that improved estimate. Some use tables of things one can expect to have calculated, such as exponentials and logarithms. Or trigonometric tables, if you know someone who’s worked out lots of cosines and sines already.

Child: 'Dad, how do you find a square root?' Dad: 'First of all, don't even bother looking, because trees are round, hence, there is no such thing, silly.' Child: 'You know you're scarring me for life, right?'
Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th of May, 2020. This strip, too, I feel like I write about all the time. No, though; it’s hasn’t been mentioned since Pi Day. You can see that and other appearances of Real Life Adventures at this link.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 20th mentions romantic triangles. And Moose’s relief that there’s only two people in his love triangle. So that’s our geometry wordplay for the week.

Bill Watterson’s Calvin and Hobbes repeat for the 20th has Calvin escaping mathematics class.

Julie Larson’s The Dinette Set rerun for the 21st fusses around words. Along the way Burl mentions his having learned that two negatives can make a positive, in mathematics. Here it’s (most likely) the way that multiplying or dividing two negative numbers will produce a positive number.


This covers the week. My next Reading the Comics post should appear at this tag, when it’s written. Thanks for reading.

Reading the Comics, May 15, 2020: Squared Away Edition


The end of last week offered just a few more comic strips, and some pretty casual mathematics content. Let me wrap that up.

Daniel Beyer’s Long Story Short for the 13th has the “math department lavatory” represented as a door labelled 1 \pm 2 . It’s an interesting joke in that it reads successfully, but doesn’t make sense. To match the references to the commonly excreted substances they’d want \frac32 \pm \frac12 .

On funny labels, though, I did once visit a mathematics building in which the dry riser had the label N Bourbaki. Nicholas Bourbaki was not a member of that college’s mathematics department, of course. This is why the joke was correctly formed and therefore funny.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 13th features the rounding-up-sheep joke.

A frustrated Albert Einstein is at his blackboard, having tried and crossed out E = mc^3, E = mc^4, E = mc^5, E = mc^10, with some inconclusive calculations. Meanwhile a maid looks over the neat desk and declares, 'NOW that desk looks better. Everything's squared away, yessir, squaaaaaaared away.'
One of Gary Larson’s The Far Side reruns for the 14th of May, 2020. When I have the chance to write about something mentioned in The Far Side, I tag the essay so it should appear at this link.

Gary Larson’s The Far Side strips for the 14th includes the famous one of Albert Einstein coming so close to working out E = mc^2 . The usual derivations for E = mc^2 don’t start with that and then explore whether it makes sense, which is what Einstein seems to be doing here. Instead they start from some uncontroversial premises and find that they imply this E = mc^2 business. Dimensional analysis would also let you know that, if c is involved, it’s probably to the second power rather than anything else.

But that doesn’t mean we can’t imagine Einstein assuming there must be a relationship between energy and mass, finding one that makes sense, and then finding a reason it’s that rather than something else. That’s a common enough pattern of mathematical discovery. Also, a detail I hadn’t noticed before, is that Einstein tried out E = mc^3 , rejected it, and then tried it again. This is also a common pattern of discovery.

Mark Litzler’s Joe Vanilla for the 14th has a vague recollection of the Pythagorean Theorem be all that someone says he remembers of mathematics.

Niklas Eriksson’s Carpe Diem for the 15th depicts a couple ancient Greek deep-thinkers. A bit of mathematics, specifically geometry, is used as representative of that deep thinking.


This wraps up the past week’s mathematically-themed comics. Read this and next week’s comic strips at this link. Thank you.

Reading the Comics, May 12, 2020: Little Oop Counts For More Edition


The past week had a fair number of comic strips mentioning some aspect of mathematics. One of them is, really, fairly slight. But it extends a thread in the comic strip that I like and so that I will feature here.

Jonathan Lemon and Joey Alison Sayers’s Little Oop for the 10th continues the thread of young Alley Oop’s time discovering numbers. (This in a storyline that’s seen him brought to the modern day.) The Moo researchers of the time have found numbers larger than three. As I’d mentioned when this joke was first done, that Oop might not have had a word for “seven” until recently doesn’t mean he wouldn’t have understood that seven of a thing was more than five of a thing, or less than twelve of a thing. At least if he could compare them.

Penelope, leading to the library: 'If you're going to keep coming to school with me, Alley, we've got to catch you up. You must learn to read.' Alley Oop: 'Hey! I can read.' Penelope: 'Really? How is that possible?' Alley: 'Well, letters are grouped into things called words, which in a certain order ... ' Penelope: 'OK, fine, what about numbers?' Alley: 'We just got numbers back home, so I know all about one, seven, five. All the numbers.' Penelope: 'Can you do *math*, though? What's three plus three?' Alley: 'Easy. It's threethree.' Penelope, to the librarian, with a mathematics book open in front of Alley: 'Can you put on a pot of coffee, Nancy? We're gonna be here a while.'
Jonathan Lemon and Joey Alison Sayers’s Little Oop for the 10th of May, 2020. So first, hey, neat: Little Alley Oop is a Javascript routine! Second, essays in which I talk about this comic, either the daily Alley Oop or the Sunday Little Oop pages, are at this link.

Sam Hurt’s Eyebeam for the 11th uses heaps of mathematical expressions, graphs, charts, and Venn diagrams to represent the concept of “data”. It’s spilled all over to represent “sloppy data”. Usually by the term we mean data that we feel is unreliable. Measurements that are imprecise, or that are unlikely to be reliable. Precision is, roughly, how many significant digits your measurement has. Reliability is, roughly, if you repeated the measurement would you get about the same number?

Nate Fakes’s Break of Day for the 12th is the anthropomorphic numerals joke for the week.

Ryan North’s Dinosaur Comics for the 12th talks about immortality. And what the probability of events means when there are infinitely many opportunities for a thing to happen.

We’re accustomed in probability to thinking of the expectation value. This is the chance that something will happen, given some number N opportunities to happen, if at each opportunity it has the probability p of happening. Let me assume the probability is always the same number. If it’s not, our work gets harder, although it’s basically the same kind of work. But, then, the expectation value, the number of times we’d expect to see the thing happen, is N times p. Which, as Utahraptor points out, we can expect has to be at least 1 for any event, however unlikely, given enough chances. So it should be.

But, then, to take Utahraptor’s example: what is the probability that an immortal being never trips down the stairs? At least not badly enough to do harm? Why should we think that’s zero? It’s not as if there’s a physical law that compels someone to go to stairs and then to fall down them to their death. And, if there’s any nonzero chance of someone not dying this way? Then, if there are enough immortals, there’s someone who will go forever without falling down stairs.

That covers just the one way to die, of course. But the same reasoning holds for every possible way to die. If there’s enough immortals, there’s someone who would not die from falling down stairs and from never being struck by a meteor. And someone who’d never fall down stairs and never be struck by a meteor and never fall off a cliff trying to drop an anvil on a roadrunner. And so on. If there are infinitely many people, there’s at least one who’d avoid all possible accidental causes of death.

God: 'T-Rex let's assume somehow you never die of natural causes. That's still not immortality.' T-Rex: 'Impossible!' T-Rex: 'You're still mortal. The difference is you won't die from your body getting old. Instead everything around you will be trying to kill you. You know. Accidents.' T-rex: 'PRETTY Sure I can avoid tripping down stairs if it means LIVING FOREVER.' Utahraptor: 'Pretty sure I can prove you can't!' T-Rex: 'Pretty sure I can get a book on how to hold the handrail!' Utahraptor: 'Forever is INFINITELY LONG. Say you have a 1 in 10 trillion chance of dying on the stairs. How often can you expect that happens if you life, oh, 10 trillion years?' T-Rex: 'O-once?' Utahraptor: 'And if you live INFINITY YEARS the chance of you dying from it becomes : total certainty. With an infinite natural lifespan the chance you die of ANYTHING rises to 1. Literally the entire universe will kill you if you give it enough time.' T-Rex: 'That means if I live long enough YOU'LL kill me too! Oh man! This friendship just got ... dangerous!
Ryan North’s Dinosaur Comics for the 12th of May, 2020. I often talk about this strip and when I do, Dinosaur Comics appears among the essays at this link.

More. If there’s infinitely many immortals, then there are going to be a second and a third — indeed, an infinite number — of people who happen to be lucky enough to never die from anything. Infinitely many immortals die of accidents, sure, but somehow not all of them. We can’t even say that more immortals die of accidents than don’t.

My point is that probability gets really weird when you try putting infinities into it. Proceed with extreme caution. But the results of basic, incautious, thinking can be quite heady.

Bill Amend’s FoxTrot Classics for the 12th has Paige cramming for a geometry exam. Don’t cram for exams; it really doesn’t work. It’s regular steady relaxed studying that you need. That and rest. There is nothing you do that you do better for being sleep-deprived.

Bob Weber Jr and Jay Stephens’s Oh Brother for the 12th has Lily tease her brother with a story problem. I believe the strip’s a rerun, but it had been gone altogether for more than a year. It’s nice to see it returned anyway.

And while I don’t regularly cover web-only comics here, Norm Feuti has carried on his Gil as a Sunday-only web comic. The strip for the 10th of May has Gil using a calculator for mathematics homework, with a teacher who didn’t say he couldn’t. I’m surprised she hadn’t set a guideline.


This carries me through half a week. I’ll have more mathematically-themed comic strips at this link soon. Thanks for reading.

Reading the Comics, May 9, 2020: Knowing the Angles Edition


There were a couple more comic strips in the block of time I want to write about. Only one’s got some deeper content and, I admit, I had to work to find it.

Bob Scott’s Bear With me for the 7th has Bear offering the answer from mathematics class, late.

Jerry Bittle’s Shirley and Sons Classic rerun for the 7th has Louis struggling on an arithmetic test.

Olivia Jaimes’s Nancy for the 8th has Nancy and Sluggo avoiding mathematics homework. Or, “practice”, anyway. There’s more, though; Nancy and Sluggo are doing some analysis of viewing angles. That’s actual mathematics, certainly. Computer-generated imagery depends on it, just like you’d imagine. There are even fun abstract questions that can give surprising insights into numbers. For example: imagine that space were studded, at a regular square grid spacing, with perfectly reflective marbles of uniform size. Is there, then, a line of sight between any two points outside any marbles? Even if it requires tens of millions of reflections; we’re interested in what perfect reflections would give us.

Aunt Fritzi: 'You two were supposed to be doing math practice, not playing cards.' Nancy, holding a fan of cards out and showing a geometric figure with several lines marked off: 'For your information, we were using these to measure angles.' [ Earlier ] Nancy and Sluggo look over the chart; the cards are spread out from a post-it note with a sketch of Aunt Frizi in it. It shows lines of sight. Nancy, in flashback: 'At this angle, she won't be able to see us playing cards.'
Olivia Jaimes’s Nancy for the 8th of May, 2020. When I have reason to discuss Nancy in a Reading the Comics post, I try to tag it so it’ll appear here.

Using playing cards as a makeshift protractor is a creative bit of making do with what you have. The cards spread in a fanfold easily enough and there’s marks on the cards that you can use to keep your measurements reasonably uniform. Creating ad hoc measurement tools like this isn’t mathematics per se. But making a rough tool is a first step to making a precise tool. And you can use reason to improve your estimates.

It’s not on-point, but I did want to share the most wondrous ad hoc tool I know of: You can use an analog clock hand, and the sun, as a compass. You don’t even need a real clock; you can draw the time on a sheet of paper and use that. It’s not a precise measure, of course. But if you need some help, here you go. You’ve got it.

Tony Rubino and Gary Markstein’s Daddy’s Home for the 9th has Elliot avoiding doing his mathematics homework.


And that’s got the last week covered. Some more comic strips should follow at a link here, soon. And I hope to have some other stuff to announce here, soon.

Reading the Comics, May 7, 2020: Getting to Golf Edition


Last week saw a modest number of mathematically-themed comic strips. Then it threw in a bunch of them all on Thursday. I’m splitting the week partway through that, since it gives me some theme to this collection.

Tim Rickard’s Brewster Rockit for the 3rd of May is a dictionary joke, with Brewster naming each kind of chart and making a quick joke about it. The comic may help people who’ve had trouble remembering the names of different kinds of graphs. I doubt people are likely to confuse a pie chart with a bar chart, admittedly. But I could imagine thinking a ‘line graph’ is what we call a bar chart, especially if the bars are laid out horizontally as in the second panel here.

Brewster giving a presentation: 'For my presentation, I couldn't decide what graphs to use.' [ In front of a bar chart ] 'I did a bar chart to find the most-used graphs.' [ In front of a line graph ] 'This line graph shows the growing popularity of bar graphs.' [ Scatter plot ] 'This scatter plot graph shows a pattern of people who don't understand scatter plot graphs.' [ Pie chart ] 'This one shows which graph most reminds us of food.' Audience member: 'Wasn't your presentation supposed to be on not getting distracted?' [ Brewster looks at his bubble chart ] 'And bubble charts really pop!'
Tim Rickard’s Brewster Rockit for the 3rd of May, 2020. It’s been surprisingly long since I last reviewed this strip here. Essays featuring Brewster Rockit are at this link.

The point of all these graphs is to understand data geometrically. We have fair intuitions about relatives lengths and areas. Bar charts represent relative magnitudes in lengths. Pie charts and bubble charts represent magnitudes in area. We have okay skills in noticing structures in complex shapes. Line graphs and scatter plots use that skill. So these pictures can help us understand some abstraction or something we can’t sense using a sense we do have. It’s not necessarily great; note that I said our intuitions were ‘fair’ and ‘okay’. But we hope to use reason helped by intuition to better understand what we are doing.

Jef Mallett’s Frazz for the 3rd is a resisting-the-story-problem joke. It’s built not just on wondering the point of story problems at all, but of these story problems during the pandemic. (Which Mallett on the 27th of April, would be taking “some liberties” with the real world. It’s a respectable decision.)

And, yes, in the greater scheme of things, any homework or classwork problem is trivial. It’s meant to teach how to calculate things we would like to know. The framing of the story is meant to give us a reason to want to know a thing. But they are practice, and meant to be practice. One practices on something of no consequence, where errors in one’s technique can be corrected without breaking anything.

Students looking at story problems: '... how many more pints will it take to empty Alec's barrel?' '... and Doug waves to Qing four-tenths of the way across, how long is the bridge?' '... 12 per bag and 36 are left on the shelf, how many bags of bagels did Bill Banks buy?' Mrs Olsen, looking over papers: 'Suddenly every story problem answer begins with 'in the greater scheme of things' ... ' Frazz: 'These are interesting times.'
Jef Mallett’s Frazz for the 3rd of May, 2020. Reading the Comics essays with some mention of something in Frazz are gathered at this link.

