Updates from July, 2017 Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 4:00 pm on Sunday, 23 July, 2017 Permalink | Reply
    Tags: , , , devilbunnies, ecology, , , Human Cull, , , ,   

    Reading the Comics, July 22, 2017: Counter-mudgeon Edition 


    I’m not sure there is an overarching theme to the past week’s gifts from Comic Strip Master Command. If there is, it’s that I feel like some strips are making cranky points and I want to argue against their cases. I’m not sure what the opposite of a curmudgeon is. So I shall dub myself, pending a better idea, a counter-mudgeon. This won’t last, as it’s not really a good name, but there must be a better one somewhere. We’ll see it, now that I’ve said I don’t know what it is.

    Rabbits at a chalkboard. 'The result is not at all what we expected, Von Thump. According to our calculations, parallel universes may exist, and we may also be able to link them with our own by wormholes that, in strictly mathematical terms, end up in a black top hat.'

    Niklas Eriksson’s Carpe Diem for the 17th of July, 2017. First, if anyone isn’t thinking of that Pixar short then I’m not sure we can really understand each other. Second, ‘von Thump’ is a fine name for a bunny scientist and if it wasn’t ever used in the rich lore of Usenet group alt.devilbunnies I shall be disappointed. Third, Eriksson made an understandable but unfortunate mistake in composing this panel. While both rabbits are wearing glasses, they’re facing away from the viewer. It’s always correct to draw animals wearing eyeglasses, or to photograph them so. But we should get to see them in full eyeglass pelage. You’d think they would teach that in Cartoonist School or something.

    Niklas Eriksson’s Carpe Diem for the 17th features the blackboard full of equations as icon for serious, deep mathematical work. It also features rabbits, although probably not for their role in shaping mathematical thinking. Rabbits and their breeding were used in the simple toy model that gave us Fibonacci numbers, famously. And the population of Arctic hares gives those of us who’ve reached differential equations a great problem to do. The ecosystem in which Arctic hares live can be modelled very simply, as hares and a generic predator. We can model how the populations of both grow with simple equations that nevertheless give us surprises. In a rich, diverse ecosystem we see a lot of population stability: one year where an animal is a little more fecund than usual doesn’t matter much. In the sparse ecosystem of the Arctic, and the one we’re building worldwide, small changes can have matter enormously. We can even produce deterministic chaos, in which if we knew exactly how many hares and predators there were, and exactly how many of them would be born and exactly how many would die, we could predict future populations. But the tiny difference between our attainable estimate and the reality, even if it’s as small as one hare too many or too few in our model, makes our predictions worthless. It’s thrilling stuff.

    Vic Lee’s Pardon My Planet for the 17th reads, to me, as a word problem joke. The talk about how much change Marian should get back from Blake could be any kind of minor hassle in the real world where one friend covers the cost of something for another but expects to be repaid. But counting how many more nickels one person has than another? That’s of interest to kids and to story-problem authors. Who else worries about that count?

    Fortune teller: 'All of your money problems will soon be solved, including how many more nickels Beth has than Jonathan, and how much change Marian should get back from Blake.'

    Vic Lee’s Pardon My Planet for the 17th of July, 2017. I am surprised she had no questions about how many dimes Jonathan must have, although perhaps that will follow obviously from knowing the Beth nickel situation.

    Jef Mallet’s Frazz for the 17th straddles that triple point joining mathematics, philosophy, and economics. It seems sensible, in an age that embraces the idea that everything can be measured, to try to quantify happiness. And it seems sensible, in age that embraces the idea that we can model and extrapolate and act on reasonable projections, to try to see what might improve our happiness. This is so even if it’s as simple as identifying what we should or shouldn’t be happy about. Caulfield is circling around the discovery of utilitarianism. It’s a philosophy that (for my money) is better-suited to problems like how ought the city arrange its bus lines than matters too integral to life. But it, too, can bring comfort.

    Corey Pandolph’s Barkeater Lake rerun for the 20th features some mischievous arithmetic. I’m amused. It turns out that people do have enough of a number sense that very few people would let “17 plus 79 is 4,178” pass without comment. People might not be able to say exactly what it is, on a glance. If you answered that 17 plus 79 was 95, or 102, most people would need to stop and think about whether either was right. But they’re likely to know without thinking that it can’t be, say, 56 or 206. This, I understand, is so even for people who aren’t good at arithmetic. There is something amazing that we can do this sort of arithmetic so well, considering that there’s little obvious in the natural world that would need the human animal to add 17 and 79. There are things about how animals understand numbers which we don’t know yet.

    Alex Hallatt’s Human Cull for the 21st seems almost a direct response to the Barkeater Lake rerun. Somehow “making change” is treated as the highest calling of mathematics. I suppose it has a fair claim to the title of mathematics most often done. Still, I can’t get behind Hallatt’s crankiness here, and not just because Human Cull is one of the most needlessly curmudgeonly strips I regularly read. For one, store clerks don’t need to do mathematics. The cash registers do all the mathematics that clerks might need to do, and do it very well. The machines are cheap, fast, and reliable. Not using them is an affectation. I’ll grant it gives some charm to antiques shops and boutiques where they write your receipt out by hand, but that’s for atmosphere, not reliability. And it is useful the clerk having a rough idea what the change should be. But that’s just to avoid the risk of mistakes getting through. No matter how mathematically skilled the clerk is, there’ll sometimes be a price entered wrong, or the customer’s money counted wrong, or a one-dollar bill put in the five-dollar bill’s tray, or a clerk picking up two nickels when three would have been more appropriate. We should have empathy for the people doing this work.

     
    • goldenoj 8:05 pm on Sunday, 23 July, 2017 Permalink | Reply

      Human Cull may be the most disturbing idea for a comic ever.

      Like

  • Joseph Nebus 4:00 pm on Sunday, 16 July, 2017 Permalink | Reply
    Tags: , Beetle Bailey, , ,   

    Reading the Comics, July 15, 2017: Dawn Of Mathematics Jokes 


    So I try to keep up with nearly all the comic strips run on Comics Kingdom and on GoComics. This includes some vintage strips: take some ancient comic like Peanuts or Luann and rerun it, day at a time, from the beginning. This is always enlightening. It’s always interesting to see a comic in that first flush of creative energy, before the characters have quite settled in and before the cartoonist has found stock jokes that work so well they don’t even have to be jokes anymore. One of the most startling cases for me has been Johnny Hart’s B.C. which, in its Back To B.C. incarnation, has been pretty well knocking it out of the park.

    Not this week, I’m sad to admit. This week it’s been doing a bunch of mathematics jokes, which is what gives me my permission to talk about it here. The jokes have been, eh, the usual, given the setup. A bit fresher, I suppose, for the characters in the strip having had fewer of their edges worn down by time. Probably there’ll be at least one that gets a bit of a grin.

    Back To B.C. for the 11th sets the theme going. On the 12th it gets into word problems. And then for the 13th of July it turns violent and for my money funny.

    Mark Tatulli’s Heart of the City has a number appear on the 12th. That’s been about as much mathematical content as Heart’s experience at Math Camp has taken. The story’s been more about Dana, her camp friend, who’s presented as good enough at mathematics to be bored with it, and the attempt to sneak out to the nearby amusement park. What has me distracted is wondering what amusement park this could be, given that Heart’s from Philadelphia and the camp’s within bus-trip range and in the forest. I can’t rule out that it might be Knoebels Amusement Park, in Elysburg, Pennsylvania, in which case Heart and Dana are absolutely right to sneak out of camp because it is this amazing place.

    TV Chef: 'Mix in one egg.' Cookie: 'See ... for us that would be 200 eggs.' TV Chef: 'Add a cup of flour.' Cookie: '200 cups of flour.' TV CHef: 'Now bake for two hours.' Cookie to Sarge: 'It'll be ready next week.'

    Mort Walker’s Beetle Bailey Vintage for the 21st of December, 1960 and rerun the 14th of July, 2017. Wow, I remember when they’d put recipes like this on the not-actual-news segment of the 5:00 news or so, and how much it irritated me that there wasn’t any practical way to write down the whole thing and even writing down the address to mail in for the recipe seemed like too much, what with how long it took on average to find a sheet of paper and a writing tool. In hindsight, I don’t know why this was so hard for me.

    Mort Walker’s Beetle Bailey Vintage for the 21st of December, 1960 was rerun the 14th. I can rope this into mathematics. It’s about Cookie trying to scale up a recipe to fit Camp Swampy’s needs. Increasing the ingredient count is easy, or at least it is if your units scale nicely. I wouldn’t want to multiple a third of a teaspoon by 200 without a good stretching beforehand and maybe a rubdown afterwards. But the time needed to cook a multiplied recipe, that gets mysterious. As I understand it — the chemistry of cooking is largely a mystery to me — the center of the trouble is that to cook a thing, heat has to reach throughout the interior. But heat can only really be applied from the surfaces of the cooked thing. (Yes, theoretically, a microwave oven could bake through the entire volume of something. But this would require someone inventing a way to bake using a microwave.) So we must balance the heat that can be applied over what surface to the interior volume and any reasonable time to cook the thing. Won’t deny that at some point it seems easier to just make a smaller meal.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th goes to the old “inference testing” well again. This comes up from testing whether something strange is going on. Measure something in a sample. Is the result appreciably different from what would be a plausible result if nothing interesting is going on? The null hypothesis is the supposition that there isn’t anything interesting going on: the measurement’s in the range of what you’d expect given that the world is big and complicated. I’m not sure what the physicist’s exact experiment would have been. I suppose it would be something like “you lose about as much heat through your head as you do any region of skin of about the same surface area”. So, yeah, freezing would be expected, considering.

    Percy Crosby’s Skippy for the 17th of May, 1930, and rerun the 15th, maybe doesn’t belong here. It’s just about counting. Never mind. I smiled at it, and I’m a fan of the strip. Give it a try; it’s that rare pre-Peanuts comic that still feels modern.

    And, before I forget: Have any mathematics words or terms you’d like to have explained? I’m doing a Summer 2017 A To Z and taking requests! Please offer them over there, for convenience. I mean mine.

     
  • Joseph Nebus 4:00 pm on Sunday, 9 July, 2017 Permalink | Reply
    Tags: , Barney Google, , , , , Lucky Cow, Middletons, , ,   

    Reading the Comics, July 8, 2017: Mostly Just Pointing Edition 


    Won’t lie: I was hoping for a busy week. While Comic Strip Master Command did send a healthy number of mathematically-themed comic strips, I can’t say they were a particularly deep set. Most of what I have to say is that here’s a comic strip that mentions mathematics. Well, you’re reading me for that, aren’t you? Maybe. Tell me if you’re not. I’m curious.

    Richard Thompson’s Cul de Sac rerun for the 2nd of July is the anthropomorphic numerals joke for the week. And a great one, as I’d expect of Thompson, since it also turns into a little bit about how to create characters.

    Ralph Dunagin and Dana Summers’s Middletons for the 2nd uses mathematics as the example of the course a kid might do lousy in. You never see this for Social Studies classes, do you?

    Mark Tatulli’s Heart of the City for the 3rd made the most overtly mathematical joke for most of the week at Math Camp. The strip hasn’t got to anything really annoying yet; it’s mostly been average summer-camp jokes. I admit I’ve been distracted trying to figure out if the minor characters are Tatulli redrawing Peanuts characters in his style. I mean, doesn’t Dana (the freckled girl in the third panel, here) look at least a bit like Peppermint Patty? I’ve also seen a Possible Marcie and a Possible Shermy, who’s the Peanuts character people draw when they want an obscure Peanuts character who isn’t 5. (5 is the Boba Fett of the Peanuts character set: an extremely minor one-joke character used for a week in 1963 but who appeared very occasionally in the background until 1983. You can identify him by the ‘5’ on his shirt. He and his sisters 3 and 4 are the ones doing the weird head-sideways dance in A Charlie Brown Christmas.)

    Mark Pett’s Lucky Cow rerun for the 4th is another use of mathematics, here algebra, as a default sort of homework assignment.

    Brant Parker and Johnny Hart’s Wizard of Id Classics for the 4th reruns the Wizard of Id for the 7th of July, 1967. It’s your typical calculation-error problem, this about the forecasting of eclipses. I admit the forecasting of eclipses is one of those bits of mathematics I’ve never understood, but I’ve never tried to understand either. I’ve just taken for granted that the Moon’s movements are too much tedious work to really enlighten me and maybe I should reevaluate that. Understanding when the Moon or the Sun could be expected to disappear was a major concern for people doing mathematics for centuries.

    Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 5th is a Special Relativity joke, which is plenty of mathematical content for me. I warned you it was a week of not particularly deep discussions.

    Ashleigh Brilliant’s Pot-Shots rerun for the 5th is a cute little metric system joke. And I’m going to go ahead and pretend that’s enough mathematical content. I’ve come to quite like Brilliant’s cheerfully despairing tone.

    Jason Chatfield’s Ginger Meggs for the 7th mentions fractions, so you can see how loose the standards get around here when the week is slow enough.

    Snuffy Smith: 'I punched Barlow 'cuz I knew in all probability he wuz about to punch me, yore honor!!' Judge: 'Th' law don't deal in probabilities, Smif, we deal in CERTAINTIES!!' Snuffy, to his wife: '... An' th'minute he said THAT, I was purty CERTAIN whar I wuz headed !!'

    John Rose’s Barney Google and Snuffy Smith for the 8th of July, 2017. So I know it’s a traditional bit of comic strip graphic design to avoid using a . at the end of sentences, as it could be too easily lost — or duplicated — in a printing error. Thus the long history of comic strip sentences that end with a ! mark, unambiguous even if the dot goes missing or gets misaligned. But double exclamation points for everything? What goes on here?

    John Rose’s Barney Google and Snuffy Smith for the 8th finally gives me a graphic to include this week. It’s about the joke you would expect from the topic of probability being mentioned. And, as might be expected, the comic strip doesn’t precisely accurately describe the state of the law. Any human endeavour has to deal with probabilities. They give us the ability to have reasonable certainty about the confusing and ambiguous information the world presents.

    Einstein At Eight: equations scribbled all over the wall. Einstein Mom: 'Just look at what a mess you made here!' Einstein Dad: 'You've got some explaining to do, young man.'

    Vic Lee’s Pardon My Planet for the 8th of July, 2017. I gotta say, I look at that equation in the middle with m raised to the 7th power and feel a visceral horror. And yet I dealt with exactly this horrible thing once and it came out all right.

    Vic Lee’s Pardon My Planet for the 8th is another Albert Einstein mention. The bundle of symbols don’t mean much of anything, at least not as they’re presented, but of course superstar equation E = mc2 turns up. It could hardly not.

     
  • Joseph Nebus 6:00 pm on Tuesday, 4 July, 2017 Permalink | Reply
    Tags: , Daddy's Home, Gangbusters, , , , Mathmagic Land, , Pinocchio,   

    Reading the Comics, July 1, 2017: Deluge Edition, Part 2 


    Last week started off going like Gangbusters, a phrase I think that’s too old-fashioned for my father to say but that I’ve picked up because I like listening to old-time radio and, you know, Gangbusters really does get going like that. Give it a try sometime, if you’re open to that old-fashioned sort of narrative style and blatant FBI agitprop. You might want to turn the volume down a little before you do. It slowed down the second half of the week, which is mostly fine as I’d had other things taking up my time. Let me finish off last week and hope there’s a good set of comics to review for next Sunday and maybe Tuesday.

    Ted Shearer’s Quincy for the 4th of May, 1978 was rerun the 28th of June. It’s got the form of your student-resisting-the-word-problem joke. And mixes in a bit of percentages which is all the excuse I need to include it here. That and how Shearer uses halftone screening. It’s also a useful reminder of how many of our economic problems could be solved quickly if poor people got more money.

    Teacher explaining budgets: 'Quincy, does your granny have a budget?' Quincy: 'She sure does! 30% for rent, 30% for food, 30% for clothign, and 20% for the preacher, the doctor, lawyer, and undertaker!' 'That's 110%' 'That's our problem!'

    Ted Shearer’s Quincy for the 4th of May, 1978 Not answered: wait, Quincy’s Granny has to make regular payments to the undertaker? Is ‘the preacher, the doctor, lawyer and undertaker’ some traditional phrasing that I’m too young and white and suburban to recognize or should I infer that Granny has a shocking and possibly illicit hobby?

    Olivia Walch’s Imogen Quest for the 28th features Gottfried Leibniz — missing his birthday by three days, incidentally — and speaks of the priority dispute about the invention of calculus. I’m not sure there is much serious questioning anymore about Leibniz’s contributions to mathematics. I think they might be even more strongly appreciated these days than they ever used to be, as people learn more about his work in computing machines and the attempt to automate calculation.

    Mark Anderson’s Andertoons for the 28th is our soothing, familiar Andertoons for this essay. I remember in learning about equivalent forms of fractions wondering why anyone cared about reducing them. If two things have the same meaning, why do we need to go further? There are a couple answers. One is that it’s easier on us to understand a quantity if it’s a shorter, more familiar form. \frac{3}{4} has a meaning that \frac{1131}{1508} just does not. And another is that we often want to know whether two things are equivalent, or close. Is \frac{1147}{1517} more or less than \frac{1131}{1508} ? Good luck eyeballing that.

    And we learn, later on, that a lot of mathematics is about finding different ways to write the same thing. Each way has its uses. Sometimes a slightly more complicated way to write a thing makes proving something easier. There’s about two solids months of Real Analysis, for example, where you keep on writing that x_{n} - x_{m} \equiv x_{n} - x + x - x_{m} and this “adding zero” turns out to make proofs possible. Even easy.

    Mark Tatulli’s Heart of the City remains on my watch-with-caution list as the Math Camp story continues. But the strip from the 28th tickles me with the idea of crossing mathematics camp with Pinocchio‘s Pleasure Island. I’m imagining something where Heart starts laughing at something and ends up turning into something from Donald Duck’s Mathmagic land.

    Dave Blazek’s Loose Parts for the 28th is your traditional blackboard-full-of-symbols joke. I’m amused.

    Tony Rubino and Gary Markstein’s Daddy’s Home for the 1st of July is your traditional “mathematics is something hard” joke. I have the feeling it’s a rerun, but I lack the emotional investment in whether it is a rerun to check. The joke’s comfortable and familiar as it is, anyway.

     
  • Joseph Nebus 4:00 pm on Sunday, 2 July, 2017 Permalink | Reply
    Tags: , , , , , , , , Mom's Cancer, Perry Bible Fellowship, ,   

    Reading the Comics, June 26, 2017: Deluge Edition, Part 1 


    So this past week saw a lot of comic strips with some mathematical connection put forth. There were enough just for the 26th that I probably could have done an essay with exclusively those comics. So it’s another split-week edition, which suits me fine as I need to balance some of my writing loads the next couple weeks for convenience (mine).

    Tony Cochrane’s Agnes for the 25th of June is fun as the comic strip almost always is. And it’s even about estimation, one of the things mathematicians do way more than non-mathematicians expect. Mathematics has a reputation for precision, when in my experience it’s much more about understanding and controlling error methods. Even in analysis, the study of why calculus works, the typical proof amounts to showing that the difference between what you want to prove and what you can prove is smaller than your tolerance for an error. So: how do we go about estimating something difficult, like, the number of stars? If it’s true that nobody really knows, how do we know there are some wrong answers? And the underlying answer is that we always know some things, and those let us rule out answers that are obviously low or obviously high. We can make progress.

    Russell Myers’s Broom Hilda for the 25th is about one explanation given for why time keeps seeming to pass faster as one age. This is a mathematical explanation, built on the idea that the same linear unit of time is a greater proportion of a young person’s lifestyle so of course it seems to take longer. This is probably partly true. Most of our senses work by a sense of proportion: it’s easy to tell a one-kilogram from a two-kilogram weight by holding them, and easy to tell a five-kilogram from a ten-kilogram weight, but harder to tell a five from a six-kilogram weight.

    As ever, though, I’m skeptical that anything really is that simple. My biggest doubt is that it seems to me time flies when we haven’t got stories to tell about our days, when they’re all more or less the same. When we’re doing new or exciting or unusual things we remember more of the days and more about the days. A kid has an easy time finding new things, and exciting or unusual things. Broom Hilda, at something like 1500-plus years old and really a dour, unsociable person, doesn’t do so much that isn’t just like she’s done before. Wouldn’t that be an influence? And I doubt that’s a complete explanation either. Real things are more complicated than that yet.

    Mac and Bill King’s Magic In A Minute for the 25th features a form-a-square puzzle using some triangles. Mathematics? Well, logic anyway. Also a good reminder about open-mindedness when you’re attempting to construct something.

    'Can you tell me how much this would be with the discount?' 'It would be ... $17.50.' 'How did you do that so fast?' 'Ten percent of 25 is $2.50 ... times three is $7.50 ... round that to $8.00 ... $25 minus $8 is $17 ... add back the 50 cents and you get $17.50.' 'So you're like a math genius?' (Thinking) 'I never thought so before I started working here.'

    Norm Feuti’s Retail for the 26th of June, 2017. So, one of my retail stories that I might well have already told because I only ever really had one retail job and there’s only so many stories you get working a year and a half in a dying mall’s book store. I was a clerk at Walden Books. The customer wanted to know for this book whether the sticker’s 10 percent discount was taken before or after the state’s 6 percent sales tax was applied. I said I thought the discount taken first and then tax applied, but it didn’t matter if I were wrong as the total would be the same amount. I calculated what it would be. The customer was none too sure about this, but allowed me to ring it up. The price encoded in the UPC was wrong, something like a dollar more than the cover price, and the subtotal came out way higher. The customer declared, “See?” And wouldn’t have any of my explaining that he was hit by a freak event. I don’t remember other disagreements between the UPC price and the cover price, but that might be because we just corrected the price and didn’t get a story out of it.