It happens a round of story problems broke out among my family. My sister’s house has some very large trees. There turns out to be a poorly-organized process for estimating the age of these trees from their circumference. This past week saw a lot of chatter and disagreement about what the ages of these trees might be.

Jason Poland’s Robbie and Bobby for the 4th riffs on the difference between rectangles and trapezoids. It’s also a repeat, featured here just five years ago. Amazing how time slips on like that.

Samson’s Dark Side of the Horse for the 4th is another counting-sheep joke. It features one of those shorthands for large numbers which often makes them more manageable.

Michael Fry’s Committed rerun for the 7th finally gets us to golf. The Lazy Parent tries to pass off watching golf as educational, with working out the distance to the pin as a story problem. Structurally this is just fine, though: a golfer would be interested to know how far the ball has yet to go. All the information needed is given. It’s the question of whether anyone but syndicated cartoonists cares about golf that’s a mystery.

Bill Amend’s FoxTrot Classics for the 7th is another golf and mathematics joke. Jason has taken the homonym of ‘fore’ for ‘four’, and then represented ‘four’ in a needlessly complicated way. Amend does understand how nerd minds work. The strip originally ran the 21st of May, 1998.


That’s enough comics for me for today. I should have the rest of last week’s in a post at this link soon. Thank you.

Reading the Comics, May 2, 2020: What Is The Cosine Of Six Edition


The past week was a light one for mathematically-themed comic strips. So let’s see if I can’t review what’s interesting about them before the end of this genially dumb movie (1940’s Hullabaloo, starring Frank Morgan and featuring Billie Burke in a small part). It’ll be tough; they’re reaching a point where the characters start acting like they care about the plot either, which is usually the sign they’re in the last reel.

Patrick Roberts’s Todd the Dinosaur for the 26th of April presents mathematics homework as the most dreadful kind of homework.

Jenny Campbell’s Flo and Friends for the 26th is a joke about fumbling a bit of practical mathematics, in this case, cutting a recipe down. When I look into arguments about the metric system, I will sometimes see the claim that English traditional units are advantageous for cutting down a recipe: it’s quite easy to say that half of “one cup” is a half cup, for example. I doubt that this is much more difficult than working out what half of 500 ml is, and my casual inquiries suggest that nobody has the faintest idea what half of a pint would be. And anyway none of this would help Ruthie’s problem, which is taking two-fifths of a recipe meant for 15 people. … Honestly, I would have just cut it in half and wonder who’s publishing recipes that serve 15.

Bear dressed kind of as Flash Gordon: 'Sorry, Tofu, but there ain't no controlling these muscles!' Cat dressed as a wizard, 'Without a rested mind, you cannot visualize the future.' He sighs, takes out a sheet of paper, and thinks hard; he's surrounded by algebraic equations. Then he flips and folds and bends the paper over and over until it turns into an origami car that looks like the Monopoly game piece. The bear is amazed; the cat says, 'Visualization. Come find me when you've rested your mind.'
Ed Bickford and Aaron Walther’s American Chop Suey for the 28th of April, 2020. I don’t seem to have ever written about this strip before, which does not surprise me. So I have a new tag, then. This and any future essays about American Chop Suey should appear at this link.

Ed Bickford and Aaron Walther’s American Chop Suey for the 28th uses a panel of (gibberish) equations to represent deep thinking. It’s in part of a story about an origami competition. This interests me because there is serious mathematics to be done in origami. Most of these are geometry problems, as you might expect. The kinds of things you can understand about distance and angles from folding a square may surprise. For example, it’s easy to trisect an arbitrary angle using folded squares. The problem is, famously, impossible for compass-and-straightedge geometry.

Origami offers useful mathematical problems too, though. (In practice, if we need to trisect an angle, we use a protractor.) It’s good to know how to take a flat, or nearly flat, thing and unfold it into a more interesting shape. It’s useful whenever you have something that needs to be transported in as few pieces as possible, but that on site needs to not be flat. And this connects to questions with pleasant and ordinary-seeming names like the map-folding problem: can you fold a large sheet into a small package that’s still easy to open? Often you can. So, the mathematics of origami is a growing field, and one that’s about an accessible subject.

Nate Fakes’s Break of Day for the 29th is the anthropomorphic-symbols joke for the week, with an x talking about its day job in equations and its free time in games like tic-tac-toe.

Bill Holbrook’s On The Fastrack for the 2nd of May also talks about the use of x as a symbol. Curt takes eagerly to the notion that a symbol can represent any number, whether we know what it is or not. And, also, that the choice of symbol is arbitrary; we could use whatever symbol communicates. I remember getting problems to work in which, say, 3 plus a box equals 8 and working out what number in the box would make the equation true. This is exactly the same work as solving 3 + x = 8. Using an empty box made the problem less intimidating, somehow.

Students taking a math test. One is demanding of his phone, 'Siri, what is the cosine of 174 degrees?' The teacher looks astonished. In the corner joke a squirrel says, 'It's better than waiting for some kind of cosine from above.'
Dave Whamond’s Reality Check for the 2nd of May, 2020. Essays discussing something mentioned in Reality Check are gathered at this link.

Dave Whamond’s Reality Check for the 2nd is, really, a bit baffling. It has a student asking Siri for the cosine of 174 degrees. But it’s not like anyone knows the cosine of 174 degrees off the top of their heads. If the cosine of 174 degrees wasn’t provided in a table for the students, then they’d have to look it up. Well, more likely they’d be provided the cosine of 6 degrees; the cosine of an angle is equal to minus one times the cosine of 180 degrees minus that same angle. This allows table-makers to reduce how much stuff they have to print. Still, it’s not really a joke that a student would look up something that students would be expected to look up.

… That said …

If you know anything about trigonometry, you know the sine and cosine of a 30-degree angle. If you know a bit about trigonometry, and are willing to put in a bit of work, you can start from a regular pentagon and work out the sine and cosine of a 36-degree angle. And, again if you know anything about trigonometry, you know that there are angle-addition and angle-subtraction formulas. That is, if you know the cosine of two angles, you can work out the cosine of the difference between them.

So, in principle, you could start from scratch and work out the cosine of 6 degrees without using a calculator. And the cosine of 174 degrees is minus one times the cosine of 6 degrees. So it could be a legitimate question to work out the cosine of 174 degrees without using a calculator. I can believe in a mathematics class which has that as a problem. But that requires such an ornate setup that I can’t believe Whamond intended that. Who in the readership would think the cosine of 174 something to work out by hand? If I hadn’t read a book about spherical trigonometry last month I wouldn’t have thought the cosine of 6 a thing someone could reasonably work out by hand.

I didn’t finish writing before the end of the movie, even though it took about eighteen hours to wrap up ten minutes of story. My love came home from a walk and we were talking. Anyway, this is plenty of comic strips for the week. When there are more to write about, I’ll try to have them in an essay at this link. Thanks for reading.

Reading the Comics, April 25, 2020: Off Brand Edition


Comic Strip Master Command decided I should have a week to catch up on things, and maybe force me to write something original. Of all the things I read there were only four strips that had some mathematics content. And three of them are such glancing mentions that I don’t feel it proper to include the strip. So let me take care of this.

Mark Anderson’s Andertoons for the 20th is the Mark Anderson’s Andertoons for the week. Wavehead apparently wants to know whether \frac{3}{4} or \frac{6}{8} is the better of these equivalent forms. I understand the impulse. Rarely in real life do we see two things that are truly equivalent; there’s usually some way in which one is better than the other. There may be two ways to get home for example, both taking about the same time to travel. One might have better scenery, though, or involve fewer difficult turns or less traffic this time of day. This is different, though: \frac{3}{4} or \frac{6}{8} are two ways to describe the same number. Which one is “better”?

Wavehead is at the blackboard; on it are written 3/4 and 6/8. The teacher explains, 'They're just equivalent. Neither one is the off-brand.'
Mark Anderson’s Andertoons for the 20th of April, 2020. Essays featuring some mention of Andertoons are gathered at this link.

The only answer is, better for what? What do you figure to do with this number afterwards? I admit, and suppose most people have, a preference for \frac{3}{4} . But that’s trained into us, in large part, by homework set to reduce fractions to “lowest terms”. There’s honest enough reasons behind that. It seems wasteful to have a factor in the numerator that’s immediately divided out by the denominator.

If this were 25 years ago, I could ask how many of you have written out a check for twenty-two and 3/4 dollars, then, rather than twenty-two and 75/100 dollars? The example is dated but the reason to prefer an equivalent form is not. If I know that I need the number represented by \frac{3}{4} , and will soon be multiplying it by eight, then \frac{6}{8} may save me the trouble of thinking what three times two is. Or if I’ll be adding it to \frac{5}{8} , or something like that. If I’m measuring this for a recipe I need to cut in three, because the original will make three dozen cookies and I could certainly eat three dozen cookies, then \frac{3}{4} may be more convenient than \frac{6}{8} . What is the better depends on what will clarify the thing I want to do.

A significant running thread throughout all mathematics, not just arithmetic, is finding equivalent forms. Ways to write the same concept, but in a way that makes some other work easier. Or more likely to be done correctly. Or, if the equivalent form is more attractive, more likely to be learned or communicated. It’s of value.

Jan Eliot’s Stone Soup Classics rerun for the 20th is a joke about how one can calculate what one is interested in. In this case, going from the number of days left in school to the number of hours and minutes and even seconds left. Personally, I have never had trouble remembering there are 24 hours in the day, nor that there are 86,400 seconds in the day. That there are 1,440 minutes in the day refuses to stick in my mind. Your experiences may vary.

Thaves’s Frank and Ernest for the 22nd is the Roman Numerals joke for the week, shifting the number ten to the representation “X” to the prefix “ex”.

Harry Bliss’s Bliss for the 23rd speaks of “a truck driver with a PhD in mathematical logic”. It’s an example of signifying intelligence through mathematics credentials. (It’s also a bit classicist, treating an intelligent truck driver as an unlikely thing.)


I’m caught up! This coming Sunday I hope to start discussingthis week’s comics in a post at this link. And for this week? I don’t know; maybe I’ll figure something to write. We’ll see. Thanks for reading.

Reading the Comics, April 17, 2020: Creating Models Edition


And now let me close out a week ago, in the comics. It was a slow week and it finished on a bunch of casual mentions of mathematical topics.

Gary Larson’s The Far Side compilation “Hands Off My Bunsen Burner” features this panel creating a model of how to get rights out of wrongs. The material is a joke, but trying to find a transformation from one mathematical object to another is a reasonable enough occupation.

Two scientist types at a blackboard: 'Yes, yes, I *know* that, Sidney --- everybody knows *that*! ... But look: four wrongs *squared*, minus two wrongs to the fourth power, divided by this formula, *do* make a right.'
Gary Larson’s The Far Side, a compilation for April 2020. Essays which feature some mention of The Far Side are gathered at this link.

Ted Shearer’s Quincy rerun for the 15th is one in the lineage of strips about never using mathematics in later life. Quincy challenges us to think of a time a reporter asks the President how much is 34 times 587.

Quincy: 'I hate this math! I'm gonna give it up!' Grandmom: 'Stick with it, dear. Whatever you do in later life, it'll help you.' Quincy: 'That's hard to believe. How often have you heard a reporter ask the president, how much is 34 times 587?'
Ted Shearer’s Quincy rerun for the 15th of April 2020. It originally ran, looks like, the 19th of February, 1981. The essays where I discuss something brought up by Quincy should be at this link.

That’s an unpleasant multiplication to do. But I can figure some angles on it. 34 is just a bit over one-third of 100. 587 is just a bit under 600. So, 34 times 587 has to be tolerably near one-third of 100 times 600. So it should be something around 20,000. To get it more exact: 587 is 13 less than 600. So, 587 times one-third of a hundred will be 600 times one-third of a hundred minus 13 times one-third of a hundred. That’s one-third of 130, which is about 40. So the product has to be something close to 19,960. And the product has be some number which ends in an 8, what with 4 times 7 being 28. So the answer has to be one of 19,948, 19,958, or 19,968. And, indeed, it’s 19,958. I doubt I could do that so well during a press conference, I’ll admit. (If I wanted to be sure about that second digit, I’d have worked out: the tens unit in 34 times the ones in 587 is three times seven which is 21; the ones unit in 34 times the tens unit in 587 is four times eight which is 32; and the 4 times 7 being 28 gives me a 2 in the tens unit. So, 1 plus 2 plus 2 is 5, and there we go.)

Brian Anderson’s Dog Eat Doug for the 15th uses blackboards full of equations to represent deep thinking. I can’t make out what the symbols say. They look quite good, though, and seem to have the form of legitimate expressions.

'Ever look at a laundry pile and think it's actively mutating? One day some mathematician will come up with a formula to explain this phenomenon and prove what women across the land already know.' At a fantasy seminar the speaker says, 'So if x = dirty laundry, and y = the amount of days it piles on the laundry machine, you get a derivative that is exponentially higher!' Audience applauds, calls out 'Ah-hah!'; one person says, 'I'm *not* insane.'
Terri Liebenson’s The Pajama Diaries for the 17th of April, 2020. It originally ran the 20th of April, 2007. Essays inspired by something mentioned in The Pajama Diaries are at this link.

Terri Liebenson’s The Pajama Diaries for the 17th imagines creating a model for the volume of a laundry pile. The problem may seem trivial, but it reflects an important kind of work. Many processes are about how something that’s always accumulating will be handled. There’s usually a hard limit to the rate at which whatever it is gets handled. And there’s usually very little reserve, in either capacity or time. This will cause, for example, a small increase in traffic in a neighborhood to produce great jams, or how a modest rain can overflow the whole city’s sewer systems. Or how a day of missing the laundry causes there to be a week’s backlog of dirty clothes.

And a little final extra comic strip. I don’t generally mention web comics here, except for those that have fallen in with a syndicator like GoComics.com. (This is not a value judgement against web comics. It’s that I have to stop reading sometime.) But Kat Swenski’s KatRaccoon Comics recently posted this nice sequence with a cat facing her worst fear: a calculus date.


And that’s my comics for a week ago. Later this week I’ll cover the past week’s handful of comics, in an essay at this link. Thanks for reading.

Reading the Comics, April 13, 2020: More Words At Play Edition


Now at last I turn to last week’s mathematically-themed comic strips. They weren’t very deeply mathematical, I think. But I always think that right before I turn out a 2,000-word essay about some kid giving a snarky answer to an arithmetic problem.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 11th has a casual mention of mathematical physics. The description of the strength of the gravitational force between two masses is one of the simplest interesting physics equations that you’ll see.

Rudolph Dirks’s Katzenjammer Kids vintage rerun for the 12th is a slightly hard-to-read joke about the association between rabbits and multiplication and reproduction. There is a neat reference in the first panel to being smart enough to do multiplication without a slide rule.