    Norm Feuti’s Retail for the 26th is about how you get good at arithmetic. I suspect there’s two natural paths; you either find it really interesting in your own right, or you do it often enough you want to find ways to do it quicker. Marla shows the signs of learning to do arithmetic quickly because she does it a lot: turning “30 percent off” into “subtract ten percent three times over” is definitely the easy way to go. The alternative is multiplying by seven and dividing by ten and you don’t want to multiply by seven unless the problem gives a good reason why you should. And I certainly don’t fault the customer not knowing offhand what 30 percent off $25 would be. Why would she be in practice doing this sort of problem?

    Johnny Hart’s Back To B.C. for the 26th reruns the comic from the 30th of December, 1959. In it … uh … one of the cavemen guys has found his calendar for the next year has too many days. (Think about what 1960 was.) It’s a common problem. Every calendar people have developed has too few or too many days, as the Earth’s daily rotations on its axis and annual revolution around the sun aren’t perfectly synchronized. We handle this in many different ways. Some calendars worry little about tracking solar time and just follow the moon. Some calendars would run deliberately short and leave a little stretch of un-named time before the new year started; the ancient Roman calendar, before the addition of February and January, is famous in calendar-enthusiast circles for this. We’ve now settled on a calendar which will let the nominal seasons and the actual seasons drift out of synch slowly enough that periodic changes in the Earth’s orbit will dominate the problem before the error between actual-year and calendar-year length will matter. That’s a pretty good sort of error control.

    8,978,432 is not anywhere near the number of days that would be taken between 4,000 BC and the present day. It’s not a joke about Bishop Ussher’s famous research into the time it would take to fit all the Biblically recorded events into history. The time is something like 24,600 years ago, a choice which intrigues me. It would make fair sense to declare, what the heck, they lived 25,000 years ago and use that as the nominal date for the comic strip. 24,600 is a weird number of years. Since it doesn’t seem to be meaningful I suppose Hart went, simply enough, with a number that was funny just for being riotously large.

    Mark Tatulli’s Heart of the City for the 26th places itself on my Grand Avenue warning board. There’s plenty of time for things to go a different way but right now it’s set up for a toxic little presentation of mathematics. Heart, after being grounded, was caught sneaking out to a slumber party and now her mother is sending her to two weeks of Math Camp. I’m supposing, from Tatulli’s general attitude about how stuff happens in Heart and in Lio that Math Camp will not be a horrible, penal experience. But it’s still ominous talk and I’m watching.

    Brian Fies’s Mom’s Cancer story for the 26th is part of the strip’s rerun on GoComics. (Many comic strips that have ended their run go into eternal loops on GoComics.) This is one of the strips with mathematical content. The spatial dimension of a thing implies relationships between the volume (area, hypervolume, whatever) of a thing and its characteristic linear measure, its diameter or radius or side length. It can be disappointing.

    Nicholas Gurewitch’s Perry Bible Fellowship for the 26th is a repeat of one I get on my mathematics Twitter friends now and then. Should warn, it’s kind of racy content, at least as far as my usual recommendations here go. It’s also a little baffling because while the reveal of the unclad woman is funny … what, exactly, does it mean? The symbols don’t mean anything; they’re just what fits graphically. I think the strip is getting at Dr Loring not being able to see even a woman presenting herself for sex as anything but mathematics. I guess that’s funny, but it seems like the idea isn’t quite fully developed.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal Again for the 26th has a mathematician snort about plotting a giraffe logarithmically. This is all about representations of figures. When we plot something we usually start with a linear graph: a couple of axes perpendicular to one another. A unit of movement in the direction of any of those axes represents a constant difference in whatever that axis measures. Something growing ten units larger, say. That’s fine for many purposes. But we may want to measure something that changes by a power law, or that grows (or shrinks) exponentially. Or something that has some region where it’s small and some region where it’s huge. Then we might switch to a logarithmic plot. Here the same difference in space along the axis represents a change that’s constant in proportion: something growing ten times as large, say. The effective result is to squash a shape down, making the higher points more nearly flat.

    And to completely smother Weinersmith’s fine enough joke: I would call that plot semilogarithmically. I’d use a linear scale for the horizontal axis, the gazelle or giraffe head-to-tail. But I’d use a logarithmic scale for the vertical axis, ears-to-hooves. So, linear in one direction, logarithmic in the other. I’d be more inclined to use “logarithmic” plots to mean logarithms in both the horizontal and the vertical axes. Those are useful plots for turning up power laws, like the relationship between a planet’s orbital radius and the length of its year. Relationships like that turn into straight lines when both axes are logarithmically spaced. But I might also describe that as a “log-log plot” in the hopes of avoiding confusion.

     
  • Joseph Nebus 4:00 pm on Sunday, 25 June, 2017 Permalink | Reply
    Tags: , , Ollie and Quentin, , , , , Today's Dogg, ,   

    Reading the Comics, June 24, 2017: Saturday Morning Breakfast Cereal Edition 


    Somehow this is not the title of every Reading The Comics review! But it is for this post and we’ll explore why below.

    Piers Baker’s Ollie and Quentin for the 18th is a Zeno’s Paradox-based joke. This uses the most familiar of Zeno’s Paradoxes, about the problem of covering any distance needing infinitely many steps to be done in a finite time. Zeno’s Paradoxes are often dismissed these days (probably were then, too), on the grounds that the Ancient Greeks Just Didn’t Understand about convergence. Hardly; they were as smart as we were. Zeno had a set of paradoxes, built on the questions of whether space and time are infinitely divisible or whether they’re not. Any answer to one paradox implies problems in others. There’s things we still don’t really understand about infinity and infinitesimals and continuity. Someday I should do a proper essay about them.

    Dave Coverly’s Speed Bump for the 18th is not exactly an anthropomorphic-numerals joke. It is about making symbols manifest in the real world, at least. The greater-than and less-than signs as we know them were created by the English mathematician Thomas Harriot, and introduced to the world in his posthumous Artis Analyticae Praxis (1631). He also had an idea of putting a . between the numerals of an expression and the letters multiplied by them, for example, “4.x” to mean four times x. We mostly do without that now, taking multiplication as assumed if two meaningful quantities are put next to one another. But we will use, now, a vertically-centered dot to separate terms multiplied together when that helps our organization. The equals sign we trace to the 16th century mathematician Robert Recorde, whose 1557 Whetsone of Witte uses long but recognizable equals signs. The = sign went into hibernation after that, though, until the 17th century and it took some time to quite get well-used. So it often is with symbols.

    Mr Tanner: 'Today we'll talk about where numbers come from. Take zero, for instance ... Quincy, do you know who invented the zero?' Quincy: 'I'm not sure, Mr Tanner, but from the grades I get it must have been one of my teachers.'

    Ted Shearer’s Quincy for the 25th of April, 1978 and rerun the 19th of June, 2017. The question does make me wonder how far Mr Tanner was going to go with this. The origins of zero and one are great stuff for class discussion. Two, also. But what about three? Five? Ten? Twelve? Minus one? Irrational numbers, if the class has got up to them? How many students are going to be called on to talk about number origins? And how many truly different stories are there?

    Ted Shearer’s Quincy for the 25th of April, 1978 and rerun the 19th of June, starts from the history of zero. It’s worth noting there are a couple of threads woven together in the concept of zero. One is the idea of “nothing”, which we’ve had just forever. I mean, the idea that there isn’t something to work with. Another is the idea of the … well, the additive identity, there being some number that’s one less than one and two less than two. That you can add to anything without changing the thing. And then there’s symbols. There’s the placeholder for “there are no examples of this quantity here”. There’s the denotation of … well, the additive identity. All these things are zeroes, and if you listen closely, they are not quite the same thing. Which is not weird. Most words mean a collection of several concepts. We’re lucky the concepts we mean by “zero” are so compatible in meaning. Think of the poor person trying to understand the word “bear”, or “cleave”.

    John Deering’s Strange Brew for the 19th is a “New Math” joke, fittingly done with cavemen. Well, numerals were new things once. Amusing to me is that — while I’m not an expert — in quite a few cultures the symbol for “one” was pretty much the same thing, a single slash mark. It’s hard not to suppose that numbers started out with simple tallies, and the first thing to tally might get dressed up a bit with serifs or such but is, at heart, the same thing you’d get jabbing a sharp thing into a soft rock.

    Guy Gilchrist’s Today’s Dogg for the 19th I’m sure is a rerun and I think I’ve featured it here before. So be it. It’s silly symbol-play and dog arithmetic. It’s a comic strip about how dogs are cute; embrace it or skip it.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal is properly speaking reruns when it appears on GoComics.com. For whatever reason Weinersmith ran a patch of mathematics strips there this past week. So let me bundle all that up. On the 19th he did a joke mathematicians get a lot, about how the only small talk anyone has about mathematics is how they hated mathematics. I’m not sure mathematicians have it any better than any other teachers, though. Have you ever known someone to say, “My high school gym class gave me a greater appreciation of the world”? Or talk about how grade school history opened their eyes to the wonders of the subject? It’s a sad thing. But there are a lot of things keeping teachers from making students feel joy in their subjects.

    For the 21st Weinersmith makes a statisticians joke. I can wrangle some actual mathematics out of an otherwise correctly-formed joke. How do we ever know that something is true? Well, we gather evidence. But how do we know the evidence is relevant? Even if the evidence is relevant, how do we know we’ve interpreted it correctly? Even if we have interpreted it correctly, how do we know that it shows what we want to know? Statisticians become very familiar with hypothesis testing, which amounts to the question, “does this evidence indicate that some condition is implausibly unlikely”? And they can do great work with that. But “implausibly unlikely” is not the same thing as “false”. A person knowledgeable enough and honest turns out to have few things that can be said for certain.

    The June 23rd strip I’ve seen go around Mathematics Twitter several times, as see above tweet, about the ways in which mathematical literacy would destroy modern society. It’s a cute and flattering portrait of mathematics’ power, probably why mathematicians like passing it back and forth. But … well, how would “logic” keep people from being fooled by scams? What makes a scam work is that the premise seems logical. And real-world problems — as opposed to logic-class problems — are rarely completely resolvable by deductive logic. There have to be the assumptions, the logical gaps, and the room for humbuggery that allow hoaxes and scams to slip through. And does anyone need a logic class to not “buy products that do nothing”? And what is “nothing”? I have more keychains than I have keys to chain, even if we allow for emergencies and reasonable unexpected extra needs. This doesn’t stop my buying keychains as souvenirs. Does a Penn Central-logo keychain “do nothing” merely because it sits on the windowsill rather than hold any sort of key? If so, was my love foolish to buy it as a present? Granted that buying a lottery ticket is a foolish use of money; is my life any worse for buying that than, say, a peanut butter cup that I won’t remember having eaten a week afterwards? As for credit cards — It’s not clear to me that people max out their credit cards because they don’t understand they will have to pay it back with interest. My experience has been people max out their credit cards because they have things they must pay for and no alternative but going further into debt. That people need more money is a problem of society, yes, but it’s not clear to me that a failure to understand differential equations is at the heart of it. (Also, really, differential equations are overkill to understand credit card debt. A calculator with a repeat-the-last-operation feature and ten minutes to play is enough.)

     
  • Joseph Nebus 4:00 pm on Sunday, 18 June, 2017 Permalink | Reply
    Tags: , , , Flash Gordon, Francis, , ,   

    Reading the Comics, June 17, 2017: Icons Of Mathematics Edition 


    Comic Strip Master Command just barely missed being busy enough for me to split the week’s edition. Fine for them, I suppose, although it means I’m going to have to scramble together something for the Tuesday or the Thursday posting slot. Ah well. As befits the comics, there’s a fair bit of mathematics as an icon in the past week’s selections. So let’s discuss.

    Mark Anderson’s Andertoons for the 11th is our Mark Anderson’s Andertoons for this essay. Kind of a relief to have that in right away. And while the cartoon shows a real disaster of a student at the chalkboard, there is some truth to the caption. Ruling out plausible-looking wrong answers is progress, usually. So is coming up with plausible-looking answers to work out whether they’re right or wrong. The troubling part here, I’d say, is that the kid came up with pretty poor guesses about what the answer might be. He ought to be able to guess that it’s got to be an odd number, and has to be less than 10, and really ought to be less than 7. If you spot that then you can’t make more than two wrong guesses.

    Patrick J Marrin’s Francis for the 12th starts with what sounds like a logical paradox, about whether the Pope could make an infallibly true statement that he was not infallible. Really it sounds like a bit of nonsense. But the limits of what we can know about a logical system will often involve questions of this form. We ask whether something can prove whether it is provable, for example, and come up with a rigorous answer. So that’s the mathematical content which justifies my including this strip here.

    Border Collis are, as we know, highly intelligent. The dogs are gathered around a chalkboard full of mathematics. 'I've checked my calculations three times. Even if master's firm and calm and behaves like an alpha male, we *should* be able to whip him.'

    Niklas Eriksson’s Carpe Diem for the 13th of June, 2017. Yes, yes, it’s easy to get people excited for the Revolution, but it’ll come to a halt when someone asks about how they get the groceries afterwards.

    Niklas Eriksson’s Carpe Diem for the 13th is a traditional use of the blackboard full of mathematics as symbolic of intelligence. Of course ‘E = mc2‘ gets in there. I’m surprised that both π and 3.14 do, too, for as little as we see on the board.

    Mark Anderson’s Andertoons for the 14th is a nice bit of reassurance. Maybe the cartoonist was worried this would be a split-week edition. The kid seems to be the same one as the 11th, but the teacher looks different. Anyway there’s a lot you can tell about shapes from their perimeter alone. The one which most startles me comes up in calculus: by doing the right calculation about the lengths and directions of the edge of a shape you can tell how much area is inside the shape. There’s a lot of stuff in this field — multivariable calculus — that’s about swapping between “stuff you know about the boundary of a shape” and “stuff you know about the interior of the shape”. And finding area from tracing the boundary is one of them. It’s still glorious.

    Samson’s Dark Side Of The Horse for the 14th is a counting-sheep joke and a Pi Day joke. I suspect the digits of π would be horrible for lulling one to sleep, though. They lack the just-enough-order that something needs for a semiconscious mind to drift off. Horace would probably be better off working out Collatz sequences.

    Dana Simpson’s Phoebe and her Unicorn for the 14th mentions mathematics as iconic of what you do at school. Book reports also make the cut.

    Dr Zarkov: 'Flash, this is Professor Quita, the inventor of the ... ' Prof Quita: 'Caramba! NO! I am a mere mathematician! With numbers, equations, paper, pencil, I work ... it is my good amigo, Dr Zarkov, who takes my theories and builds ... THAT!!' He points to a bigger TV screen.

    Dan Barry’s Flash Gordon for the 31st of July, 1962, rerun the 16th of June, 2017. I am impressed that Dr Zarkov can make a TV set capable of viewing alternate universes. I still literally do not know how it is possible that we have sound for our new TV set, and I labelled and connected every single wire in the thing. Oh, wouldn’t it be a kick if Dr Zarkov has the picture from one alternate universe but the sound from a slightly different other one?

    Dan Barry’s Flash Gordon for the 31st of July, 1962 and rerun the 16th I’m including just because I love the old-fashioned image of a mathematician in Professor Quita here. At this point in the comic strip’s run it was set in the far-distant future year of 1972, and the action here is on one of the busy multinational giant space stations. Flash himself is just back from Venus where he’d set up some dolphins as assistants to a fish-farming operation helping to feed that world and ours. And for all that early-60s futurism look at that gorgeous old adding machine he’s still got. (Professor Quinta’s discovery is a way to peer into alternate universes, according to the next day’s strip. I’m kind of hoping this means they’re going to spend a week reading Buck Rogers.)

     
  • Joseph Nebus 4:00 pm on Sunday, 11 June, 2017 Permalink | Reply
    Tags: , , , Randolph Itch 2am, , Tank McNamara, The Flying McCoys, Wee Pals,   

    Reading the Comics, June 10, 2017: Some Vintage Comics Edition 


    It’s too many comics to call this a famine edition, after last week’s feast. But there’s not a lot of theme to last week’s mathematically-themed comic strips. There’s a couple that include vintage comic strips from before 1940, though, so let’s run with that as a title.

    Glenn McCoy and Gary McCoy’s The Flying McCoys for the 4th of June is your traditional blackboard full of symbols to indicate serious and deep thought on a subject. It’s a silly subject, but that’s fine. The symbols look to me gibberish, but clown research will go along non-traditional paths, I suppose.

    Bill Hinds’s Tank McNamara for the 4th is built on mathematics’ successful invasion and colonization of sports management. Analytics, sabermetrics, Moneyball, whatever you want to call it, is built on ideas not far removed from the quality control techniques that changed corporate management so. Look for patterns; look for correlations; look for the things that seem to predict other things. It seems bizarre, almost inhuman, that we might be able to think of football players as being all of a kind, that what we know about (say) one running back will tell us something about another. But if we put roughly similarly capable people through roughly similar training and set them to work in roughly similar conditions, then we start to see why they might perform similarly. Models can help us make better, more rational, choices.

    Morrie Turner’s Wee Pals rerun for the 4th is another word-problem resistance joke. I suppose it’s also a reminder about the unspoken assumptions in a problem. It also points out why mathematicians end up speaking in an annoyingly precise manner. It’s an attempt to avoid being shown up like Oliver is.

    Which wouldn’t help with Percy Crosby’s Skippy for the 7th of April, 1930, and rerun the 5th. Skippy’s got a smooth line of patter to get out of his mother’s tutoring. You can see where Percy Crosby has the weird trait of drawing comics in 1930 that would make sense today still; few pre-World-War-II comics do.

    Why some of us don't like math. One part of the brain: 'I'm trying to solve an equation, but it's HARD when someone in here keeps shouting FIGHT, FLIGHT, FIGHT, FLIGHT the whole time.' Another part: 'I know, but we should fight or run away.' Another part: 'I just want to cry.'

    Niklas Eriksson’s Carpe Diem for the 7th of June, 2017. If I may intrude in someone else’s work, it seems to me that the problem-solver might find a hint to what ‘x’ is by looking to the upper right corner of the page and the x = \sqrt{13} already there.

    Niklas Eriksson’s Carpe Diem for the 7th is a joke about mathematics anxiety. I don’t know that it actually explains anything, but, eh. I’m not sure there is a rational explanation for mathematics anxiety; if there were, I suppose it wouldn’t be anxiety.

    George Herriman’s Krazy Kat for the 15th of July, 1939, and rerun the 8th, extends that odd little faintly word-problem-setup of the strips I mentioned the other day. I suppose identifying when two things moving at different speeds will intersect will always sound vaguely like a story problem.

    Krazy: 'The ida is that I run this way at fotty miles a hour eh?' Ignatz: 'Right, and my good arm will speed this brick behind you, at a sixty-mile gait - come on - get going - ' And Krazy runs past a traffic signal. The brick reaches the signal, which has changed to 'stop', and drops dead. Ignatz: 'According to the ballistic law, my projectile must be well up to him by now.' Officer Pupp: 'Unless the traffic law interferes, mousie.'

    George Herriman’s Krazy Kat for the 15th of July, 1939, as rerun the 8th of June, 2017. I know the comic isn’t to everyone’s taste, but I like it. I’m also surprised to see something as directly cartoonish as the brick stopping in midair like that in the third panel. The comic is usually surreal, yes, but not that way.

    Tom Toles’s Randolph Itch, 2 am rerun for the 9th is about the sometimes-considered third possibility from a fair coin toss, and how to rig the results of that.

     
    • goldenoj 9:01 pm on Sunday, 11 June, 2017 Permalink | Reply

      Skippy is fascinating. Had to check if it was really from the 30s http://www.gocomics.com/skippy/2017/06/06 might also be a math comic.

      You might want to put your Twitter handle in the sidebar – didn’t realize I had already seen you there via the blog-bot.

      Like

      • Joseph Nebus 11:57 pm on Monday, 12 June, 2017 Permalink | Reply

        I didn’t realize I didn’t have my Twitter handle in the sidebar. Thanks, though, I’m glad to do stuff that makes me easier to find or understand, especially if it doesn’t require ongoing work.

        Skippy, now, that’s not just a 1930s comic but one of the defining (American) comic strips. Basically every comic strip that stars kids who think is imitating it, either directly or through its influences, particularly Charles Schulz and Peanuts. It’s uncanny, especially when you compare it to its contemporaries, how nearly seamlessly it would fit into a modern comics page. It’s rather like Robert Benchley or Frank Fay in that way; now-obscure humorists or performers whose work is so modern and so influential that a wide swath of the modern genre is quietly imitating them.

        Liked by 1 person

      • Joseph Nebus 11:58 pm on Monday, 12 June, 2017 Permalink | Reply

        Oh yes, and you’re right; I could’ve fit the comic from the 6th of June into a Reading the Comics post if I’d thought a bit more about it. Good eye!

        Like

  • Joseph Nebus 4:00 pm on Friday, 9 June, 2017 Permalink | Reply
    Tags: , , , , Mr Boffo, , perfect numbers, Pop Culture Shock Therapy, ,   

    Reading the Comics, June 3, 2017: Feast Week Conclusion Edition 


    And now finally I can close out last week’s many mathematically-themed comic strips. I had hoped to post this Thursday, but the Why Stuff Can Orbit supplemental took up my writing energies and eventually timeslot. This also ends up being the first time I’ve had one of Joe Martin’s comic strips since the Houston Chronicle ended its comics pages and I admit I’m not sure how I’m going to work this. I’m also not perfectly sure what the comic strip means.