Papa, reading: 'By golly! It's terrific der vay rabbits multiply!' Mama, overhearing: 'Vot do rabbits know about aritmetic!' One Kid: 'You tink you is smart enuf to do der multiplication mitout a slide rule?' Other Kid, dressing as a bunny: 'Sure! Dot's only for dumb bunnies!' First Kid: 'Mama, here is an expert mit number vork! Vatch! Now, Rabby, how much is fife times seven?' Other kid writes out 5 x 7. Mama: 'ooh! He can write!' There's a gunshot outside; while everyone looks, another kid leans in and writes '68' to answer 5 x 7. Mama, noticing the 5 x 7 = 68: 'Iss dot right? T'ree times seven is 21, 4 times seven is 28 ... Hey! Vait! [ As the kids flee ] Dot ain't right! Fife times sefen is toity-fife!' Mama, to Papa; 'Say! Dot stuff about rabbits knowing how to multiply is a lot of hooey!'
Rudolph Dirks’s Katzenjammer Kids vintage rerun for the 12th of April, 2020. It originally ran the 28th of September, 1947. The occasional time that I find something to write about in The Katzenjammer Kids, the 1940s vintage ones seen here or the 1990s-2000s reruns by Hy Eisman, are at this link.

Rick Detorie’s One Big Happy for the 12th has Ruthie try to teach her brother about number words. What Ruthie seems to be struggling with is the difference between a number and the name we give a number. The distinction between a thing and the name of a thing can be a tricky one, and I do remember being confused at the difference between the word “four” and the concept “four”. What I don’t remember, to my regret, is what thought I had which made the difference clear.

Ruthie, playing teacher: 'Today we will learn number words!' James: 'No way, teacher! You said letters are words.' Ruthie: 'That's right!' James: 'So make up your mind!' Ruthie: 'Numbers are words too!' James: 'Oh yeah? What does 3-2-6 spell? How about 6-2-5-5? What's 7-9-9-9-2?!' Ruthie: 'That's not what I mean!' James, as Ruthie gets angry: 'QUICK! What's 0-3-2-7? Ha ha ha hee heee!' Mom, seeing Ruthie sitting atop the toy chest: 'Ruthie, what is James doing in the toy chest?' Ruthie: 'Staying there until I figure out what I mean!'
Rick Detorie’s One Big Happy for the 12th of April, 2020. The times when I discuss One Big Happy, either the current run strips at Creators.com or the several-years-old repeats at Gocomics, are at this link.

Dave Whamond’s Reality Check for the 12th is a set of mathematically-themed puns and other wordplay.

Nate Fakes’s Break of Day for the 13th is an anthropomorphic numerals joke for the week.

Morrie Turner’s Wee Pals for the 13th is a rerun, of course; Turner died several years ago. It’s a bit of wordplay based on the assonance between “ratio” and “racial”, and I had thought I’d already discussed this strip so far as it needed discussion. I was mistaken: Turner used the same idea for a strip the 24th of June, 2015, but it’s a different joke.


There are a couple more comic strips of mention. I’ll get to them soon. Thanks for reading.

Reading the Comics, April 11, 2018: Monkeys at Typewriters Edition


This is closing out a busy week’s worth of comic strips mentioning some mathematics theme. Three of these are of extremely slight mathematical content, but I’ll carry on anyway.

Reza Farazmand’s Poorly Drawn Lines for the 8th has a bear admit the one thing which frightens him still is mathematics. It adds to it a joke showing that he’s not very good at mathematics, by making a mistake with percentages.

Will Henry’s Wallace the Brave for the 8th has Wallace working out an arithmetic problem in class.

Dana Simpson’s Ozy and Millie rerun for the 9th is part of a sequence of Ozy being home-schooled. The joke puts the transient nature of knowledge up against the apparent permanent of arithmetic. The joke does get at one of those fundamental questions in the philosophy of mathematics: is mathematics created or discovered? The expression of mathematics is unmistakably created. There is nothing universal in declaring “six times eight is forty-eight” and if you wish to say there is, then ask someone who speaks only Tamil and not a word of English whether they agree with exactly that proposition.

Llewelyn: 'All right, son, we've now explored the provisional, representational nature of ideas. We've discussed the futility of believing one actually knows anything ... the wisdom of focusing on one's inevitable ignorance. Now let's move on to the multiplication tables.' Ozy, to camera: 'Dad's career as a motivational speaker was short lived.' Llewelyn: 'Memorize them by tomorrow. No errors.'
Dana Simpson’s Ozy and Millie rerun for the 9th of April, 2020. Essays in which I discuss something raised by Ozy and Millie are at this link.

But, grant that while we may have different representations of the concept, it is the case that “eight” exists, right? We get right back into trouble if we follow up by asking, all right, will “eight” fit in my hand? Is “eight” larger than the weather? Is “eight” more or less red than nominalism? I chose nouns that made those questions obviously ridiculous. But if we want to talk about a mathematical construct existing, someone’s going to ask what traits that existence implies. It’s convenient for mathematicians, and good publicity, for us to think that we work on things that exist independently of the accidental facts of the universe. But then we’re stuck when we’re asked how we, stuck in the universe, can have anything to do with a thing that’s not part of it.

Not mentioned in this particular Ozy and Millie strip is that the characters are Buddhist. The (American) pop culture interpretation of Buddhism includes an emphasis on understanding the transient nature of … everything … which would seem to include mathematical knowledge. Still, there is a long history of great mathematical work done by Buddhist scholars; the oldest known manuscript of Indian mathematics is written in a Buddhist Hybrid Sanskrit. The author of that manuscript is unknown, but it’s not as if that were the lone piece of mathematical writing.

My limited understanding is that Indian mathematics used an interesting twist on the problem of the excluded middle. This is a question important to proofs. Can we take every logical proposition as being either true or false? If we can, then we are able to prove statements by contradiction: suppose the reverse of what we want to prove and show that implies nonsense. This is common in western mathematics. But there is a school of thought that we should not do this, and only allow as true statements we have directly proven to be true. My understanding is that at least one school of Indian mathematics allowed proof by contradiction if it proved that a thing did not exist. It would not be used to show that a thing existed. So, for example, it would allow the ordinary proof that the square root of two can’t be a rational number; it would not allow an indirect proof that, say, a kind of mapping must have a fixed point. (It would allow a proof that showed you how to find that point, though.) It’s an interesting division, and a reminder that even what counts as a logical derivation is a matter of custom.

Full-page comic strip titled 'How they put out a Newspaper on the Ark', with a string of little vignettes of animals doing the job of a 1901-era newspaper, eg, a tiger writing how there's no baseball until it stops raining, a seal writing that Ararat is not yet in sight. A monkey turns the crank of the press, and another monkey is at a typewriter, taking dictation from Noah ('As we go to press it is still raining'); more monkeys set type and hawk printed papers.
James Swinnerton’s The Troubles of Noah for the 21st of July, 1901, and reprinted the 10th of April, 2020. I don’t seem to have ever discussed this series before, which is not all that surprising. But if I ever do have an essay mentioning the Origins of the Sunday Comics series I will try to put it at this link.

Peter Maresca’s Origins of the Sunday Comics for the 9th reprints The Troubles of Noah, a comic strip drawn by James Swinnerton and originally printed the 21st of July, 1901. And this is really included just because it depicts a monkey at a typewriter, a dozen years before Émile Borel created the perfect image of endless random processes. (Look to the lower right corner, taking dictation from Noah.) There’s also a bonus monkey setting type in the lower left.


That’s finally taken care of a week. Time to take care of another week! When I have some of last week’s comic strips written up I will post the essay at this link. Thanks for reading.

Reading the Comics, April 7, 2020: April 7, 2020 Edition (Mostly)


I’m again falling behind the comic strips; I haven’t had the writing time I’d like, and that review of last month’s readership has to go somewhere. So let me try to dig my way back to current. The happy news is I get to do one of those single-day Reading the Comics posts, nearly.

Harley Schwadron’s 9 to 5 for the 7th strongly implies that the kid wearing a lemon juicer for his hat has nearly flunked arithmetic. At the least it’s mathematics symbols used to establish this is a school.

Nate Fakes’s Break of Day for the 7th is the anthropomorphic numerals joke for the week.

Jef Mallett’s Frazz for the 7th has kids thinking about numbers whose (English) names rhyme. And that there are surprisingly few of them, considering that at least the smaller whole numbers are some of the most commonly used words in the language. It would be interesting if there’s some deeper reason that they don’t happen to rhyme, but I would expect that it’s just, well, why should the names of 6 and 8 (say) have anything to do with each other?

Evan, to Kevyn: 'Whoa! Only two numbers rhyme with each other! And only a few other words rhyme with them and they're good words. I think that says something.' Devin: 'What are Evan and Kevyn looking so smug about?' Frazz: 'I don't know, Devin.'
Jef Mallett’s Frazz for the 7th of April, 2020. Essays that explore some topic raised in Frazz are at this link.

There are, arguably, gaps in Evan and Kevyn’s reasoning, and on the 8th one of the other kids brings them up. Basically, is there any reason to say that thirteen and nineteen don’t rhyme? Or that twenty-one and forty-one don’t? Evan writes this off as pedantry. But I, admittedly inclined to be a pedant, think there’s a fair question here. How many numbers do we have names for? Is there something different between the name we have for 11 and the name we have for 1100? Or 2011?

There isn’t an objectively right or wrong answer; at most there are answers that are more or less logically consistent, or that are more or less convenient. Finding what those differences are can be interesting, and I think it bad faith to shut down the argument as “pedantry”.

[ Birds aren't partial to fractions. ] Bird at a chalkboard, looking over a figure of a bird over a hand, set equal to a 3 over a bush. Bird: 'Worth 3 in the bush? No, that doesn't add up ... '
Dave Whamond’s Reality Check for the 7th of April, 2020. The essays that address something that appeared in Reality Check are at this link.

Dave Whamond’s Reality Check for the 7th claims “birds aren’t partial to fractions” and shows a bird working out, partially with diagrams, the saying about birds in the hand and what they’re worth in the bush.

The narration box, phrasing the bird as not being “partial to fractions”, intrigues me. I don’t know if the choice is coincidental on Whamond’s part. But there is something called “partial fractions” that you get to learn painfully well in Calculus II. It’s used in integrating functions. It turns out that you often can turn a “rational function”, one whose rule is one polynomial divided by another, into the sum of simpler fractions. The point of that is making the fractions into things easier to integrate. The technique is clever, but it’s hard to learn. And, I must admit, I’m not sure I’ve ever used it to solve a problem of interest to me. But it’s very testable stuff.


And that’s slightly more than one day’s comics. I’ll have some more, wrapping up last week, at this link within a couple days.

Reading the Comics, April 6, 2020: My Perennials Edition


As much as everything is still happening, and so much, there’s still comic strips. I’m fortunately able here to focus just on the comics that discuss some mathematical theme, so let’s get started in exploring last week’s reading. Worth deeper discussion are the comics that turn up here all the time.

Lincoln Peirce’s Big Nate for the 5th is a casual mention. Nate wants to get out of having to do his mathematics homework. This really could be any subject as long as it fit the word balloon.

John Hambrock’s The Brilliant Mind of Edison Lee for the 6th is a funny-answers-to-story-problems joke. Edison Lee’s answer disregards the actual wording of the question, which supposes the group is travelling at an average 70 miles per hour. The number of stops doesn’t matter in this case.

Mark Anderson’s Andertoons for the 6th is the Mark Anderson’s Andertoons for the week. In it Wavehead gives the “just use a calculator” answer for geometry problems.

On the blackboard: Perimeter, with a quadrilateral drawn, the sides labelled A, B, C, and D, and the formula A + B + C + D on the board. Wavehead asks the teacher, 'Or you could just walk around thet edge and let your fitness tracker tell you the distance.'
Mark Anderson’s Andertoons for the 6th of April, 2020. I haven’t mentioned this strip in two days. Essays featuring Andertoons are at this link, though.

Not much to talk about there. But there is a fascinating thing about perimeters that you learn if you go far enough in Calculus. You have to get into multivariable calculus, something where you integrate a function that has at least two independent variables. When you do this, you can find the integral evaluated over a curve. If it’s a closed curve, something that loops around back to itself, then you can do something magic. Integrating the correct function on the curve around a shape will tell you the enclosed area.

And this is an example of one of the amazing things in multivariable calculus. It tells us that integrals over a boundary can tell us something about the integral within a volume, and vice-versa. It can be worth figuring out whether your integral is better solved by looking at the boundaries or at the interiors.

Heron’s Formula, for the area of a triangle based on the lengths of its sides, is an expression of this calculation. I don’t know of a formula exactly like that for the perimeter of a quadrilateral, but there are similar formulas if you know the lengths of the sides and of the diagonals.

Richard Thompson’s Cul de Sac rerun for the 6th sees Petey working on his mathematics homework. As with the Big Nate strip, it could be any subject.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th depicts, fairly, the sorts of things that excite mathematicians. The number discussed here is about algorithmic complexity. This is the study of how long it takes to do an algorithm. How long always depends on how big a problem you are working on; to sort four items takes less time than sorting four million items. Of interest here is how much the time to do work grows with the size of whatever you’re working on.

Caption: 'Mathematicians are weird.' Mathematician: 'You know that thing that was 2.3728642?' Group of mathematicians: 'Yes?' Mathematician; 'I got it down to 2.3728639.' The mathematicians burst out into thunderous applause.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th of April, 2020. I haven’t mentioned this strip in two days. Essays featuring Saturday Morning Breakfast Cereal are at this link, though.

The mathematician’s particular example, and I thank dtpimentel in the comments for finding this, is about the Coppersmith–Winograd algorithm. This is a scheme for doing matrix multiplication, a particular kind of multiplication and addition of squares of numbers. The squares have some number N rows and N columns. It’s thought that there exists some way to do matrix multiplication in the order of N2 time, that is, if it takes 10 time units to multiply matrices of three rows and three columns together, we should expect it takes 40 time units to multiply matrices of six rows and six columns together. The matrix multiplication you learn in linear algebra takes on the order of N3 time, so, it would take like 80 time units.

We don’t know the way to do that. The Coppersmith–Winograd algorithm was thought, after Virginia Vassilevska Williams’s work in 2011, to take something like N2.3728642 steps. So that six-rows-six-columns multiplication would take slightly over 51.796 844 time units. In 2014, François le Gall found it was no worse than N2.3728639 steps, so this would take slightly over 51.796 833 time units. The improvement doesn’t seem like much, but on tiny problems it never does. On big problems, the improvement’s worth it. And, sometimes, you make a good chunk of progress at once.


I’ll have some more comic strips to discuss in an essay at this link, sometime later this week. Thanks for reading.