    So Joe Martin’s Mister Boffo for the 1st of June seems to be about a disastrous mathematics exam with a kid bad enough he hasn’t even got numbers exactly to express the score. Also I’m not sure there is a way to link to the strip I mean exactly; the archives for Martin’s strips are not … organized the way I would have done. Well, they’re his business.

    A Time To Worry: '[Our son] says he got a one-de-two-three-z on the math test.'

    So Joe Martin’s Mister Boffo for the 1st of June, 2017. The link is probably worthless, since I can’t figure out how to work its archives. Good luck yourselves with it.

    Greg Evans’s Luann Againn for the 1st reruns the strip from the 1st of June, 1989. It’s your standard resisting-the-word-problem joke. On first reading the strip I didn’t get what the problem was asking for, and supposed that the text had garbled the problem, if there were an original problem. That was my sloppiness is all; it’s a perfectly solvable question once you actually read it.

    J C Duffy’s Lug Nuts for the 1st — another day that threatened to be a Reading the Comics post all on its own — is a straggler Pi Day joke. It’s just some Dadaist clowning about.

    Doug Bratton’s Pop Culture Shock Therapy for the 1st is a wordplay joke that uses word problems as emblematic of mathematics. I’m okay with that; much of the mathematics that people actually want to do amounts to extracting from a situation the things that are relevant and forming an equation based on that. This is what a word problem is supposed to teach us to do.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 1st — maybe I should have done a Reading the Comics for that day alone — riffs on the idle speculation that God would be a mathematician. It does this by showing a God uninterested in two logical problems. The first is the question of whether there’s an odd perfect number. Perfect numbers are these things that haunt number theory. (Everything haunts number theory.) It starts with idly noticing what happens if you pick a number, find the numbers that divide into it, and add those up. For example, 4 can be divided by 1 and 2; those add to 3. 5 can only be divided by 1; that adds to 1. 6 can be divided by 1, 2, and 3; those add to 6. For a perfect number the divisors add up to the original number. Perfect numbers look rare; for a thousand years or so only four of them (6, 28, 496, and 8128) were known to exist.

    All the perfect numbers we know of are even. More, they’re all numbers that can be written as the product 2^{p - 1} \cdot \left(2^p - 1\right) for certain prime numbers ‘p’. (They’re the ones for which 2^p - 1 is itself a prime number.) What we don’t know, and haven’t got a hint about proving, is whether there are any odd prime numbers. We know some things about odd perfect numbers, if they exist, the most notable of them being that they’ve got to be incredibly huge numbers, much larger than a googol, the standard idea of an incredibly huge number. Presumably an omniscient God would be able to tell whether there were an odd perfect number, or at least would be able to care whether there were. (It’s also not known if there are infinitely many perfect numbers, by the way. This reminds us that number theory is pretty much nothing but a bunch of easy-to-state problems that we can’t solve.)

    Some miscellaneous other things we know about an odd perfect number, other than whether any exist: if there are odd perfect numbers, they’re not divisible by 105. They’re equal to one more than a whole multiple of 12. They’re also 117 more than a whole multiple of 468, and they’re 81 more than a whole multiple of 324. They’ve got to have at least 101 prime factors, and there have to be at least ten distinct prime factors. There have to be at least twelve distinct prime factors if 3 isn’t a factor of the odd perfect number. If this seems like a screwy list of things to know about a thing we don’t even know exists, then welcome to number theory.

    The beard question I believe is a reference to the logician’s paradox. This is the one postulating a village in which the village barber shaves all, but only, the people who do not shave themselves. Given that, who shaves the barber? It’s an old joke, but if you take it seriously you learn something about the limits of what a system of logic can tell you about itself.

    Tiger: 'I've got two plus four hours of homework. I won't be finished until ten minus three o'clock, or maybe even six plus one and a half o'clock.' Punkin: 'What subject?' Tiger: 'Arithmetic, stupid!'

    Bud Blake’s Tiger rerun for the 2nd of June, 2017. Bonus arithmetic problem: what’s the latest time that this could be? Also, don’t you like how the dog’s tail spills over the panel borders twice? I do.

    Bud Blake’s Tiger rerun for the 2nd has Tiger’s arithmetic homework spill out into real life. This happens sometimes.

    Officer Pupp: 'That Mouse is most sure an oaf of awful dumbness, Mrs Kwakk Wakk - y'know that?' Mrs Kwakk Wakk: 'By what means do you find proof of this, Officer Pupp?' 'His sense of speed is insipid - he doesn't seem to know that if I ran 60 miles an hour, and he only 40, that I would eventually catch up to him.' 'No-' 'Yes- I tell you- yes.' 'He seemed to know that a brick going 60 would catch up to a kat going 40.' 'Oh, he did, did he?' 'Why, yes.'

    George Herriman’s Krazy Kat for the 10th of July, 1939 and rerun the 2nd of June, 2017. I realize that by contemporary standards this is a very talky comic strip. But read Officer Pupp’s dialogue, particularly in the second panel. It just flows with a wonderful archness.

    George Herriman’s Krazy Kat for the 10th of July, 1939 was rerun the 2nd of June. I’m not sure that it properly fits here, but the talk about Officer Pupp running at 60 miles per hour and Ignatz Mouse running forty and whether Pupp will catch Mouse sure reads like a word problem. Later strips in the sequence, including the ways that a tossed brick could hit someone who’d be running faster than it, did not change my mind about this. Plus I like Krazy Kat so I’ll take a flimsy excuse to feature it.

     
    • Joshua K. 1:33 am on Saturday, 10 June, 2017 Permalink | Reply

      I thought that the second question in “Saturday Morning Breakfast Cereal” was meant to imply that mathematicians often have beards; therefore, if God would prefer not to have a beard, he probably isn’t a mathematician.

      Like

      • Joseph Nebus 11:48 pm on Monday, 12 June, 2017 Permalink | Reply

        Oh, you may have something there. I’m so used to thinking of beards as a logic problem that I didn’t think of them as a mathematician thing. (In my defense, back in grad school I’m not sure any of the faculty had beards.). I’ll take that interpretation too.

        Like

  • Joseph Nebus 4:00 pm on Sunday, 4 June, 2017 Permalink | Reply
    Tags: , , , , , Motley, , , , The Norm,   

    Reading the Comics, May 31, 2017: Feast Week Edition 


    You know we’re getting near the end of the (United States) school year when Comic Strip Master Command orders everyone to clear out their mathematics jokes. I’m assuming that’s what happened here. Or else a lot of cartoonists had word problems on their minds eight weeks ago. Also eight weeks ago plus whenever they originally drew the comics, for those that are deep in reruns. It was busy enough to split this week’s load into two pieces and might have been worth splitting into three, if I thought I had publishing dates free for all that.

    Larry Wright’s Motley Classics for the 28th of May, a rerun from 1989, is a joke about using algebra. Occasionally mathematicians try to use the the ability of people to catch things in midair as evidence of the sorts of differential equations solution that we all can do, if imperfectly, in our heads. But I’m not aware of evidence that anyone does anything that sophisticated. I would be stunned if we didn’t really work by a process of making a guess of where the thing should be and refining it as time allows, with experience helping us make better guesses. There’s good stuff to learn in modeling how to catch stuff, though.

    Michael Jantze’s The Norm Classics rerun for the 28th opines about why in algebra you had to not just have an answer but explain why that was the answer. I suppose mathematicians get trained to stop thinking about individual problems and instead look to classes of problems. Is it possible to work out a scheme that works for many cases instead of one? If it isn’t, can we at least say something interesting about why it’s not? And perhaps that’s part of what makes algebra classes hard. To think about a collection of things is usually harder than to think about one, and maybe instructors aren’t always clear about how to turn the specific into the general.

    Also I want to say some very good words about Jantze’s graphical design. The mock textbook cover for the title panel on the left is so spot-on for a particular era in mathematics textbooks it’s uncanny. The all-caps Helvetica, the use of two slightly different tans, the minimalist cover art … I know shelves stuffed full in the university mathematics library where every book looks like that. Plus, “[Mathematics Thing] And Their Applications” is one of the roughly four standard approved mathematics book titles. He paid good attention to his references.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 28th deploys a big old whiteboard full of equations for the “secret” of the universe. This makes a neat change from finding the “meaning” of the universe, or of life. The equations themselves look mostly like gibberish to me, but Wise and Aldrich make good uses of their symbols. The symbol \vec{B} , a vector-valued quantity named B, turns up a lot. This symbol we often use to represent magnetic flux. The B without a little arrow above it would represent the intensity of the magnetic field. Similarly an \vec{H} turns up. This we often use for magnetic field strength. While I didn’t spot a \vec{E} — electric field — which would be the natural partner to all this, there are plenty of bare E symbols. Those would represent electric potential. And many of the other symbols are what would naturally turn up if you were trying to model how something is tossed around by a magnetic field. Q, for example, is often the electric charge. ω is a common symbol for how fast an electromagnetic wave oscillates. (It’s not the frequency, but it’s related to the frequency.) The uses of symbols is consistent enough, in fact, I wonder if Wise and Aldrich did use a legitimate sprawl of equations and I’m missing the referenced problem.

    John Graziano’s Ripley’s Believe It Or Not for the 28th mentions how many symbols are needed to write out the numbers from 1 to 100. Is this properly mathematics? … Oh, who knows. It’s just neat to know.

    Mark O’Hare’s Citizen Dog rerun for the 29th has the dog Fergus struggle against a word problem. Ordinary setup and everything, but I love the way O’Hare draws Fergus in that outfit and thinking hard.

    The Eric the Circle rerun for the 29th by ACE10203040 is a mistimed Pi Day joke.

    Bill Amend’s FoxTrot Classicfor the 31st, a rerun from the 7th of June, 2006, shows the conflation of “genius” and “good at mathematics” in everyday use. Amend has picked a quixotic but in-character thing for Jason Fox to try doing. Euclid’s Fifth Postulate is one of the classic obsessions of mathematicians throughout history. Euclid admitted the thing — a confusing-reading mess of propositions — as a postulate because … well, there’s interesting geometry you can’t do without it, and there doesn’t seem any way to prove it from the rest of his geometric postulates. So it must be assumed to be true.

    There isn’t a way to prove it from the rest of the geometric postulates, but it took mathematicians over two thousand years of work at that to be convinced of the fact. But I know I went through a time of wanting to try finding a proof myself. It was a mercifully short-lived time that ended in my humbly understanding that as smart as I figured I was, I wasn’t that smart. We can suppose Euclid’s Fifth Postulate to be false and get interesting geometries out of that, particularly the geometries of the surface of the sphere, and the geometry of general relativity. Jason will surely sometime learn.

     
    • goldenoj 9:08 pm on Sunday, 4 June, 2017 Permalink | Reply

      Just found these recently. I really enjoy them and catching up is fun. Thanks!