Reading the Comics, April 4, 2020: Ruling Things Out Edition


This little essay should let me wrap up the rest of the comic strips from the past week. Most of them were casual mentions. At least I thought they were when I gathered them. But let’s see what happens when I actually write my paragraphs about them.

Darrin Bell and Theron Heir’s Rudy Park rerun for the 1st of April uses arithmetic as emblematic of things which we know with certainty to be true.

Thaves’s Frank and Ernest for the 2nd is a bit of wordplay, having Euclid and Galileo talking about parallel universes. I’m not sure that Galileo is the best fit for this, but I’m also not sure there’s another person connected who could be named. It’d have to be a name familiar to an average reader as having something to do with geometry. Pythagoras would seem obvious, but the joke is stronger if it’s two people who definitely did not live at the same time. Did Euclid and Pythagoras live at the same time? I am a mathematics Ph.D. and have been doing pop mathematics blogging for nearly a decade now, and I have not once considered the question until right now. Let me look it up.

It doesn’t make any difference. The comic strip has to read quickly. It might be better grounded to post Euclid meeting Gauss or Lobachevsky or Euler (although the similarity in names would be confusing) but being understood is better than being precise.

Stephan Pastis’s Pearls Before Swine for the 2nd is a strip about the foolhardiness of playing the lottery. And it is foolish to think that even a $100 purchase of lottery tickets will get one a win. But it is possible to buy enough lottery tickets as to assure a win, even if it is maybe shared with someone else. It’s neat that an action can be foolish if done in a small quantity, but sensible if done in enough bulk.

Chalkboard problem 10 - 7, with answers given and crossed out of 0, 5, 7, 4, 17, 9, 1, 2, and 70. Wavehead, to teacher: 'OK, the good news is we've ruled these out.'
Mark Anderson’s Andertoons for the 3rd of April, 2020. This is actually the first time I’ve mentioned this strip in two months. But any time I discuss a topic raised by Andertoons should appear at this link.

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. Wavehead has made a bunch of failed attempts at subtracting seven from ten, but claims it’s at least progress that some thing have been ruled out. I’ll go along with him that there is some good in ruling out wrong answers. The tricky part is in how you rule them out. For example, obvious to my eye is that the correct answer can’t be more than ten; the problem is 10 minus a positive number. And it can’t be less than zero; it’s ten minus a number less than ten. It’s got to be a whole number. If I’m feeling confident about five and five making ten, then I’d rule out any answer that isn’t between 1 and 4 right away. I’ve got the answer down to four guesses and all I’ve really needed to know is that 7 is greater than five but less than ten. That it’s an even number minus an odd means the result has to be odd; so, it’s either one or three. Knowing that the next whole number higher than 7 is an 8 says that we can rule out 1 as the answer. So there’s the answer, done wholly by thinking of what we can rule out. Of course, knowing what to rule out takes some experience.

Mark Parisi’s Off The Mark for the 4th is roughly the anthropomorphic numerals joke for the week. It’s a dumb one, but, that’s what sketchbooks are for.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th is the Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th for the week. It shows in joking but not wrong fashion a mathematical physicist’s encounters with orbital mechanics. Orbital mechanics are a great first physics problem. It’s obvious what they’re about, and why they might be interesting. And the mathematics of it is challenging in ways that masses on springs or balls shot from cannons aren’t.

How To Learn Orbital Mechanics. Step 1: Gauge Difficulty. Person reading a text: 'It's Newtonian! Piece of cake. Just a bunch of circles and dots.' Step 2: Correction. 'OK, *ellipses* and dots.' Step 3: Concern. 'Oh, Christ, sometimes there are more than two dots.' Step 4: Pick an easier subject. 'I'm gonna go study quantum computing.' The textbook is in the trash.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th of April, 2020. This is actually the first time I’ve mentioned this strip ina week. But any time I discuss a topic raised in Saturday Morning Breakfast Cereal should appear at this link.

A few problems are very easy, like, one thing in circular orbit of another. A few problems are not bad, like, one thing in an elliptical or hyperbolic orbit of another. All our good luck runs out once we suppose the universe has three things in it. You’re left with problems that are doable if you suppose that one of the things moving is so tiny that it barely exists. This is near enough true for, for example, a satellite orbiting a planet. Or by supposing that we have a series of two-thing problems. Which is again near enough true for, for example, a satellite travelling from one planet to another. But these is all work that finds approximate solutions, often after considerable hard work. It feels like much more labor to smaller reward than we get for masses on springs or balls shot from cannons. Walking off to a presumably easier field is understandable. Unfortunately, none of the other fields is actually easier.

Pythagoras died somewhere around 495 BC. Euclid was born sometime around 325 BC. That’s 170 years apart. So Pythagoras was as far in Euclid’s past as, oh, Maria Gaetana Agnesi is to mine.

I did a little series looking into orbital mechanics, not necessarily ones that look like planetary orbits, a couple years ago. You might enjoy that. And I figure to have more mathematically-themed comic strips in the near future. Thanks for reading.

Reading the Comics, March 31, 2020: End March, Already, Edition


I think few will oppose me if I say the best part of March 2020 was that it ended. Let me close out nearly all my March business by getting through the last couple comic strips which mentioned some mathematics topic that month. I’ll still have my readership review, probably to post Friday, and then that finishes my participation in the month at last.

Connie Sun’s Connie to the for the 30th features the title character trying to explain what “exponential growth” is. She struggles. Appropriately, as it’s something we see very rarely in ordinary life.

They turn up in mathematics all the time. And mathematical physics, and such. Any process with a rate of change that’s proportional to the current amount of the thing tends to be exponential. This whether growing or decaying. Even circular motion, periodic motion, can be understood as exponential growth with imaginary numbers. So anyone doing mathematics gets trained to see, and expect, exponentials. They have great analytic properties, too. You can use them to solve differential equations. And differential equations are so much of science that it’s easy to forget they’re not.

In ordinary life, though? Well, yes, a lot of quantities will change at rates which depend on their current quantity. But in anything that’s been around a while, the quantity will usually be at, or near enough, an equilibrium. Some kind of balance. It may move away from that balance, but usually, it’ll move back towards it. (I am skipping some complicating factors. Don’t worry about them.) A mathematician will see the hidden exponentials in this. But to anyone else? The thing may start growing, but then it peters out and slows to a stop. Or it might collapse, but that change also peters out. Maybe it’ll hit a new equilibrium; maybe it’ll go back to the old. We rarely see something changing without the sorts of limits that tamp the change back down.

Connie, narrating: 'I recently tried to explain exponential growth to my parents, using an awkward mix of English and Chinese. The problem is that I'm rusty on the math, on top of the language barrier.' Her phone ;'You know how when a line on a graph curves up really sharply?? It's, like, a math thing . Cases are doubling every day or two! Okay, wait, let me look it up. [ Looking over a picture of the exponential growth curve. ] Uh, it's ... [ something ] in Chinese. Does that make sense? ... Yeah, so, I think what it means is that you should definitely STAY HOME.'
Connie Sun’s Connie to the for the 30th of March, 2020. Although I’ve mentioned this strip one time before, it’s not had any serious attention before. Well, this and future essays discussing something mentioned in Connie to the Wonnie should appear at this link.

Even the growth of infection rates for Covid-19 will not stay exponential forever, even if there were no public health measures responding to it. There can’t be more people infected than there are people in the world. At some point, the curve representing number of infected people versus time would stop growing more and more, and would level out, from a pattern called the logistic equation. But the early stages of this are almost indistinguishable from exponential growth.

Samson’s Dark Side of the Horse for the 29th is a comforting counting-sheep joke, with half-sized sheep counted as fractions of a whole sheep. Comforting little bit of business here.

Sam Hurts’s Eyebeam for the 30th describes one version of Zeno’s most famous paradox, and applies it to an event that already seems endless.

Zeno's Paradox: To get from point A to point B, you must first reach the halfway point. From there, you will have to cross a new halfway point. Etc. Etc. Etc. Etc. Etc. Etc. ... You will never run out of halfway points, so you can never arrive. Zeno's Kids: [ Zeno driving, with two kids in the back. ] Kids: 'Are we halfway there yet?'
Sam Hurts’s Eyebeam for the 30th of March, 2020. This is the first time in over two years that I’ve mentioned this strip. Essays featuring Eyebeam are gathered at this link.

Todd Clark’s Lola for the 30th has a student asking what the end of mathematics is. And learning how after algebra comes geometry, trigonometry, calculus, topology, and more. All fair enough, though I’m surprised to see it put for that that of course someone who does enough mathematics will do topology. (I only have a casual brush with it myself, mostly in service to other topics.) But it’s nice to have it acknowledged that, if you want, you can go on learning new mathematics fields, practically without limit.

Ashleigh Brilliant’s Pot-Shots for the 30th just declares infinity to be a favorite number. Is it a number? … We have to be careful what exactly we mean by number. Allow that we are careful, though. It’s certainly at least number-adjacent.

John Zakour and Scott Roberts’s Maria’s Day for the 31st has Maria hoping to get out of new schoolwork. So she gets a review of fractions instead. Typical.


There were some more mathematically-themed comic strips last week. I’ll get to them in an essay at this link, sometime soon. Thanks for reading.

Reading the Comics, March 28, 2020: Closing A Week Edition


I know; I’m more than a week behind the original publication of these strips. The Playful Math Education Blog Carnival took a lot of what attention I have these days. I’ll get caught up again soon enough. Comic Strip Master Command tried to help me, by having the close of a week ago being pretty small mathematics mentions, too. For example:

Thaves’s Frank and Ernest for the 26th is the anthropomorphic numerals joke for the week. Also anthropomorphic letters, for a bonus.

Craig Boldman and Henry Scarpelli’s Archie for the 27th has Moose struggling in mathematics this term. This is an interesting casual mention; the joke, of Moose using three words to describe a thing he said he could in two, would not fit sharply for anything but mathematics. Or, possibly, a measuring class, but there’s no high school even in fiction that has a class in measuring.

Bud Blake’s Vintage Tiger for the 27th has Tiger and Hugo struggling to find adjective forms for numbers. We can giggle at Hugo struggling for “quadruple” and going for something that makes more sense. We all top out somewhere, though, probably around quintuple or sextuple. I have never known anyone who claimed to know what the word would be for anything past decuple, and even staring at the dictionary page for “decuple” I don’t feel confident in it.

Hilary Price’s Rhymes With Orange for the 28th uses a blackboard full of calculations as shorthand for real insight into science. From context they’re likely working on some physics problem and it’s quite hard to do that without mathematics, must agree.

Ham’s Life On Earth for the 28th uses E = mc^2 as a milestone in a child’s development.

John Deering’s Strange Brew for the 28th name-drops slide rules, which, yeah, have mostly historical or symbolic importance these days. There might be some niche where they’re particularly useful (besides teaching logarithms), but I don’t know of it.


And what of the strips from last week? I’ll discuss them in an essay at this link, soon, I hope. Take care, please.

Reading the Comics, March 25, 2020: Regular Old Mathematics Mentions Edition


I haven’t forgotten about the comic strips. It happens that last week’s were mostly quite casual mentions, strips that don’t open themselves up to deep discussions. I write this before I see what I actually have to write about the strips. But here’s the first half of the past week’s. I’ll catch up on things soon.

Bill Amend’s FoxTrot for the 22nd, a new strip, has Jason and Marcus using arithmetic problems to signal pitches. At heart, the signals between a pitcher and catcher are just an index. They’re numbers because that’s an easy thing to signal given that one only has fingers and that they should be visually concealed. I would worry, in a pattern as complicated as these two would work out, about error correction. If one signal is mis-read — as will happen — how do they recognize it, and how do they fix it? This may seem like a lot of work to put to a trivial problem, but to conceal a message is important, whatever the message is.

Marcus, signalling a pitch: 'Two ... plus ... two ... minus .. one ... point ... three ... ' Jason, to Peter: 'If teams want to steal our signals, they're welcome to try.' Marcus: 'Can I just use a slash for 'divided by'?'.
Bill Amend’s FoxTrot for the 22nd of March, 2020. Essays mentioning either the new-run, Sunday, strips or the rerun, weekday, FoxTrot strips are gathered at this link.

Jerry Scott and Jim Borgman’s Zits for the 23rd has Jeremy preparing for a calculus test. Could be any subject.

James Beutel’s Banana Triangle for the 23rd has a character trying to convince himself of his intelligence. And doing so by muttering mathematics terms, mostly geometry. It’s a common shorthand to represent deep thinking.

Tom Batiuk’s Funky Winkerbean Vintage strip for the 24th, originally run the 13th of May, 1974, is wordplay about acute triangles.

Hector D Cantú and Carlos Castellanos’s Baldo for the 25th has Gracie work out a visual joke about plus signs. Roger Price, name-checked here, is renowned for the comic feature Droodles, extremely minimalist comic panels. He also, along with Get Smart’s Leonard Stern, created Mad Libs.

Man wrapped in flame, standing before God: 'Oh, come on! Grant me that I was within an order of magnitude of believing in the correct number of deities!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th of March, 2020. It is quite common for me to write about this strip. You can see me explaining Saturday Morning Breakfast Cereal at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th is a joke about orders of magnitude. The order of magnitude is, roughly, how big the number is. Often the first step of a physics problem is to try to get a calculation that’s of the right order of magnitude. Or at least close to the order of magnitude. This may seem pretty lax. If we want to find out something with value, say, 231, it seems weird to claim victory that our model says “it will be a three-digit number”. But getting the size of the number right is a first step. For many problems, particularly in cosmology or astrophysics, we’re intersted in things whose functioning is obscure. And relies on quantities we can measure very poorly. This is why we can see getting the order magnitude about right as an accomplishment.


There’s another half-dozen strips from last week that at least mention mathematics. I’ll at least mention them soon, in an essay at this link. Thank you.

Reading the Comics, March 21, 2020: Pragmatic Calculations Edition


There were a handful of other comic strips last week. If they have a common theme (and I’ll try to drag one out) it’s that they circle around pragmatism. Not just using mathematics in the real world but the fussy stuff of what you can calculate and what you can use a calculation for.

And, again, I am hosting the Playful Math Education Blog Carnival this month. If you’ve run across any online tool that teaches mathematics, or highlights some delightful feature of mathematics? Please, let me know about it here, and let me know what of your own projects I should feature with it. The goal is to share things about mathematics that helped you understand more of it. Even if you think it’s a slight thing (“who cares if you can tell whether a number’s divisible by 11 by counting the digits right?”) don’t worry. Slight things count. Speaking of which …

Jef Mallett’s Frazz for the 20th has a kid ask about one of those add-the-digits divisibility tests. What happens if the number is too big to add up all the digits? In some sense, the question is meaningless. We can imagine finding the sum of digits no matter how many digits there are. At least if there are finitely many digits.