      Like

      • Joseph Nebus 1:05 am on Wednesday, 7 June, 2017 Permalink | Reply

        Thanks for finding the pieces. I hope you enjoy; they’re probably my most reliable feature around here.

        Like

  • Joseph Nebus 6:00 pm on Sunday, 28 May, 2017 Permalink | Reply
    Tags: Best Medicine Cartoon, Break of Day, , , , Oh Brother, , ,   

    Reading the Comics, May 27, 2017: Panels Edition 


    Can’t say this was too fast or too slow a week for mathematically-themed comic strips. A bunch of the strips were panel comics, so that’ll do for my theme.

    Norm Feuti’s Retail for the 21st mentions every (not that) algebra teacher’s favorite vague introduction to group theory, the Rubik’s Cube. Well, the ways you can rotate the various sides of the cube do form a group, which is something that acts like arithmetic without necessarily being numbers. And it gets into value judgements. There exist algorithms to solve Rubik’s cubes. Is it a show of intelligence that someone can learn an algorithm and solve any cube? — But then, how is solving a Rubik’s cube, with or without the help of an algorithm, a show of intelligence? At least of any intelligence more than the bit of spatial recognition that’s good for rotating cubes around?

    'Rubik's cube, huh? I never could solve one of those.' 'I'm just fidgeting with it. I never bothered learning the algorithm either.' 'What algorithm?' 'The pattern you use to solve it.' 'Wait. All you have to do to solve it is memorize a pattern?' 'Of course. How did you think people solved it?' 'I always thought you had to be super smart to figure it out.' 'Well, memorizing the pattern does take a degree of intelligence.' 'Yeah, but that's not the same thing as solving it on your own.' 'I'm sure some people figured out the algorithm without help.' 'I KNEW Chad Gustafson was a liar! He was no eighth-grade prodigy, he just memorized the pattern!' 'Sounds like you and the CUBE have some unresolved issues.'

    Norm Feuti’s Retail for the 21st of May, 2017. A few weeks ago I ran across a book about the world of competitive Rubik’s Cube solving. I haven’t had the chance to read it, but am interested by the ways people form rules for what would seem like a naturally shapeless feature such as solving Rubik’s Cubes. Not featured: the early 80s Saturday morning cartoon that totally existed because somehow that made sense back then.

    I don’t see that learning an algorithm for a problem is a lack of intelligence. No more than using a photo reference shows a lack of drawing skill. It’s still something you need to learn, and to apply, and to adapt to the cube as you have it to deal with. Anyway, I never learned any techniques for solving it either. Would just play for the joy of it. Here’s a page with one approach to solving the cube, if you’d like to give it a try yourself. Good luck.

    Bob Weber Jr and Jay Stephens’s Oh, Brother! for the 22nd is a word-problem avoidance joke. It’s a slight thing to include, but the artwork is nice.

    Brian and Ron Boychuk’s Chuckle Brothers for the 23rd is a very slight thing to include, but it’s looking like a slow week. I need something here. If you don’t see it then things picked up. They similarly tried sprucing things up the 27th, with another joke for taping onto the door.

    Nate Fakes’s Break of Day for the 24th features the traditional whiteboard full of mathematics scrawls as a sign of intelligence. The scrawl on the whiteboard looks almost meaningful. The integral, particularly, looks like it might have been copied from a legitimate problem in polar or cylindrical coordinates. I say “almost” because while I think that some of the r symbols there are r’ I’m not positive those aren’t just stray marks. If they are r’ symbols, it’s the sort of integral that comes up when you look at surfaces of spheres. It would be the electric field of a conductive metal ball given some charge, or the gravitational field of a shell. These are tedious integrals to solve, but fortunately after you do them in a couple of introductory physics-for-majors classes you can just look up the answers instead.

    Samson’s Dark Side of the Horse for the 26th is the Roman numerals joke for this installment. I feel like it ought to be a pie chart joke too, but I can’t find a way to make it one.

    Izzy Ehnes’s The Best Medicine Cartoon for the 27th is the anthropomorphic numerals joke for this paragraph.

     
  • Joseph Nebus 6:00 pm on Sunday, 21 May, 2017 Permalink | Reply
    Tags: bowling, , , Inspector Danger, , , Questionable Quotebook,   

    Reading the Comics, May 20, 2017: Major Computer Malfunction Week Edition 


    I was hit by a massive computer malfunction this week, the kind that forced me to buy a new computer and spend half a week copying stuff over from a limping hard drive and hoping it would maybe work if I held things just right. Mercifully, Comic Strip Master Command gave me a relatively easy week. No huge rush of mathematically-themed comic strips and none that are going to take a thousand words of writing to describe. Let’s go.

    Sam Hepburn’s Questionable Quotebook for the 14th includes this week’s anthropomorphic geometry sketch underneath its big text block.

    Eric the Circle for the 15th, this one by “Claire the Square”, is the rare Eric the Circle to show off properties of circles. So maybe that’s the second anthropomorphic geometry sketch for the week. If the week hadn’t been dominated by my computer woes that might have formed the title for this edition.

    Werner Wejp-Olsen’s Inspector Danger’s Crime Quiz for the 15th puts a mathematician in mortal peril and leaves him there to die. As is traditional for this sort of puzzle the mathematician left a dying clue. (Mathematicians were similarly kind to their investigators on the 4th of July, 2016 and the 9th of July, 2012. I was expecting the answer to be someone with a four-letter and an eight-letter name, none of which anybody here had. Doesn’t matter. It’ll never stand up in court.

    John Graziano’s Ripley’s Believe It Or Not for the 17th features one of those astounding claims that grows out of number theory. Graziano asserts that there are an astounding 50,613,244,155,051,856 ways to score exactly 100 points in (ten-pin) bowling. I won’t deny that this seems high to me. But partitioning a number — that is, taking a (positive) whole number and writing down the different ways one can add up (positive) whole numbers to get that sum — often turns up a lot of possibilities. That there should be many ways to get a score of 100 by adding between ten and twenty numbers that could be between zero and ten each, plus the possibility of adding pairs of the numbers (for spares) or trios of numbers (for strikes) makes this less astonishing.

    Wikipedia led me to this page, from Balmoral Software, about all the different ways there are to score different numbers. The most surprising thing it reveals to me is that 100 isn’t even the score with the greatest number of possible scores. 77 is. There are 172,542,309,343,731,946 ways to score exactly 77 points. I agree this ought to make me feel better about my game. It doesn’t. It turns out there are, altogether, something like 5,726,805,883,325,784,576 possible different outcomes for a bowling game. And how we can tell that, given there’s no practical way to go and list all of them, is described at the end of the page.

    The technique is called “divide and conquer”. There’s no way to list all the outcomes of ten frames of bowling, but there’s certainly a way to list all the outcomes of one. Or two. Or three. So, work out how many possible scores there would be in few enough frames you can handle that. Then combine these shortened games into one that’s the full ten frames. There’s some trouble in matching up the ends of the short games. A spare or a strike in the last frame of a shortened game means one has to account for the first or first two frames of the next one. But this is still an easier problem than the one we started with.

    Bill Amend’s FoxTrot Classics for the 18th (rerun from the 25th of May, 2006) is your standard percentages and infinities joke. Really would have expected Paige’s mother to be wise to this game by now, but this sort of thing happens.

     
  • Joseph Nebus 6:00 pm on Sunday, 14 May, 2017 Permalink | Reply
    Tags: , , Ben, , ,   

    Reading the Comics, May 13, 2017: Quiet Tuesday Through Saturday Edition 


    From the Sunday and Monday comics pages I was expecting another banner week. And then there was just nothing from Tuesday on, at least not among the comic strips I read. Maybe Comic Strip Master Command has ordered jokes saved up for the last weeks before summer vacation.

    Tony Cochrane’s Agnes for the 7th is a mathematics anxiety strip. It’s well-expressed, since Cochrane writes this sort of hyperbole well. It also shows a common attitude that words and stories are these warm, friendly things, while mathematics and numbers are cold and austere. Perhaps Agnes is right to say some of the problem is familiarity. It’s surely impossible to go a day without words, if you interact with people or their legacies; to go without numbers … well, properly impossible. There’s too many things that have to be counted. Or places where arithmetic sneaks in, such as getting enough money to buy a thing. But those don’t seem to be the kinds of mathematics people get anxious about. Figuring out how much change, that’s different.

    I suppose some of it is familiarity. It’s easier to dislike stuff you don’t do often. The unfamiliar is frightening, or at least annoying. And humans are story-oriented. Even nonfiction forms stories well. Mathematics … has stories, as do all human projects. But the mathematics itself? I don’t know. There’s just beautiful ingenuity and imagination in a lot of it. I’d just been thinking of the just beautiful scheme for calculating logarithms from a short table. But it takes time to get to that beauty.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 7th is a fractions joke. It might also be a joke about women concealing their ages. Or perhaps it’s about mathematicians expressing things in needlessly complicated ways. I think that’s less a mathematician’s trait than a common human trait. If you’re expert in a thing it’s hard to resist the puckish fun of showing that expertise off. Or just sowing confusion where one may.

    Daniel Shelton’s Ben for the 8th is a kid-doing-arithmetic problem. Even I can’t squeeze some deeper subject meaning out of it, but it’s a slow week so I’ll include the strip anyway. Sorry.

    Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 8th is the return of anthropomorphic-geometry joke after what feels like months without. I haven’t checked how long it’s been without but I’m assuming you’ll let me claim that. Thank you.

     
  • Joseph Nebus 6:00 pm on Sunday, 7 May, 2017 Permalink | Reply
    Tags: codes, Emmy Lou, , , , , , Kidtown, , , , , W T Duck   

    Reading the Comics, May 2, 2017: Puzzle Week 


    If there was a theme this week, it was puzzles. So many strips had little puzzles to work out. You’ll see. Thank you.

    Bill Amend’s FoxTrot for the 30th of April tries to address my loss of Jumble panels. Thank you, whoever at Comic Strip Master Command passed along word of my troubles. I won’t spoil your fun. As sometimes happens with a Jumble you can work out the joke punchline without doing any of the earlier ones. 64 in binary would be written 1000000. And from this you know what fits in all the circles of the unscrambled numbers. This reduces a lot of the scrambling you have to do: just test whether 341 or 431 is a prime number. Check whether 8802, 8208, or 2808 is divisible by 117. The integer cubed you just have to keep trying possibilities. But only one combination is the cube of an integer. The factorial of 12, just, ugh. At least the circles let you know you’ve done your calculations right.

    Steve McGarry’s activity feature Kidtown for the 30th plays with numbers some. And a puzzle that’ll let you check how well you can recognize multiles of four that are somewhere near one another. You can use diagonals too; that’s important to remember.

    Mac King and Bill King’s Magic in a Minute feature for the 30th is also a celebration of numerals. Enjoy the brain teaser about why the encoding makes sense. I don’t believe the hype about NASA engineers needing days to solve a puzzle kids got in minutes. But if it’s believable, is it really hype?

    Marty Links’s Emmy Lou from the 29th of October, 1963 was rerun the 2nd of May. It’s a reminder that mathematics teachers of the early 60s also needed something to tape to their doors.

    Mel Henze’s Gentle Creatures rerun for the 2nd of May is another example of the conflating of “can do arithmetic” with “intelligence”.

    Mark Litzler’s Joe Vanilla for the 2nd name-drops the Null Hypothesis. I’m not sure what Litzler is going for exactly. The Null Hypothesis, though, comes to us from statistics and from inference testing. It turns up everywhere when we sample stuff. It turns up in medicine, in manufacturing, in psychology, in economics. Everywhere we might see something too complicated to run the sorts of unambiguous and highly repeatable tests that physics and chemistry can do — things that are about immediately practical questions — we get to testing inferences. What we want to know is, is this data set something that could plausibly happen by chance? Or is it too far out of the ordinary to be mere luck? The Null Hypothesis is the explanation that nothing’s going on. If your sample is weird in some way, well, everything is weird. What’s special about your sample? You hope to find data that will let you reject the Null Hypothesis, showing that the data you have is so extreme it just can’t plausibly be chance. Or to conclude that you fail to reject the Null Hypothesis, showing that the data is not so extreme that it couldn’t be chance. We don’t accept the Null Hypothesis. We just allow that more data might come in sometime later.

    I don’t know what Litzler is going for with this. I feel like I’m missing a reference and I’ll defer to a finance blogger’s Reading the Comics post.

    Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 3rd is another in the string of jokes using arithmetic as source of indisputably true facts. And once again it’s “2 + 2 = 5”. Somehow one plus one never rates in this use.

    Aaron Johnson’s W T Duck rerun for the 3rd is the Venn Diagram joke for this week. It’s got some punch to it, too.

    Je Mallett’s Frazz for the 5th took me some time to puzzle out. I’ll allow it.

     
  • Joseph Nebus 6:00 pm on Tuesday, 2 May, 2017 Permalink | Reply
    Tags: 9 to 5, , Between Friends, , , ,   

    Reading the Comics, April 29, 2017: The Other Half Of The Week Edition 


    I’d been splitting Reading the Comics posts between Sunday and Thursday to better space them out. But I’ve got something prepared that I want to post Thursday, so I’ll bump this up. Also I had it ready to go anyway so don’t gain anything putting it off another two days.

    Bill Amend’s FoxTrot Classics for the 27th reruns the strip for the 4th of May, 2006. It’s another probability problem, in its way. Assume Jason is honest in reporting whether Paige has picked his number correctly. Assume that Jason picked a whole number. (This is, I think, the weakest assumption. I know Jason Fox’s type and he’s just the sort who’d pick an obscure transcendental number. They’re all obscure after π and e.) Assume that Jason is equally likely to pick any of the whole numbers from 1 to one billion. Then, knowing nothing about what numbers Jason is likely to pick, Paige would have one chance in a billion of picking his number too. Might as well call it certainty that she’ll pay a dollar to play the game. How much would she have to get, in case of getting the number right, to come out even or ahead? … And now we know why Paige is still getting help on probability problems in the 2017 strips.

    Jeff Stahler’s Moderately Confused for the 27th gives me a bit of a break by just being a snarky word problem joke. The student doesn’t even have to resist it any.

    The Venn Diagram of Maintenance. 12 days after cut and color, color still rresh, bluntness of cut relaxed. Same-day mani-pedi, no chips in polish. Ten days after eyebrow tint, faded to look normal. After two weeks of religiously following salt-free diet, bloating at minimum. One day after gym workout, fresh-faced vitality from exercise. The intersection the one perfect day where it all comes together.

    Sandra Bell-Lundy’s Between Friends for the 29th of April, 2017. And while it’s not a Venn Diagram I’m not sure of a better way to visually represent that the cartoonist is going for. I suppose the intended meaning comes across cleanly enough and that’s the most important thing. It’s a strange state of affairs is all.

    Sandra Bell-Lundy’s Between Friends for the 29th also gives me a bit of a break by just being a Venn Diagram-based joke. At least it’s using the shape of a Venn Diagram to deliver the joke. It’s not really got the right content.

    Harley Schwadron’s 9 to 5 for the 29th is this week’s joke about arithmetic versus propaganda. It’s a joke we’re never really going to be without again.

     
  • Joseph Nebus 12:22 am on Sunday, 30 April, 2017 Permalink | Reply
    Tags: , , , Doonesbury, , , , , , ,   

    Reading the Comics, April 24, 2017: Reruns Edition 


    I went a little wild explaining the first of last week’s mathematically-themed comic strips. So let me split the week between the strips that I know to have been reruns and the ones I’m not so sure were.

    Bill Amend’s FoxTrot for the 23rd — not a rerun; the strip is still new on Sundays — is a probability question. And a joke about story problems with relevance. Anyway, the question uses the binomial distribution. I know that because the question is about doing a bunch of things, homework questions, each of which can turn out one of two ways, right or wrong. It’s supposed to be equally likely to get the question right or wrong. It’s a little tedious but not hard to work out the chance of getting exactly six problems right, or exactly seven, or exactly eight, or so on. To work out the chance of getting six or more questions right — the problem given — there’s two ways to go about it.

    One is the conceptually easy but tedious way. Work out the chance of getting exactly six questions right. Work out the chance of getting exactly seven questions right. Exactly eight questions. Exactly nine. All ten. Add these chances up. You’ll get to a number slightly below 0.377. That is, Mary Lou would have just under a 37.7 percent chance of passing. The answer’s right and it’s easy to understand how it’s right. The only drawback is it’s a lot of calculating to get there.

    So here’s the conceptually harder but faster way. It works because the problem says Mary Lou is as likely to get a problem wrong as right. So she’s as likely to get exactly ten questions right as exactly ten wrong. And as likely to get at least nine questions right as at least nine wrong. To get at least eight questions right as at least eight wrong. You see where this is going: she’s as likely to get at least six right as to get at least six wrong.

    There’s exactly three possibilities for a ten-question assignment like this. She can get four or fewer questions right (six or more wrong). She can get exactly five questions right. She can get six or more questions right. The chance of the first case and the chance of the last have to be the same.

    So, take 1 — the chance that one of the three possibilities will happen — and subtract the chance she gets exactly five problems right, which is a touch over 24.6 percent. So there’s just under a 75.4 percent chance she does not get exactly five questions right. It’s equally likely to be four or fewer, or six or more. Just-under-75.4 divided by two is just under 37.7 percent, which is the chance she’ll pass as the problem’s given. It’s trickier to see why that’s right, but it’s a lot less calculating to do. That’s a common trade-off.

    Ruben Bolling’s Super-Fun-Pax Comix rerun for the 23rd is an aptly titled installment of A Million Monkeys At A Million Typewriters. It reminds me that I don’t remember if I’d retired the monkeys-at-typewriters motif from Reading the Comics collections. If I haven’t I probably should, at least after making a proper essay explaining what the monkeys-at-typewriters thing is all about.

    'This new math teacher keeps shakin' us down every morning, man ... what's she looking for, anyway?' 'Pocket calculators.'

    Ted Shearer’s Quincy from the 28th of February, 1978. So, that FoxTrot problem I did? The conceptually-easy-but-tedious way is not too hard to do if you have a calculator. It’s a buch of typing but nothing more. If you don’t have a calculator, though, the desire not to do a whole bunch of calculating could drive you to the conceptually-harder-but-less-work answer. Is that a good thing? I suppose; insight is a good thing to bring. But the less-work answer only works because of a quirk in the problem, that Mary Lou is supposed to have a 50 percent chance of getting a question right. The low-insight-but-tedious problem will aways work. Why skip on having something to do the tedious part?

    Ted Shearer’s Quincy from the 28th of February, 1978 reveals to me that pocket calculators were a thing much earlier than I realized. Well, I was too young to be allowed near stuff like that in 1978. I don’t think my parents got their first credit-card-sized, solar-powered calculator that kind of worked for another couple years after that. Kids, ask about them. They looked like good ideas, but you could use them for maybe five minutes before the things came apart. Your cell phone is so much better.

    Bil Watterson’s Calvin and Hobbes rerun for the 24th can be classed as a resisting-the-word-problem joke. It’s so not about that, but who am I to slow you down from reading a Calvin and Hobbes story?

    Garry Trudeau’s Doonesbury rerun for the 24th started a story about high school kids and their bad geography skills. I rate it as qualifying for inclusion here because it’s a mathematics teacher deciding to include more geography in his course. I was amused by the week’s jokes anyway. There’s no hint given what mathematics Gil teaches, but given the links between geometry, navigation, and geography there is surely something that could be relevant. It might not help with geographic points like which states are in New England and where they are, though.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th is built on a plot point from Carl Sagan’s science fiction novel Contact. In it, a particular “message” is found in the digits of π. (By “message” I mean a string of digits that are interesting to us. I’m not sure that you can properly call something a message if it hasn’t got any sender and if there’s not obviously some intended receiver.) In the book this is an astounding thing because the message can’t be; any reasonable explanation for how it should be there is impossible. But short “messages” are going to turn up in π also, as per the comic strips.

    I assume the peer review would correct the cartoon mathematicians’ unfortunate spelling of understanding.

     
  • Joseph Nebus 6:00 pm on Thursday, 27 April, 2017 Permalink | Reply
    Tags: , , , , Preteena, ,   

    Reading the Comics, April 22, 2017: Thought There’d Be Some More Last Week Edition 


    Allison Barrows’s PreTeena rerun for the 18th is a classic syllogism put into the comic strip’s terms. The thing about these sorts of deductive-logic syllogisms is that whether the argument is valid depends only on the shape of the argument. It has nothing to do with whether the thing being discussed makes any sense. This can be disorienting. It’s hard to ignore the everyday meaning of words when you hear a string of sentences. But it’s also hard to parse a string of sentences if the words don’t make sense in them. This is probably part of why on the mathematics side of things logic courses will skimp on syllogisms, using them to give an antique flavor and sense of style to the introduction of courses. It’s easier to use symbolic representations for logic instead.

    Randy Glasbergen’s Glasbergen Cartoons rerun for the 20th is the old joke about arithmetic being different between school, government, and corporate work. I haven’t looked at the comments — the GoComics redesign, whatever else it does, makes it very easy to skip the comments — but I’m guessing by the second one someone’s said the Common Core method means getting the most wrong answer.

    Dolly, coming home: 'Rithmetic would be a lot easier if it didn't have all those different numbers.'

    Bil Keane and Jeff Keane’s Family Circus for the 21st of April, 2017. In fairness, there aren’t a lot of things we need all of 6, 7, and 8 for and you can just use whatever one of those you’re good at for any calculations with the others. Promise.