But there is a serious mathematical question here. We accept the existence of numbers so big no human being could ever know their precise value. At least, we accept they exist in the same way that “4” exists. If a computation can’t actually be finished, then, does it actually mean anything? And if we can’t figure a way to shorten the calculation, the way we can usually turn the infinitely-long sum of a series into a neat little formula?

Kid: 'A number is divisible by 3 if the sum of its digits is divisible by 3. But what if the number is so big there's too many digits to add up easily?' Frazz: 'If it's that big, the 1 or 2 left over isn't going to matter much.' Kid: 'Why don't they teach THAT kind of math more in school?' Frazz: 'I guess there's only jobs for so many songwriters, cartoonists, and janitors.'
Jef Mallett’s Frazz for the 20th of March, 2020. Essays featuring some topic raised by Frazz should be gathered at this link.

This gets into some cutting-edge mathematics. For calculations, some. But also, importantly, for proofs. A proof is, really, a convincing argument that something is true. The ideal of this is a completely filled-out string of logical deductions. These will take a long while. But, as long as it takes finitely many steps to complete, we normally accept the proof as done. We can imagine proofs that take more steps to complete than could possibly be thought out, or checked, or confirmed. We, living in the days after Gödel, are aware of the idea that there are statements which are true but unprovable. This is not that. Gödel’s Incompleteness Theorems tell us about statements that a deductive system can’t address. This is different. This is things that could be proven true (or false), if only the universe were more vast than it is.

There are logicians who work on the problem of what too-long-for-the-universe proofs can mean. Or even what infinitely long proofs can mean, if we allow those. And how they challenge our ideas of what “proof” and “knowledge” and “truth” are. I am not among these people, though, and can’t tell you what interesting results they have concluded. I just want to let you know the kid in Frazz is asking a question you can get a spot in a mathematics or philosophy department pondering. I mean so far as it’s possible to get a spot in a mathematics or philosophy department.

Speaker at a podium: 'If one person kills someone, 50% of the people involved are victims. If 99 people kill someone, 1% of the people involved are victims. The percent of victims is given by V = the limit of K/x as x approachs infinity, where K is people killed and x is the number of people killed. Thus, for sufficiently large x, murder is a victimless crime. So, the bigger we make a war, the more ethical it becomes!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th of March, 2020. I have many essays that mention something raised by this comic strip. The many things Saturday Morning Breakfast Cereal has given me to write about are at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th is a less heady topic. Its speaker is doing an ethical calculation. These sorts of things are easy to spin into awful conclusions. They treat things like suffering with the same tools that we use to address the rates of fluids mixing, or of video game statistics. This often seems to trivialize suffering, which we feel like we shouldn’t do.

This kind of calculation is often done, though. It’s rather a hallmark of utilitarianism to try writing an equation for an ethical question. It blends often more into economics, where the questions can seem less cruel even if they are still about questions of life and death. But as with any model, what you build into the model directs your results. The lecturer here supposes that guilt is diminished by involving more people. (This seems rather true to human psychology, though it’s likely more that the sense of individual responsibility dissolves in a large enough group. There are many other things at work, though, all complicated and interacting in nonlinear ways.) If we supposed that the important measure was responsibility for the killing, we would get that the more people involved in killing, the worse it is, and that a larger war only gets less and less ethical. (This also seems true to human psychology.)

Mamet: 'I figure I have about 14,000 remaining days of life. So what's the big deal if I want to spend ONE of those days goofing off? That still leaves me with 13,00 days!' Cobb: 'Maybe you could spend a couple of those days learning math.' Mamet: 'Wait, make that 12,000. I'll need one day to PLAN the goof-off day.'
Jeff Corriveau’s Deflocked for the 20th of March, 2020. I’m surprised to learn this is a new tag for me. I’ve discussed the strip, it appears, only twice before, in 2012 and in 2015, before I tagged strips by name. All right. Well, this and future appearances by Deflocked will be at this link.

Jeff Corriveau’s Deflocked for the 20th sees Mamet calculating how many days of life he expects to have left. There are roughly 1,100 days in three years, so, Mamet’s figuring on about 40 years of life. These kinds of calculation are often grim to consider. But we all have long-term plans that we would like to do (retirement, and its needed savings, are an important one) and there’s no making a meaningful plan without an idea of what the goals are.


This finally closes out the last week’s comic strips. Please stop in next week as I get to some more mathematics comics and the Playful Math Education Blog Carnival. Thanks for reading.

Reading the Comics, March 17, 2020: Random Edition


I thought last week’s comic strips mentioning mathematics in detail were still subjects easy to describe in one or two paragraphs each. I wasn’t quite right. So here’s a half of a week, even if it is a day later than I had wanted to post.

John Zakour and Scott Roberts’s Working Daze for the 15th is a straggler Pi Day joke, built on the nerd couple Roy and Kathy letting the date slip their minds. This is a very slight Pi Day reference but I feel the need to include it for completeness’s sake. It reminds me of the sequence where one year Schroeder forgot Beethoven’s birthday, and was devastated.

Sue: 'So, Roy, what big fun did you and Kathy have for Pi Day this year?' Roy, caught by surprise, freezes, and then turns several colors in succession before he starts to cry. Ed, to Sue: 'Hard to say which is worse for him, that you forgot, or that you remembered.'
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2020. Essays featuring Working Daze, which often turns up in Pi Day events, are at this link. And generally essays tied to Pi Day are at this link.

Lincoln Peirce’s Big Nate for the 15th is a wordy bit of Nate refusing the story problem. Nate complains about a lack of motivation for the characters in it. But then what we need for a story problem isn’t the characters to do something so much as it is the student to want to solve the problem. That’s hard work. Everyone’s fascinated by some mathematical problems, but it’s hard to think of something that will compel everyone to wonder what the answer could be.

At one point Nate wonders what happens if Todd stops for gas. Here he’s just ignoring the premise of the question: Todd is given as travelling an average 55 mph until he reaches Saint Louis, and that’s that. So this question at least is answered. But he might need advice to see how it’s implied.

Quiz: 'Many lives in Los Angeles. Todd lives in Boston. They plan to meet in St Louis, which is 1,825 miles from Los Angeles and 1,192 miles from Boston. If Mandy takes a train travelling a constant 80 mph and Todd drives a car at a constant 55 mph, which of them will reach St Lous first?' Nate's answer: 'That depends. Who ARE these people? Are they a couple? Is this romance? If it is, wouldn't Todd drive way faster than 55 mph? He'd be all fired up to see Many, right? And wouldn't Mandy take a plane and get to St Louis in like three hours? Especially if she hasn't seen Todd in a while? But we don't know how long since they've been together because you decided not to tell us! Plus anything can happen while they're traveling. What if Todd stops for gas and the cashier is a total smoke show and he's like, Mandy Who? I can't answer until I have some real intel on these people. I can't believe you even asked the question.' Out loud, 'Also, Todd and Mandy are dorky names.' Teacher: 'This isn't what I meant by show your work.'
Lincoln Peirce’s Big Nate for the 15th of March, 2020. Essays with something mentioned by either Big Nate or the 1990s-repeats Big Nate: First Class are gathered at this link.

So this problem is doable by long division: 1825 divided by 80, and 1192 divided by 55, and see what’s larger. Can we avoid dividing by 55 if we’re doing it by hand? I think so. Here’s what I see: 1825 divided by 80 is equal to 1600 divided by 80 plus 225 divided by 80. That first is 20; that second is … eh. It’s a little less than 240 divided by 80, which is 3. So Mandy will need a little under 23 hours.

Is 23 hours enough for Todd to get to Saint Louis? Well, 23 times 55 will be 23 times 50 plus 23 times 5. 23 times 50 is 22 times 50 plus 1 times 50. 22 times 50 is 11 times 100, or 1100. So 23 times 50 is 1150. And 23 times 5 has to be 150. That’s more than 1192. So Todd gets there first. I might want to figure just how much less than 23 hours Mandy needs, to be sure of my calculation, but this is how I do it without putting 55 into an ugly number like 1192.

Cow: 'What're you doing?' Billy: 'I'm devising a system to win the lottery! Plugging in what I know about chaos theory and numerical behavior in nonlinear dynamical systems should give me the winning picks.' (Silent penultimate panel.) Cow: 'You're just writing down a bunch of numbers.' Billy: 'Maybe.'
Mark Leiknes’s Cow and Boy repeat for the 17th of March, 2020. The too-rare appearances of Cow and Boy Reruns in my essays are here.

Mark Leiknes’s Cow and Boy repeat for the 17th sees the Boy, Billy, trying to beat the lottery. He throws at it the terms chaos theory and nonlinear dynamical systems. They’re good and probably relevant systems. A “dynamical system” is what you’d guess from the name: a collection of things whose properties keep changing. They change because of other things in the collection. When “nonlinear” crops up in mathematics it means “oh but such a pain to deal with”. It has a more precise definition, but this is its meaning. More precisely: in a linear system, a change in the initial setup makes a proportional change in the outcome. If Todd drove to Saint Louis on a path two percent longer, he’d need two percent more time to get there. A nonlinear system doesn’t guarantee that; a two percent longer drive might take ten percent longer, or one-quarter the time, or some other weirdness. Nonlinear systems are really good for giving numbers that look random. There’ll be so many little factors that make non-negligible results that they can’t be predicted in any useful time. This is good for drawing number balls for a lottery.

Chaos theory turns up a lot in dynamical systems. Dynamical systems, even nonlinear ones, often have regions that behave in predictable patterns. We may not be able to say what tomorrow’s weather will be exactly, but we can say whether it’ll be hot or freezing. But dynamical systems can have regions where no prediction is possible. Not because they don’t follow predictable rules. But because any perturbation, however small, produces changes that overwhelm the forecast. This includes the difference between any possible real-world measurement and the real quantity.

Obvious question: how is there anything to study in chaos theory, then? Is it all just people looking at complicated systems and saying, yup, we’re done here? Usually the questions turn on problems such as how probable it is we’re in a chaotic region. Or what factors influence whether the system is chaotic, and how much of it is chaotic. Even if we can’t say what will happen, we can usually say something about when we can’t say what will happen, and why. Anyway if Billy does believe the lottery is chaotic, there’s not a lot he can be doing with predicting winning numbers from it. Cow’s skepticism is fair.

T-Rex: 'Dromiceiomimus, pick a number between one and a hundred thousand million.' Dromiceiomimus: '17?' T-Rex: 'Gasp! That's the number I was thinking of!' Dromiceiomimus: 'Great! Do I win something?' T-Rex: 'You just came out on a one in a hundred thousand million chance and you want a prize? It's not enough to spit in the face of probability itself?' Utahraptor: 'It's not THAT unlikely she'd chose your number. We're actually pretty bad at random number generation and if you ask folks to pick a number in a range, some choices show up more often than others. It's not that unlikely you'd both land on the same number!' T-Rex: 'But *I* didn't choose 17 randomly! It's ... the number of times I have thought about ice cream today, I'm not even gonna lie.'
Ryan North’s Dinosaur Comics for the 17th of March, 2020. Essays that mention something brought up in Dinosaur Comics are gathered at this link.

Ryan North’s Dinosaur Comics for the 17th is one about people asked to summon random numbers. Utahraptor is absolutely right. People are terrible at calling out random numbers. We’re more likely to summon odd numbers than we should be. We shy away from generating strings of numbers. We’d feel weird offering, say, 1234, though that’s as good a four-digit number as 1753. And to offer 2222 would feel really weird. Part of this is that there’s not really such a thing as “a” random number; it’s sequences of numbers that are random. We just pick a number from a random sequence. And we’re terrible at producing random sequences. Here’s one study, challenging people to produce digits from 1 through 9. Are their sequences predictable? If the numbers were uniformly distributed from 1 through 9, then any prediction of the next digit in a sequence should have a one chance in nine of being right. It turns out human-generated sequences form patterns that could be forecast, on average, 27% of the time. Individual cases could get forecast 45% of the time.

There are some neat side results from that study too, particularly that they were able to pretty reliably tell the difference between two individuals by their “random” sequences. We may be bad at thinking up random numbers but the details of how we’re bad can be unique.


And I’m not done yet. There’s some more comic strips from last week to discuss and I’ll have that post here soon. Thanks for reading.

Reading the Comics, March 20, 2020: Running from the Quiz Edition


I’m going to again start the week with the comics that casually mentioned mathematics. Later in the week I’ll have ones that open up discussion topics. I just don’t want you to miss a comic where a kid doesn’t want to do a story problem.

John Graziano’s Ripley’s Believe It or Not for the 15th mentions the Swiss mint issuing a tiny commemorative coin of Albert Einstein. I mention just because Einstein is such a good icon for mathematical physics.

Ashleigh Brilliant’s Pot-Shots for the 16th has some wordplay about multiplication and division. I’m not sure it has any real mathematical content besides arithmetic uniting multiplication and division, though.

Mark Pett’s Mr Lowe rerun for the 17th has the students bored during arithmetic class. Fractions; of course it would be fractions.

Justin Boyd’s Invisible Bread for the 18th> has an exhausted student making the calculation of they’ll do better enough after a good night’s sleep to accept a late penalty. This is always a difficult calculation to make, since you make it when your thinking is clouded by fatigue. But: there is no problem you have which sleep deprivation makes better. Put sleep first. Budget the rest of your day around that. Take it from one who knows and regrets a lot of nights cheated of rest. (This seems to be the first time I’ve mentioned Invisible Bread around here. Given the strip’s subject matter that’s a surprise, but only a small one.)

John Deering’s Strange Brew for the 18th is an anthropomorphic-objects strip, featuring talk about mathematics phobia.

One of Gary Larson’s The Far Side reruns for the 19th is set in a mathematics department, and features writing a nasty note “in mathematics”. There are many mathematical jokes, some of them written as equations. A mathematician will recognize them pretty well. None have the connotation of, oh, “Kick Me” or something else that would belong as a prank sign like that. Or at least nobody’s told me about them.

Tauhid Bondia’s Crabgrass for the 20th sees Kevin trying to find luck ahead of the mathematics quiz.

Bob Weber Jr and Jay Stephens’s Oh, Brother! for the 20th similarly sees Bud fearing a mathematics test.


Thanks for reading. And, also, please remember that I’m hosting the Playful Math Education Blog Carnival later this month. Please share with me any mathematics stuff you’ve run across that teaches or entertains or more.

Reading the Comics, March 14, 2020: Pi Day Edition


Pi Day was observed with fewer, and fewer on-point, comic strips than I had expected. It’s possible that the whimsy of the day has been exhausted. Or that Comic Strip Master Command advised people that the educational purposes of the day were going to be diffused because of the accident of the calendar. And a fair number of the strips that did run in the back half of last week weren’t substantial. So here’s what did run.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 12th has a parent complaining about kids being allowed to use calculators to do mathematics. The rejoinder, asking how good they were at mathematics anyway, is a fair one.

Bill Watterson’s Calvin and Hobbes rerun for the 13th sees Calvin avoiding his mathematics homework. The strip originally ran the 16th of March, 1990.

And now we get to the strips that actually ran on the 14th of March.

Gracie, to her father: 'If I had $1.39 for every time I've struggled with a mathematics problem ... I'd have ... ' (She taps on a calculator) '6.23 cents.'
Hector D Cantú and Carlos Castellanos’s Baldo for the 14th of March, 2020. Essays with some mention of Baldo are gathered at this link.

Hector D Cantú and Carlos Castellanos’s Baldo is a slightly weird one. It’s about Gracie reflecting on how much she’s struggled with mathematics problems. There are a couple pieces meant to be funny here. One is the use of oddball numbers like 1.39 or 6.23 instead of easy-to-work-with numbers like “a dollar” or “a nickel” or such. The other is that the joke is .. something in the vein of “I thought I was wrong once, but I was mistaken”. Gracie’s calculation indicates she thinks she’s struggled with a math problem a little under 0.045 times. It’s a peculiar number. Either she’s boasting that she struggles very little with mathematics, or she’s got her calculations completely wrong and hasn’t recognized it. She’s consistently portrayed as an excellent student, though. So the “barely struggles” or maybe “only struggles a tiny bit at the start of a problem” interpretation is more likely what’s meant.

Mark Parisi’s Off the Mark is a Pi Day joke that actually features π. It’s also one of the anthropomorphic-numerals variety of jokes. I had also mistaken it for a rerun. Parisi’s used a similar premise in previous Pi Day strips, including one in 2017 with π at the laptop.

An anthropomorphic pi at a laptop, facing a web page demanding, 'Enter your full name'. It's gotten through 26 digits past the decimal.
Mark Parisi’s Off The Mark for the 14th of March, 2020. Other essays featuring something raised by Off The Mark, including a fair number of Pi Day jokes, are at this link.

π has infinitely many decimal digits, certainly. Of course, so does 2. It’s just that 2 has boring decimal digits. Rational numbers end up repeating some set of digits. It can be a long string of digits. But it’s finitely many, and compared to an infinitely long and unpredictable string, what’s that? π we know is a transcendental number. Its decimal digits go on in a sequence that never ends and never repeats itself fully, although finite sequences within it will repeat. It’s one of the handful of numbers we find interesting for reasons other than their being transcendental. This though nearly every real number is transcendental. I think any mathematician would bet that it is a normal number, but we don’t know that it is. I’m not aware of any numbers we know to be normal and that we care about for any reason other than their normality. And this, weirdly, also despite that we know nearly every real number is normal.

At the ATM, a pie with arms enters a pin. An onlooking doughnut says '3.14? Please tell me that's not really your pin.'
Dave Whamond’s Reality Check for the 14th of March, 2020. Essays that show off something from a Reality Check panel are at this link.

Dave Whamond’s Reality Check plays on the pun between π and pie, and uses the couple of decimal digits of π that most people know as part of the joke. It’s not an anthropomorphic numerals joke, but it is circling that territory.

Loose sketch of Albert Einstein, accompanied by the quote, 'Only two things are infinite: the universe and human stupidity, and I'm not sure about the former', along with a note wishing him a happy birthday.
Michael Cavna’s Warped for the 14th of March, 2020. The rare appearances here of Warped are gathered at this link.

Michael Cavna’s Warped celebrates Albert Einstein’s birthday. This is of marginal mathematics content, but Einstein did write compose one of the few equations that an average lay person could be expected to recognize. It happens that he was born the 14th of March and that’s, in recent years, gotten merged into Pi Day observances.


I hope to start discussing this week’s comic strips in some essays starting next week, likely Sunday. Thanks for reading.

Reading the Comics, March 11, 2020: Half Week Edition


There were a good number of comic strips mentioning mathematical subjects last week, as you might expect for one including the 14th of March. Most of them were casual mentions, though, so that’s why this essay looks like this. And is why the week will take two pieces to finish.

Jonathan Lemon and Joey Alison Sayer’s Little Oop for the 8th is part of a little storyline for the Sunday strips. In this the young Alley Oop has … travelled in time to the present. But different from how he does in the weekday strips. What’s relevant about this is Alley Oop hearing the year “2020” and mentioning how “we just got math where I come from” but being confident that’s either 40 or 400. Which itself follows up a little thread in the Sunday strips about new numbers on display and imagining numbers greater than three.

Venn Diagram with two bubbles. The left is 'Day after Daylight Savings [sic] Start'; the right is 'Monday'. The intersection has an arrow from it pointing to a travel cup of coffee.
Maria Scrivan’s Half Full for the 9th of March, 2020. Essays featuring some topic raised by Half Full appear at this link.

Maria Scrivan’s Half Full for the 9th is the Venn Diagram strip for the week.

Paul Trap’s Thatababy for the 9th is a memorial strip to Katherine Johnson. She was, as described, a NASA mathematician, and one of the great number of African-American women whose work computing was rescued from obscurity by the book and movie Hidden Figures. NASA, and its associated agencies, do a lot of mathematical work. Much of it is numerical mathematics: a great many orbital questions, for example, can not be answered with, like, the sort of formula that describes how far away a projectile launched on a parabolic curve will land. Creating a numerical version of a problem requires insight and thought about how to represent what we would like to know. And calculating that requires further insight, so that the calculation can be done accurately and speedily. (I think about sometime doing a bit about the sorts of numerical computing featured in the movie, but I would hardly be the first.)

Eulogy strip, as drawn by the baby, celebrating Katherine Johnson, NASA mathematician 1918 - 2020. It shows a child's drawing of her, and of a Mercury capsule, with formulas describing a ballistic trajectory making the motion trail of the capsule.
Paul Trap’s Thatababy for the 9th of March, 2020. My essays featuring something raised by Thatababy are at this link.

I also had thought the Mathematical Moments from the American Mathematical Society had posted an interview with her last year. I was mistaken but in, I think, a forgivable way. In the episode “Winning the Race”, posted the 12th of June, they interviewed Christine Darden, another of the people in the book, though not (really) the movie. Darden joined NASA in the late 60s. But the interview does talk about this sort of work, and how it evolved with technology. And, of course, mentions Johnson and her influence.

Graham Harrop’s Ten Cats for the 9th is another strip mentioning Albert Einstein and E = mc2. And using the blackboard full of symbols to represent deep thought.

Patrick Roberts’s Todd the Dinosaur for the 10th showcases Todd being terrified of fractions. And more terrified of story problems. I can’t call it a false representation of the kinds of mathematics that terrify people.

Teacher: 'All right, class, please take out your math books!' Todd: 'Teacher, this isn't gonna be fractions, is it?' Teacher: 'No, Todd, no fractions.' Todd: 'Whewwww!' Teacher: 'Now listen carefully, class. Train A leaves Chicago at 7:00 am, and ... ' (Todd, screaming in panic, runs out crashing through the wall and over the horizon.)
Patrick Roberts’s Todd the Dinosaur for the 10th of March, 2020. Essays that discuss something mentioned in a Todd the Dinosaur should be gathered at this link.

Stephen Beals’s Adult Children for the 11th has a character mourning that he took calculus as he’s “too stupid to be smart”. Knowing mathematics is often used as proof of intelligence. And calculus is used as the ultimate of mathematics. It’s a fair question why calculus and not some other field of mathematics, like differential equations or category theory or topology. Probably it’s a combination of slightly lucky choices (for calculus). Calculus is old enough to be respectable. It’s often taught as the ultimate mathematics course that people in high school or college (and who aren’t going into a mathematics field) will face. It’s a strange subject. Learning it requires a greater shift in thinking about how to solve problems than even learning algebra does. And the name is friendly enough, without the wordiness or technical-sounding language of, for example, differential equations. The subject may be well-situated.

Tony Rubino and Gary Markstein’s Daddy’s Home for the 11th has the pacing of a logic problem, something like the Liar’s Paradox. It’s also about homework which happens to be geometry, possibly because the cartoonists aren’t confident that kids that age might be taking a logic course.


I’ll have the rest of the week’s strips, including what Comic Strip Master Command ordered done for Pi Day, soon. And again I mention that I’m hosting this month’s Playful Math Education Blog Carnival. If you have come across a web site with some bit of mathematics that brought you delight and insight, please let me know, and mention any creative projects that you have, that I may mention that too. Thank you.

Reading the Comics, March 7, 2020: Everybody Has Tests Edition


It was another pretty quiet week for mathematically-themed comic strips. Most of what did mention my subject just presented it as a subject giving them homework or quizzes or exams. But let’s look over what is here.

Morrie Turner’s Wee Pals rerun for the 3rd is an example of this, with one of the kids mourning his arithmetic grade. The strip previously ran the 3rd of March, 2015.

Hector D. Cantú and Carlos Castellanos’s Baldo for the 4th similarly has mathematics homework under review. And, you know, one of those mistakes that’s obvious if you do a quick “sanity check”, thinking over whether your answer could make sense.

Ted Shearer’s Quincy for the 5th is the most interesting strip of the week, since it suggests an actual answerable mathematics problem. How much does a professional basketball player earn per dribble? The answer requires a fair bit of thought, like, what do you mean by “a professional basketball player”? There’s many basketball leagues around the world; even if we limit the question to United States-and-Canada leagues, there’s a fair number of minor leagues. If we limit it to the National Basketball Association there’s the question of whether the salary is the minimum union contract guarantee, or the mean salary, or the median salary. It’s exciting to look at the salary of the highest-paid players, too, of course.

Quincy, playing with a basketball: 'Li'l Bo, some pro basketball players have million-dollar contracts.' Bo; 'Boy! That's a lot of money for playing a game.' Quincy: 'I figure they're gettin' about a dollar a dribble.'
Ted Shearer’s Quincy for the 5th of March, 2020. It looks to have originally run the 9th of January, 1981. I don’t get to discuss the strip often, but when I do, Quincy appears in essays at this link.

Working out the number of dribbles per year is also a fun estimation challenge. Even if we pick a representative player there’s no getting an exact count of how many dribbles they’ve made over a year, even if we just consider “dribbling during games” to be what’s paid for. (And any reasonable person would have to count all the dribbling done during warm-up and practice as part of what’s being paid for.) But someone could come up with an estimate of, for example, about how long a typical player has the ball for a game, and how much of that time is spent moving the ball or preparing for a free throw or other move that calls for dribbling. How long a dribble typically takes. How many games a player typically plays over the year. The estimate you get from this will never, ever, be exactly right. But it should be close enough to give an idea how much money a player earns in the time it takes to dribble the ball once. So occasionally the comics put forth a good story problem after all.

Quincy on the 7th is again worrying about his mathematics and spelling tests. It’s a cute coincidence that these are the subjects worried about in Wee Pals too.

Paul Gilligan’s Pooch Cafe for the 7th is part of a string of jokes about famous dogs. This one’s a riff on Albert Einstein, mentioned here because Albert Einstein has such strong mathematical associations.


And that’s all the week there was. I’ll be Reading the Comics for their mathematics content next week, too, and be glad to see you then. My guess is: some jokes about π.

Reading the Comics, February 29, 2020: Leap Day Quiet Edition


I can clear out all last week’s mathematically-themed comic strips in one move, it looks like. There were a fair number of strips; it’s just they mostly mention mathematics in passing.

Bill Amend’s FoxTrot for the 23rd — a new strip; it’s still in original production for Sundays — has Jason asking his older sister to double-check a mathematics problem. Double-checking work is reliably useful, as proof against mistakes both stupid and subtle. But that’s true of any field.

Mark Tatulli’s Heart of the City for the 23rd has Heart preparing for an algebra test.

Jim Unger’s Herman for the 23rd has a parent complaining about the weird New Math. The strip is a rerun and I don’t know from when; it hardly matters. The New Math has been a whipping boy for mathematics education since about ten minutes after its creation. And the complaint attaches to every bit of mathematics education reform ever. I am sympathetic to parents, who don’t see why their children should be the test subjects for a new pedagogy. And who don’t want to re-learn mathematics in order to understand what their children are doing. But, still, let someone know you were a mathematics major and they will tell you how much they didn’t understand or like mathematics in school. It’s hard to see why not try teaching it differently.

(If you do go out pretending to be a mathematics major, don’t worry. If someone challenges you on a thing, cite “Euler’s Theorem”, and you’ll have said something on point. And I’ll cover for you.)

Phil Dunlap’s Ink Pen rerun for the 24th has Bixby Rat complain about his mathematics skills.

Father and child duck sitting on the starry sky. Father: 'Hey, Champ, I know you're only 5, but I think it's time I introduce you to the wonders of the universe! See those stars? How many do you think there are?' Child: 'Um ... 12?' Father: 'Actually, there's over 300 sextillion stars! That's a 3 with 23 zeroes after it.' Child: 'And that's more than 12?' Father: 'Maybe I should introduce you to the wonders of math, first.'
Brian Gordon’s Fowl Language for the 25th of February, 2020. This strip previously ran the 5th of February, 2016, which happens to be the only other time I have an essay mentioning this comic. That’s from before I tagged comic strips by title, though. So this essay and any future repetitions that happen to mention Fowl Language should be at this link, although the previous one probably won’t be.

Brian Gordon’s Fowl Language for the 25th has a father trying to explain the vastness of Big Numbers to their kid. Past a certain point none of us really know how big a thing is. We can talk about 300 sextillion stars, or anything else, and reason can tell us things about that number. But do we understand it? Like, can we visualize that many stars the way we can imagine twelve stars? This gets us into the philosophy of mathematics pretty soundly. 300 sextillion is no more imaginary than four is, but I know I feel more confident in my understanding of four. How does that make sense? And can you explain that to your kid?

Vic Lee’s Pardon my Planet for the 28th has an appearance by Albert Einstein. And a blackboard full of symbols. The symbols I can make out are more chemistry than mathematics, but they do exist just to serve as decoration.

Bud Blake’s Tiger rerun for the 28th has Hugo mourning his performance on a mathematics test.

Ruben Bolling’s Super-Fun-Pak Comix for the 28th is an installment of The Uncertainty Principal. This is a repeat, even allowing that Super-Fun-Pak Comix are extracted reruns from Tom The Dancing Bug. As I mention in the essay linked there, the uncertainty principle being referred to here is a famous quantum mechanics result. It tells us there are sets of quantities whose values we can’t, even in principle, measure simultaneously to unlimited precision. A precise measurement of, for example, momentum destroys our ability to be precise about position. This is what makes the joke here. The mathematics of this reflects non-commutative sets of operators.

Dave Blazek’s Loose Parts for the 29th is another with a blackboard full of symbols used to express deep thought on a subject.


And that takes care of last week. I’ll be Reading the Comics for their mathematics content next week, too, although the start of the week has been a slow affair so far. We’ll see if that changes any.

Reading the Comics, February 21, 2020: February 21, 2020 Edition


So way back about fifty years ago, when pop science started to seriously explain how computers worked, and when the New Math fad underscored how much mathematics is an arbitrary cultural choice, the existence of number bases other than ten got some publicity. This offered the chance for a couple of jokes, or at least things which read to pop-science-fans as jokes. For example, playing on a typographical coincidence between how some numbers are represented in octal (base eight) and decimal (base ten), we could put forth this: for computer programmers Halloween is basically another Christmas. After all, 31 OCT = 25 DEC. It’s not much of a joke, but how much of a joke could you possibly make from “writing numbers in different bases”? Anyway, Isaac Asimov was able to make a short mystery out of it.

Tony Cochrane’s Agnes for the 21st is part of a sequence with Agnes having found some manner of tablet computer. Automatic calculation has always been a problem in teaching arithmetic. A computer’s always able to do more calculations, more accurately, than a person is; so, whey do people need to learn anything about how to calculate? The excuse that we might not always have a calculator was at least a little tenable up to about fifteen years ago. Now it’d take a massive breakdown in society for computing devices not to be pretty well available. This would probably take long enough for us to brush up on long division.

Teacher: 'Agnes, take out your math book.' Agnes: 'No need. I now own a semi-educational, quasi-computer electronic pad or something. If I boop enough buttons in the correct sequence, all world info will be there to behold! Including all the indecipherable doggerel *you're* pushing.' [ At the Principal's Office ] Agnes: 'Math teachers are fans of big numbers ... not so much big words.'
Tony Cochrane’s Agnes for the 21st of February, 2020. Essays exploring something mentioned in Agnes appear at this link.

It’s more defensible to say that people need to be able to say whether an answer is plausible. If we don’t have any expectations for the answer, we don’t know whether we’ve gone off and calculated a wrong thing. This is a bit more convincing. We should have some idea whether 25, 2500, or 25 million is the more likely answer. That won’t help us spot whether we made a mistake and got 27 instead of 25, though. It does seem reasonable to say that we can’t appreciate mathematics, so much of which is studying patterns and structures, without practicing. And arithmetic offers great patterns and structures, while still being about things that we find familiar and useful. So that’s likely to stay around.

Miss Prunelly wincing. Jughaid has written on the board '2 + 7 = baseball team', '5 + 6 = football team', and '4 + 1 = basketball team'. Jughaid says 'Gosh, Miz Prunelly, these are easy!' The other students laugh.
John Rose’s Barney Google and Snuffy Smith for the 21st of February, 2020. The occasional strip which mentions Barney Google and Snuffy Smith appears at this link. Google’s in the strip now for one or two weeks a year.

John Rose’s Barney Google and Snuffy Smith for the 21st is a student-subverting-the-blackboard-problem joke. Jughaid’s put the arithmetic problems into terms of what he finds most interesting. To me, it seems like if this is helping him get comfortable with the calculations, let him. If he does this kind of problem often enough, he’ll get good at it and let the false work of going through sports problems fade away.

Pig, reading 'Retirement Calculator: To determine your annual retirement income, just do the following: add your total personal savings to your total employee pension. Divide by the number of retirement years you plan to enjoy.' He works out: 0 + 0 / 0 = 0. Pig, to Goat: 'I love when the math is easy.'
Stephan Pastis’s Pearls Before Swine for the 21st of February, 2020. Essays featuring some point raised by Pearls Before Swine are gathered at this link. No, I don’t know why his every Sunday strip is complaining about the perilously perilous peril of political correctness anymore. I agree it feels like he’s trying to get ahead of something, but, like, he’s got a buffer of like seven years ahead of publication. If he’s got something he’s going to be expected to apologize for you’d think we’d have heard rumors or something by now.

Stephan Pastis’s Pearls Before Swine for the 21st sees Pig working through a simple Retirement Calculator. He appreciates the mathematics being easy. A realistic model would have wrinkles to it. For example, the retirement savings would presumably be returning interest, from investments or from simple deposit accounts. Working out how much one gets from that, combined with possibly spending down the principal, can be involved. But a rough model doesn’t need this sort of detailed complication. It can be pretty simple, and still give you some guidance to what a real answer should look like.

Caption: 'You may be a GEEK if ... you think that doing math in hexadecimal will impress the ladies.' Jay, at a bar, saying, 'Yeah, it's interesting when ya think about it, but 1A + 2B = 45 ... '; two women, walking away, roll their eyes and think of a dripping faucet.
John Zakour and Scott Roberts’s Working Daze for the 21st of February, 2020. This strip doesn’t get a lot of attention from me outside of Pi Day, but when it does, Working Daze gets a mention at this link.

John Zakour and Scott Roberts’s Working Daze for the 21st is a joke about how guys assuming that stuff they like is inherently interesting to other people. In this case, it’s hexadecimal arithmetic. That’s at least got the slight appeal that we’ve settled on using a couple of letters as numerals for it, so that wordplay and word-like play is easier than it is in base ten.


And this wraps up a string of comic strips all with some mathematical theme that all posted on the same day. I grant none of these get very deep into mathematical topics; that’s all right. There’ll be some more next week in a post at this link. Thank you.

Reading the Comics, February 19, 2020: 90s Doonesbury Edition


The weekday Doonesbury has been in reruns for a very long while. Recently it’s been reprinting strips from the 1990s and something that I remember producing Very Worried Editorials, back in the day.

Garry Trudeau’s Doonesbury for the 17th reprints a sequence that starts off with the dread menace and peril of Grade Inflation, the phenomenon in which it turns out students of the generational cohort after yours are allowed to get A’s. (And, to a lesser extent, the phenomenon in which instructors respond to the treatment of education as a market by giving the “customers” the grades they’re “buying”.) The strip does depict an attitude common towards mathematics, though, the idea that it must be a subject immune to Grade Inflation: “aren’t there absolute answers”? If we are careful to say what we mean by an “absolute answer” then, sure.

Dean: 'Sir, you're going to have to speak to the faculty about grade inflation. Standards are just falling off the chart. The pressure to pander is even beginning to affect the math department.' President: 'Math? How can that be? Aren't there absolute answers in math?' Dean: 'Well, yes and no.' President, thinking: 'Yes and now?' [ Math Class ] Student: '17!' Other Student: '39!' Math Professor: 'Excellent guesses! Well done!'
Garry Trudeau’s Doonesbury rerun for the 17th of February, 2020 of February, 2020. It originally ran the 20th of December, 1993. I have few essays which mention this long-running strip, oddly. What essays are inspired by something in Doonesbury appear at this link.

But grades? Oh, there is so much subjectivity as to what goes into a course. And into what level to teach that course at. How to grade, and how harshly to grade. It may be easier, compared to other subjects, to make mathematics grading more consistent year-to-year. One can make many problems that test the same skill and yet use different numbers, at least until you get into topics like abstract algebra where numbers stop being interesting. But the factors that would allow any course’s grade to inflate are hardly stopped by the department name.

Mathematician: 'I went massively into debt to build a machine that generates holographic numbers and equations whenever I wish to appear thoughtful.' Friend: 'Was that a good use money?' [ Panel of the mathematician looking thoughtful with equations spread out in space behind and in front of her. ] Mathematician: 'Yes.' Friend: 'A thousand times yes.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th of February, 2020. I have a few essays which don’t mention this long-running web strip, oddly. What essays are inspired by something in Saturday Morning Breakfast Cereal appear at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th is a strip about using a great wall of equations as emblem of deep, substantial thought. The equations depicted are several meaningful ones. The top row is from general relativity, the Einstein Field Equations. These relate the world-famous Ricci curvature tensor with several other tensors, describing how mass affects the shape of space. The P = NP line describes a problem of computational science with an unknown answer. It’s about whether two different categories of problems are, in fact, equivalent. The line about L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} is a tensor-based scheme to describe the electromagnetic field. The next two lines look, to me, like they’re deep in Schrödinger’s Equation, describing quantum mechanics. It’s possible Weinersmith has a specific problem in mind; I haven’t spotted it.

Guy Walks Into A Bar comics. Man holding a horse's reins, to the bartender: 'I'll bet $50 my horse can do arithmetic!' Bartender: 'OK, what's 2 + 2?' Horse: '10.' Horse, to the angry guy, outside the bar: 'Well, think about it. Why would a horse use base ten?'
Ruben Bolling’s Super-Fun-Pak Comix for the 18th of February, 2020. There are a fair number of essays inspired by one of the Super-Fun-Pak Comics, and they’re gathered at this link. All the Super-Fun-Pak Comics first ran in Tom The Dancing Bug, essays about which appear here.

Ruben Bolling’s Super-Fun-Pak Comix for the 18th is one of the Guy Walks Into A Bar line, each of which has a traditional joke setup undermined by a technical point. In this case, it’s the horse counting in base four, in which representation the number 2 + 2 is written as 10. Really, yes, “10 in base four” is the number four. I imagine properly the horse should say “four” aloud. But it is quite hard to read the symbols “10” as anything but ten. It’s not as though anyone looks at the hexadecimal number “4C” and pronounces it “76”, either.

Garry Trudeau’s Doonesbury for the 19th twisted the Grade Inflation peril to something that felt new in the 90s: an attack on mathematics as “Eurocentric”. The joke depends on the reputation of mathematics as finding objectively true things. Many mathematicians accept this idea. After all, once we’ve seen a proof that we can do the quadrature of a lune, it’s true regardless of what anyone thinks of quadratures and lunes, and whether that person is of a European culture or another one.

Student: 'This B+ is wrong, man! You're dissin me big time here.' Professor: 'Mr Slocum, I merely gave you the grade you deserved.' Student: 'Can't be, man! This is WAY off base!' Professor: 'As was your entire first proof, in which you held the square root of 144 to be 15. It is, in fact, 12.' Student: 'Well, sure, from a narrow, absolutist, Eurocentric perspective, maybe it's 12.' Professor: 'So?' Student: 'So my culture teaches it's 15, man!' Professor: 'Fascinating. Would this be an advanced civilization?'
Garry Trudeau’s Doonesbury rerun for the 19th of February, 2020 of February, 2020. It originally ran the 22nd of December, 1993. I am reminded once again of a fellow grad student, doing his teaching-assistant duties, watching student after student on the calculus exam reduce 1002 to 10. When enough students make the same mistake you start to question your grading scheme. Which is sometimes fair: if everyone gets partway through a question and fails at the same step there’s a prima facie case that the problem was your instruction, not their comprehension. Doesn’t cover dumb arithmetic glitches, though.

But there are several points to object to here. The first is, what’s a quadrature? … This is a geometric thing; it’s finding a square that’s the same area as some given shape, using only straightedge and compass constructions. The second is, what’s a lune? It’s a crescent moon-type shape (hence the name) that you can make by removing the overlap from two circles of specific different radiuses arranged in a specific way. It turns out you can find the quadrature for the lune shape, which makes it seem obvious that you should be able to find the quadrature for a half-circle, a way easier (to us) shape. And it turns out you can’t. The third question is, who cares about making squares using straightedge and compass? And the answer is, well, it’s considered a particularly elegant way of constructing shapes. To the Ancient Greeks. And to those of us who’ve grown in a mathematics culture that owes so much to the Ancient Greeks. Other cultures, ones placing more value on rulers and protractors, might not give a fig about quadratures and lunes.

This before we get into deeper questions. For example, if we grant that some mathematical thing is objectively true, independent of the culture which finds it, then what role does the proof play? It can’t make the thing more or less true. It doesn’t eve matter whether the proof is flawed, or whether it convinces anyone. It seems to imply a mathematician isn’t actually needed for their mathematics. This runs contrary to intuition.

Anyway, this gets off the point of the student here, who’s making a bad-faith appeal to multiculturalism to excuse laziness. It’s difficult to imagine a culture that doesn’t count, at least, even if they don’t do much work with numbers like 144. Granted that, it seems likely they would recognize that 12 has some special relationship with 144, even if they don’t think too much of square roots as a thing.


And do please stop in later this Leap Day week. I figure to have one of my favorite little things, a Reading the Comics day that’s all one day. It should be at this link, when posted. Thank you.

Reading the Comics, February 14, 2020: Simple Edition


Greg Evans’s Luann Againn for the 12th features some poor tutoring on Gunther’s part. Usually a person isn’t stuck for what the answer to a problem is; they’re stuck on how to do it correctly. Maybe on how to do it efficiently. But tutoring is itself a skill, and it’s a hard one to learn. We don’t get enough instruction in how to do it.

The problem Luann’s doing is one of simplifying an expression. I remember doing a lot of this, in middle school algebra like that. Simplifying expressions does not change their value; we don’t create new ideas by writing them. So why simplify?

Any grammatically correct expression for a concept may be as good as any other grammatically correct expression. This is as true in writing as it is in mathematics. So what is good writing? There are a thousand right answers. One trait that I think most good writing has is that it makes concepts feel newly accessible. It frames something in a way which makes ideas easier to see. So it is with simplifying algebraic expressions. Finding a version of a formula that makes clearer what you would like to do makes the formula more useful.

Gunther: 'OK, let's see what you did wrong here on number 26.' Luann notices Aaron Hill walking past, and goes out to follow him. Meanwhile Gunther works out 'Simplify: 6x + 7(3 + x + 4)'. After Luann's gone through several rooms following Aaron, Gunther calls out, 'The answer is 13x + 49!' Luann: 'What? Oh! OK, thanks!'
Greg Evans’s Luann Againn for the 12th of February, 2020. The strip originally ran the 12th of February, 1992. Essays mentioning something inspired by Luann, either the current run or the 1992-vintage Luann Againn reruns, are at this link.

Simplifying like this, putting an expression into the fewest number of terms, is common. It typically makes it easier to calculate with a formula. We calculate with formulas all the time. It often makes it easier to compare one formula to another. We compare formulas some of the time. So we practice simplifying like this a lot. Occasionally we’ll have a problem where this simplification is counter-productive and we’d do better to write out something as, to make up an example, 4(x^2 + 2x + 1)^2 + 4(x^2 + 2x + 1) + 1 instead. Someone who’s gotten good at simplifications, to the point it doesn’t take very much work, is likely to spot cases where one wants to keep part of the expression un-simplified.

Chen Weng’s Messycow Comics for the 13th starts off with some tut-tutting of lottery players. Objectively, yes, money put on a lottery ticket is wasted; even, for example, pick-three or pick-four daily games are so unlikely to pay any award as to be worth it. But I cannot make myself believe that this is necessarily a more foolish thing to do with a couple dollars than, say, buying a candy bar or downloading a song you won’t put on any playlists.

Woman, looking at people buying lottery tickets: 'I feel sorry for them.' Cow: 'Why?' Woman: 'Because, statistically, their chances are so slim that they're wasting their money.' Later, Cow: 'Let's go play!' Woman: 'Can't, need to work.' Cow: 'Why?' Woman: 'Because I want to become a successful artist and give my family a good life.' Cow: 'You know, statistically, your chance is so slim that you are wasting your time.' This word balloon stabs the woman between the eyes.
Chen Weng’s Messycow Comics for the 13th of February, 2020. The occasional essay mentioning something raised by Messycow Comics appear at this link.

And as the Cow points out, the chance of financial success in art — in any creative field — is similarly ridiculously slight. Even skilled people need a stroke of luck to make it, and even then, making it is a marginal matter. (There is a reason I haven’t quit my job to support myself by blog-writing.) People are terrible at estimating probabilities, especially in situations that are even slightly complicated.

Teacher: 'So what is 3 times 55?' Looking out over a bunch of students, many with hands up. One with her hand way up, several feet taller than anyone else's. Gracie's hand is this; she's got a fake extra-long arm on a stick and waves that. Other students near her look at her and glare.
Hector D. Cantü and Carlos Castellanos’s Baldo for the 14th of February, 2020. Essays featuring something mentioned by Baldo appear at this link.

Hector D. Cantü and Carlos Castellanos’s Baldo for the 14th just has Gracie very enthusiastic for arithmetic class. It’s a cute bit.


And now I’m all caught up. Please check in this link next week as I read the comics for their mathematics content some more.

Reading the Comics, February 11, 2020: Symbols Edition


Finally we get to last week’s comics. This past one wasn’t nearly so busy a week for mathematically-themed comic strips. But there’s still just enough that I can split them across two days. This fits my schedule well, too.

Rick Detorie’s One Big Happy for the 9th is trying to be the anthropomorphized numerals joke of the week. It’s not quite there, but it also uses some wordplay. … And I’ll admit being impressed any of the kids could do much with turning any of the numerals into funny pictures. I remember once having a similar assignment, except that we were supposed to use the shape of our state, New Jersey, as the basis for the picture. I grant I am a dreary and literal-minded person. But there’s not much that the shape of New Jersey resembles besides itself, “the shape of Middlesex County, New Jersey”, and maybe a discarded sock. I’m not still upset about this.

Parents night at the school. On the wall are assignments: 'Make a funny picture drawing using a numeral', with kids who've drawn 2 as a dog or 0 as a clown or 8 as a snowman or such. Ruthie's drawn 5 as a figure with a cap and a bindle walking away. Ruthie's Mom 'I liked your drawing, Ruthie, the 'Five' running away from home.' Ruthie: 'Oh yeah, my roamin' numeral!'
Rick Detorie’s One Big Happy for the 9th of February, 2020. Essays exploring something from One Big Happy, current (creators.com) or rerun (gocomics.com) runs, are at this link.

Samson’s Dark Side of the Horsefor the 11th is another on the counting-sheep theme. It’s built on the resemblance between the numeral ‘2’ and the choice of ‘z’ to represent sleeping.

Horace, counting sheep: '222,220' as a sheep staggers past the imagined fence. '222,221' as a sheep barely climbs over the fence. '222,222' as the sheep, and Horace, collapses flat into sleep.
Samson’s Dark Side of the Horsefor the 11th of February, 2020. This and other essays featuring Dark Side of the Horse trying to sleep are at this link.

The choice of ‘z’ to mean a snore is an arbitrary choice, no more inherent to the symbol than that ‘2’ should mean two. Christopher Miller’s American Cornball, which tracks a lot of (American) comedic conventions of the 20th century, notes a 1911 comic postcard representing snoring as “Z-Z-Z-Z-R-R-R-R-Z-Z-Z-Z-R-R-R-R”, which captures how the snore is more than a single prolonged sound.

Dave Blazek’s Loose Parts for the 11th has the traditional blackboard full of symbols. And two mathematics-types agreeing that they could make up some more symbols. Well, mathematics is full of symbols. Each was created by someone. Each had a point, which was to express some concept better. Usually the goal is to be more economical: it’s fewer strokes of the pen to write = instead of “equals”, and = is quicker even than “eq”. Or we want to talk a lot about a complicated concept, which is how we get, say, \sin^{-1} x for “a representative of the set of angles with sine equal to x”.

Two figures in front of a board full of symbols. One says: 'I think you're right, John. If we can come up with one new nonsense symbol a week, we can stretch this gig out for, like, a year.'
Dave Blazek’s Loose Parts for the 11th of February, 2020. Essays featuring some discussion of Loose Parts are at this link.

I suspect every mathematician has made up a couple symbols in their notes. In the excitement of working out a problem there’ll be something they want to refer to a lot. That gets reduced to an acronym or a repeated scribble soon enough. Sometimes it’s done by accident: for a while when I needed a dummy variable I would call on “ksee”, a Greek letter so obscure that it does not even exist. It looks like a cross between zeta and xi. The catch is, always, getting anyone else to use the symbol. Most of these private symbols stay private, because they don’t do work that can’t be better done by a string of symbols we already have (letters included). Or at least they don’t to well enough to be worth the typesetting trouble. I’d be surprised if any of the students I used “ksee” in front of reused the letter, even if they did find a need for a dummy variable. Founding a field, or writing a definitive text in a field, helps your chances.

I am curious how the modern era of digital typesetting will affect symbol creation. It’s relatively easy to put in a new symbol — or to summon one in the Unicode universe not currently used for mathematics — in a document and have it copied. Certainly it’s easy compared to what it was like in typewriter and Linotype days, when you might need to rely on a friend who knows a guy at the type foundry. On the other hand, it’s hard enough to get the raw file in LaTeX — a long-established standard mathematics typesetting computer language — from another person and have it actually work, even without adding in new symbols. I don’t see that changing just because several people have found that a bubble tea emoji quite helps their paper on sedimentation rates.

A long multipanel story called 'Girls Win', about the contest of boys versus girls. The relevant section starts with the narration, 'Even at school, I knew boys always lose to girls.' Teacher: 'OK, children, we're going to play Math Baseball' (a game played on the chalkboard by getting three problems right.) 'Girls were just smarter somehow.' Teacher: 'Let's separate into boys vs girls.' 'Even though we had math-wiz Sergio on our team, he alone couldn't save us from ourselves.' Teacher: 'Strike three! Yer out!' Teammate, berating Pedro, who's missed 11 - 9: 'Dang it, Pedro! We had this!'
Pedro Martin’s Mexikid Stories for the 11th of February, 2020. I haven’t had cause to discuss this strip before, so it’s a new tag. But this and any future essays mentioning Mexikid Stories should be at this link.

Pedro Martin’s Mexikid Stories for the 11th recounts childhood memories and anxieties of being matched, boys versus girls, in various activities. This includes mathematics quizzes. Here, the mathematics is done as a class game, which is a neat coincidence as I’d been thinking of similar public mathematics quiz-games that I’d done. I liked them, but then, I was almost always at top or second in the class rankings, and — after the initial couple rounds — never fell below third. My recent thoughts were for how much less fun this must have been for the kids in 26th place, especially if they’re ones who can do the work just fine, given time and space. We do value speed, in working, and that comes from practicing a task so often that we do it in the slightest time possible. And we value ability to perform under pressure, so we put people into anxiety-producing states until they can do a particular task anyway.


Thanks for reading. I should have another post at this link, most likely Thursday.

Reading the Comics, February 8, 2020: Delta Edition


With this essay, I finally finish the comic strips from the first full week of February. You know how these things happen. I’ll get to the comics from last week soon enough, at an essay gathered under this link. For now, some pictures with words:

Art Sansom and Chip Sansom’s The Born Loser for the 7th builds on one of the probability questions people often use. That is the probability of an event, in the weather forecast. Predictions for what the weather will do are so common that it takes work to realize there’s something difficult about the concept. The weather is a very complicated fluid-dynamics problem. It’s almost certainly chaotic. A chaotic system is deterministic, but unpredictable, because to get a meaningful prediction requires precision that’s impossible to ever have in the real world. The slight difference between the number π and the number 3.1415926535897932 throws calculations off too quickly. Nevertheless, it implies that the “chance” of snow on the weekend means about the same thing as the “chance” that Valentinte’s Day was on the weekend this year. The way the system is set up implies it will be one or the other. This is a probability distribution, yes, but it’s a weird one.

Gladys: 'I wonder what the weather will be like this weekend.' Brutus; 'The TV forecaster says there's less than a 10% chance of snow! Of course, that forecaster has less than a 10% chance of being correct!'
Art Sansom and Chip Sansom’s The Born Loser for the 7th of February, 2020. When I discuss something raised by The Born Loser I put the essay at this link.

What we talk about when we say the “chance” of snow or Valentine’s on a weekend day is one of ignorance. It’s about our estimate that the true value of something is one of the properties we find interesting. Here, past knowledge can guide us. If we know that the past hundred times the weather was like this on Friday, snow came on the weekend less than ten times, we have evidence that suggests these conditions don’t often lead to snow. This is backed up, these days, by numerical simulations which are not perfect models of the weather. But they are ones that represent something very like the weather, and that stay reasonably good for several days or a week or so.

And we have the question of whether the forecast is right. Observing this fact is used as the joke here. Still, there must be some measure of confidence in a forecast. Around here, the weather forecast is for a cold but not abnormally cold week ahead. This seems likely. A forecast that it was to jump into the 80s and stay there for the rest of February would be so implausible that we’d ignore it altogether. A forecast that it would be ten degrees (Fahrenheit) below normal, or above, though? We could accept that pretty easily.

Proving a forecast is wrong takes work, though. Mostly it takes evidence. If we look at a hundred times the forecast was for a 10% chance of snow, and it actually snowed 11% of the time, is it implausible that the forecast was right? Not really, not any more than a coin coming up tails 52 times out of 100 would be suspicious. If it actually snowed 20% of the time? That might suggest that the forecast was wrong. If it snowed 80% of the time? That suggests something’s very wrong with the forecasting methods. It’s hard to say one forecast is wrong, but we can have a sense of what forecasters are more often right than others are.

Caption; 'When I hear two dogs barking ... ' And the picture shows one dog going 'Arf! Arf! Arf', interrupted by a dog barking. Then the first dog goes, 'Woof! Woof! Arf! Arf' Caption: ' ... I like to imagine that one of them is trying to count, while the other is yelling out random numbers.' First dog: '36 ... 37 ... 38' Second Dog: '72!' First Dog: 'Dude! Stop it! 1 ... 2 ... '
Doug Savage’s Savage Chickens for the 7th of February, 2020. Essays that mention something based on Savage Chickens are put at this link.

Doug Savage’s Savage Chickens for the 7th is a cute little bit about counting. Counting things out is an interesting process; for some people, hearing numbers said aloud will disrupt their progress. For others, it won’t, but seeing numbers may disrupt it instead.

Scientist types, standing in a room full of dogs, with a right triangle diagram on the wall. Scientist: 'Now we have proof, Wickingham! If you show this image to 500 golden retrievers every day for ten years, they are UNABLE to discover Pythagoras's Theorem.'
Niklas Eriksson’s Carpe Diem for the 8th of February, 2020. The occasional essay based on something mentioned in Carpe Diem is gathered at this link.

Niklas Eriksson’s Carpe Diem for the 8th is a bit of silliness about the mathematical sense of animals. Studying how animals understand number is a real science, and it turns up interesting results. It shouldn’t be surprising that animals can do a fair bit of counting and some geometric reasoning, although it’s rougher than even our untrained childhood expertise. We get a good bit of our basic mathematical ability from somewhere, because we’re evolved to notice some things. It’s silly to suppose that dogs would be able to state the Pythagorean Theorem, at least in a form that we recognize. But it is probably someone’s good research problem to work out whether we can test whether dogs understand the implications of the theorem, and whether it helps them go about dog work any.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th speaks of the “Cinnamon Roll Delta Function”. The point is clear enough on its own. So let me spoil a good enough bit of fluff by explaining that it’s a reference to something. There is, lurking in mathematical physics, a concept called the “Dirac delta function”, named for that innovative and imaginative fellow Paul Dirac. It has some weird properties. Its domain is … well, it has many domains. The real numbers. The set of ordered pairs of real numbers, R2. The set of ordered triples of real numbers, R3. Basically any space you like, there’s a Dirac delta function for it. The Dirac delta function is equal to zero everywhere in this domain, except at one point, the “origin”. At that one function, though? There it’s equal to …

Graph: 'The Cinnamon Roll Delta Function.' y-axis: tastiness. x-axis: quality of ingredients. For a long stretch of quality the taste is at zero: 'tastes like dry bread with sugar.' Then the vertical spike. After that, the taste is zero again: 'Why is there fennel and orange blossom? Did I strange my inner child?'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th of February, 2020. If you don’t see an essay mentioning this strip, wait five minutes. Or look at my collection of Saturday Morning Breakfast Cereal-inspired discussions, here.

Here we step back a moment. We really, really, really want to say that it’s infinitely large at that point, which is what Weinersmith’s graph shows. If we’re being careful, we don’t say that though. Because if we did say that, then we would lose the thing that we use the Dirac delta function for. The Dirac delta function, represented with δ, is a function with the property that for any set D, in the domain, that you choose to integrate over

\int_D \delta(x) dx = 1

whenever the origin is inside the interval of integration D. It’s equal to 0 if the origin is not inside the interval of integration. This, whatever the set is. If we use the ordinary definitions for what it means to integrate a function, and say that the delta function is “infinitely big” at the origin, then this won’t happen; the integral will be zero everywhere.

This is one of those cases where physicists worked out new mathematical concepts, and the mathematicians had to come up with a rationalization by which this made sense. This because the function is quite useful. It allows us, mathematically, to turn descriptions of point particles into descriptions of continuous fields. And vice-versa: we can turn continuous fields into point particles. It turns out we like to do this a lot. So if we’re being careful we don’t say just what the Dirac delta function “is” at the origin, only some properties about what it does. And if we’re being further careful we’ll speak of it as a “distribution” rather than a function.

But colloquially, we think of the Dirac delta function as one that’s zero everywhere, except for the one point where it’s somehow “a really big infinity” and we try to not look directly at it.

The sharp-eyed observer may notice that Weinersmith’s graph does not put the great delta spike at the origin, that is, where the x-axis represents zero. This is true. We can create a delta-like function with a singular spot anywhere we like by the process called “translation”. That is, if we would like the function to be zero everywhere except at the point a , then we define a function \delta_a(x) = \delta(x - a) and are done. Translation is a simple step, but it turns out to be useful all the time.

Thanks again for reading. See you soon.