    Bil Keane and Jeff Keane’s Family Circus for the 21st I don’t know is a rerun. But a lot of them are these days. Anyway, it looks like a silly joke about how nice mathematics would be without numbers; Dolly has no idea. I can sympathize with being intimidated by numerals. At the risk of being all New Math-y, I wonder if she wouldn’t like arithmetic more if it were presented as a game. Like, here’s a couple symbols — let’s say * and | for a start, and then some rules. * and * makes *, but * and | makes |. Also | and * makes |. But | and | makes |*. And so on. This is binary arithmetic, disguised, but I wonder if making it look like something inconsequential would make it more pleasant to learn, and if that would transfer over to arithmetic with 1’s and 0’s. Normal, useful arithmetic would be harder to play like this. You’d need ten symbols that are easy to write that aren’t already numbers, letters, or common symbols. But I wonder if it’d be worth it.

    Tom Thaves’s Frank and Ernest for the 22nd is provided for mathematics teachers who need something to tape to their door. You’re welcome.

     
  • Joseph Nebus 6:00 pm on Sunday, 23 April, 2017 Permalink | Reply
    Tags: , , , Edison Lee, , , , ,   

    Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition 


    I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

    Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

    Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

    (I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

    J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

    Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

    Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

    But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

    And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

    So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

    Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

    Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

    Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'

    John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

    John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.

     
  • Joseph Nebus 6:00 pm on Sunday, 16 April, 2017 Permalink | Reply
    Tags: Amanda the Great, , , , , , , , , , Skin Horse, , ,   

    Reading the Comics, April 15, 2017: Extended Week Edition 


    It turns out last Saturday only had the one comic strip that was even remotely on point for me. And it wasn’t very on point either, but since it’s one of the Creators.com strips I’ve got the strip to show. That’s enough for me.

    Henry Scarpelli and Craig Boldman’s Archie for the 8th is just about how algebra hurts. Some days I agree.

    'Ugh! Achey head! All blocked up! Throbbing! Completely stuffed!' 'Sounds like sinuses!' 'No. Too much algebra!'

    Henry Scarpelli and Craig Boldman’s Archie for the 8th of April, 2017. Do you suppose Archie knew that Dilton was listening there, or was he just emoting his fatigue to himself?

    Ruben Bolling’s Super-Fun-Pak Comix for the 8th is an installation of They Came From The Third Dimension. “Dimension” is one of those oft-used words that’s come loose of any technical definition. We use it in mathematics all the time, at least once we get into Introduction to Linear Algebra. That’s the course that talks about how blocks of space can be stretched and squashed and twisted into each other. You’d expect this to be a warmup act to geometry, and I guess it’s relevant. But where it really pays off is in studying differential equations and how systems of stuff changes over time. When you get introduced to dimensions in linear algebra they describe degrees of freedom, or how much information you need about a problem to pin down exactly one solution.

    It does give mathematicians cause to talk about “dimensions of space”, though, and these are intuitively at least like the two- and three-dimensional spaces that, you know, stuff moves in. That there could be more dimensions of space, ordinarily inaccessible, is an old enough idea we don’t really notice it. Perhaps it’s hidden somewhere too.

    Amanda El-Dweek’s Amanda the Great of the 9th started a story with the adult Becky needing to take a mathematics qualification exam. It seems to be prerequisite to enrolling in some new classes. It’s a typical set of mathematics anxiety jokes in the service of a story comic. One might tsk Becky for going through university without ever having a proper mathematics class, but then, I got through university without ever taking a philosophy class that really challenged me. Not that I didn’t take the classes seriously, but that I took stuff like Intro to Logic that I was already conversant in. We all cut corners. It’s a shame not to use chances like that, but there’s always so much to do.

    Mark Anderson’s Andertoons for the 10th relieves the worry that Mark Anderson’s Andertoons might not have got in an appearance this week. It’s your common kid at the chalkboard sort of problem, this one a kid with no idea where to put the decimal. As always happens I’m sympathetic. The rules about where to move decimals in this kind of multiplication come out really weird if the last digit, or worse, digits in the product are zeroes.

    Mel Henze’s Gentle Creatures is in reruns. The strip from the 10th is part of a story I’m so sure I’ve featured here before that I’m not even going to look up when it aired. But it uses your standard story problem to stand in for science-fiction gadget mathematics calculation.

    Dave Blazek’s Loose Parts for the 12th is the natural extension of sleep numbers. Yes, I’m relieved to see Dave Blazek’s Loose Parts around here again too. Feels weird when it’s not.

    Bill Watterson’s Calvin and Hobbes rerun for the 13th is a resisting-the-story-problem joke. But Calvin resists so very well.

    John Deering’s Strange Brew for the 13th is a “math club” joke featuring horses. Oh, it’s a big silly one, but who doesn’t like those too?

    Dan Thompson’s Brevity for the 14th is one of the small set of punning jokes you can make using mathematician names. Good for the wall of a mathematics teacher’s classroom.

    Shaenon K Garrity and Jefferey C Wells’s Skin Horse for the 14th is set inside a virtual reality game. (This is why there’s talk about duplicating objects.) Within the game, the characters are playing that game where you start with a set number (in this case 20) tokens and take turn removing a couple of them. The “rigged” part of it is that the house can, by perfect play, force a win every time. It’s a bit of game theory that creeps into recreational mathematics books and that I imagine is imprinted in the minds of people who grow up to design games.

     
  • Joseph Nebus 6:00 pm on Sunday, 9 April, 2017 Permalink | Reply
    Tags: , chess, , , , Mustard and Boloney, , , , Take It From The Tinkersons,   

    Reading the Comics, April 6, 2017: Abbreviated Week Edition 


    I’m writing this a little bit early because I’m not able to include the Saturday strips in the roundup. There won’t be enough to make a split week edition; I’ll just add the Saturday strips to next week’s report. In the meanwhile:

    Mac King and Bill King’s Magic in a Minute for the 2nd is a magic trick, as the name suggests. It figures out a card by way of shuffling a (partial) deck and getting three (honest) answers from the other participant. If I’m not counting wrongly, you could do this trick with up to 27 cards and still get the right card after three answers. I feel like there should be a way to explain this that’s grounded in information theory, but I’m not able to put that together. I leave the suggestion here for people who see the obvious before I get to it.

    Bil Keane and Jeff Keane’s Family Circus (probable) rerun for the 6th reassured me that this was not going to be a single-strip week. And a dubiously included single strip at that. I’m not sure that lotteries are the best use of the knowledge of numbers, but they’re a practical use anyway.

    Dolly holds up pads of paper with numbers on them. 'C'mon, PJ, you hafta learn your numbers or else you'll never win the lottery.'

    Bil Keane and Jeff Keane’s Family Circus for the 6th of April, 2017. I’m not familiar enough with the evolution of the Family Circus style to say whether this is a rerun, a newly-drawn strip, or an old strip with a new caption. I suppose there is a certain timelessness to it, at least once we get into the era when states sported lotteries again.

    Bill Bettwy’s Take It From The Tinkersons for the 6th is part of the universe of students resisting class. I can understand the motivation problem in caring about numbers of apples that satisfy some condition. In the role of distinct objects whose number can be counted or deduced cards are as good as apples. In the role of things to gamble on, cards open up a lot of probability questions. Counting cards is even about how the probability of future events changes as information about the system changes. There’s a lot worth learning there. I wouldn’t try teaching it to elementary school students.

    The teacher: 'How many apples will be left, Tillman?' 'When are we going to start counting things more exciting than fruit?' 'What would you like to count, Tillman?' 'Cards.'

    Bill Bettwy’s Take It From The Tinkersons for the 6th of April, 2017. That tree in the third panel is a transplant from a Slylock Fox six-differences panel. They’ve been trying to rebuild the population of trees that are sometimes three triangles and sometimes four triangles tall.

    Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 6th uses mathematics as the stuff know-it-alls know. At least I suppose it is; Doctor Know It All speaks of “the pathagorean principle”. I’m assuming that’s meant to be the Pythagorean theorem, although the talk about “in any right triangle the area … ” skews things. You can get to stuf about areas of triangles from the Pythagorean theorem. One of the shorter proofs of it depends on the areas of the squares of the three sides of a right triangle. But it’s not what people typically think of right away. But he wouldn’t be the first know-it-all to start blathering on the assumption that people aren’t really listening. It’s common enough to suppose someone who speaks confidently and at length must know something.

    Dave Whamond’s Reality Check for the 6th is a welcome return to anthropomorphic-numerals humor. Been a while.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th builds on the form of a classic puzzle, about a sequence indexed to the squares of a chessboard. The story being riffed on is a bit of mathematical legend. The King offered the inventor of chess any reward. The inventor asked for one grain of wheat for the first square, two grains for the second square, four grains for the third square, eight grains for the fourth square, and so on, through all 64 squares. An extravagant reward, but surely one within the king’s power to grant, right? And of course not: by the 64th doubling the amount of wheat involved is so enormous it’s impossibly great wealth.

    The father’s offer is meant to evoke that. But he phrases it in a deceptive way, “one penny for the first square, two for the second, and so on”. That “and so on” is the key. Listing a sequence and ending “and so on” is incomplete. The sequence can go in absolutely any direction after the given examples and not be inconsistent. There is no way to pick a single extrapolation as the only logical choice.

    We do it anyway, though. Even mathematicians say “and so on”. This is because we usually stick to a couple popular extrapolations. We suppose things follow a couple common patterns. They’re polynomials. Or they’re exponentials. Or they’re sine waves. If they’re polynomials, they’re lower-order polynomials. Things like that. Most of the time we’re not trying to trick our fellow mathematicians. Or we know we’re modeling things with some physical base and we have reason to expect some particular type of function.

    In this case, the $1.27 total is consistent with getting two cents for every chess square after the first. There are infinitely many other patterns that would work, and the kid would have been wise to ask for what precisely “and so on” meant before choosing.

    Berkeley Breathed’s Bloom County 2017 for the 7th is the climax of a little story in which Oliver Wendell Holmes has been annoying people by shoving scientific explanations of things into their otherwise pleasant days. It’s a habit some scientifically-minded folks have, and it’s an annoying one. Many of us outgrow it. Anyway, this strip is about the curious evidence suggesting that the universe is not just expanding, but accelerating its expansion. There are mathematical models which allow this to happen. When developing General Relativity, Albert Einstein included a Cosmological Constant for little reason besides that without it, his model would suggest the universe was of a finite age and had expanded from an infinitesimally small origin. He had grown up without anyone knowing of any evidence that the size of the universe was a thing that could change.

    Anyway, the Cosmological Constant is a puzzle. We can find values that seem to match what we observe, but we don’t know of a good reason it should be there. We sciencey types like to have models that match data, but we appreciate more knowing why the models look like that and not anything else. So it’s a good problem some of the cosmologists have been working on. But we’ve been here before. A great deal of physics, especially in the 20th Century, has been driven by looking for reasons behind what look like arbitrary points in a successful model. If Oliver were better-versed in the history of science — something scientifically minded people are often weak on, myself included — he’d be less easily taunted by Opus.

    Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 7th thinks that we forgot they ran this same strip back on the 17th of March. I spotted it, though. Nyah.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: