Updates from April, 2017 Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Sunday, 23 April, 2017 Permalink | Reply
    Tags: , , , , , , , Lug Nuts, Edison Lee   

    Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition 


    I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

    Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

    Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

    (I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

    J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

    Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

    Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

    But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

    And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

    So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

    Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

    Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

    Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'

    John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

    John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.

     
  • Joseph Nebus 6:00 pm on Sunday, 16 April, 2017 Permalink | Reply
    Tags: Amanda the Great, , , , , , , Gentle Creatures, , , Skin Horse, , Strange Brew,   

    Reading the Comics, April 15, 2017: Extended Week Edition 


    It turns out last Saturday only had the one comic strip that was even remotely on point for me. And it wasn’t very on point either, but since it’s one of the Creators.com strips I’ve got the strip to show. That’s enough for me.

    Henry Scarpelli and Craig Boldman’s Archie for the 8th is just about how algebra hurts. Some days I agree.

    'Ugh! Achey head! All blocked up! Throbbing! Completely stuffed!' 'Sounds like sinuses!' 'No. Too much algebra!'

    Henry Scarpelli and Craig Boldman’s Archie for the 8th of April, 2017. Do you suppose Archie knew that Dilton was listening there, or was he just emoting his fatigue to himself?

    Ruben Bolling’s Super-Fun-Pak Comix for the 8th is an installation of They Came From The Third Dimension. “Dimension” is one of those oft-used words that’s come loose of any technical definition. We use it in mathematics all the time, at least once we get into Introduction to Linear Algebra. That’s the course that talks about how blocks of space can be stretched and squashed and twisted into each other. You’d expect this to be a warmup act to geometry, and I guess it’s relevant. But where it really pays off is in studying differential equations and how systems of stuff changes over time. When you get introduced to dimensions in linear algebra they describe degrees of freedom, or how much information you need about a problem to pin down exactly one solution.

    It does give mathematicians cause to talk about “dimensions of space”, though, and these are intuitively at least like the two- and three-dimensional spaces that, you know, stuff moves in. That there could be more dimensions of space, ordinarily inaccessible, is an old enough idea we don’t really notice it. Perhaps it’s hidden somewhere too.

    Amanda El-Dweek’s Amanda the Great of the 9th started a story with the adult Becky needing to take a mathematics qualification exam. It seems to be prerequisite to enrolling in some new classes. It’s a typical set of mathematics anxiety jokes in the service of a story comic. One might tsk Becky for going through university without ever having a proper mathematics class, but then, I got through university without ever taking a philosophy class that really challenged me. Not that I didn’t take the classes seriously, but that I took stuff like Intro to Logic that I was already conversant in. We all cut corners. It’s a shame not to use chances like that, but there’s always so much to do.

    Mark Anderson’s Andertoons for the 10th relieves the worry that Mark Anderson’s Andertoons might not have got in an appearance this week. It’s your common kid at the chalkboard sort of problem, this one a kid with no idea where to put the decimal. As always happens I’m sympathetic. The rules about where to move decimals in this kind of multiplication come out really weird if the last digit, or worse, digits in the product are zeroes.

    Mel Henze’s Gentle Creatures is in reruns. The strip from the 10th is part of a story I’m so sure I’ve featured here before that I’m not even going to look up when it aired. But it uses your standard story problem to stand in for science-fiction gadget mathematics calculation.

    Dave Blazek’s Loose Parts for the 12th is the natural extension of sleep numbers. Yes, I’m relieved to see Dave Blazek’s Loose Parts around here again too. Feels weird when it’s not.

    Bill Watterson’s Calvin and Hobbes rerun for the 13th is a resisting-the-story-problem joke. But Calvin resists so very well.

    John Deering’s Strange Brew for the 13th is a “math club” joke featuring horses. Oh, it’s a big silly one, but who doesn’t like those too?

    Dan Thompson’s Brevity for the 14th is one of the small set of punning jokes you can make using mathematician names. Good for the wall of a mathematics teacher’s classroom.

    Shaenon K Garrity and Jefferey C Wells’s Skin Horse for the 14th is set inside a virtual reality game. (This is why there’s talk about duplicating objects.) Within the game, the characters are playing that game where you start with a set number (in this case 20) tokens and take turn removing a couple of them. The “rigged” part of it is that the house can, by perfect play, force a win every time. It’s a bit of game theory that creeps into recreational mathematics books and that I imagine is imprinted in the minds of people who grow up to design games.

     
  • Joseph Nebus 6:00 pm on Sunday, 9 April, 2017 Permalink | Reply
    Tags: , chess, Family Circus, , , Mustard and Boloney, , , , Take It From The Tinkersons,   

    Reading the Comics, April 6, 2017: Abbreviated Week Edition 


    I’m writing this a little bit early because I’m not able to include the Saturday strips in the roundup. There won’t be enough to make a split week edition; I’ll just add the Saturday strips to next week’s report. In the meanwhile:

    Mac King and Bill King’s Magic in a Minute for the 2nd is a magic trick, as the name suggests. It figures out a card by way of shuffling a (partial) deck and getting three (honest) answers from the other participant. If I’m not counting wrongly, you could do this trick with up to 27 cards and still get the right card after three answers. I feel like there should be a way to explain this that’s grounded in information theory, but I’m not able to put that together. I leave the suggestion here for people who see the obvious before I get to it.

    Bil Keane and Jeff Keane’s Family Circus (probable) rerun for the 6th reassured me that this was not going to be a single-strip week. And a dubiously included single strip at that. I’m not sure that lotteries are the best use of the knowledge of numbers, but they’re a practical use anyway.

    Dolly holds up pads of paper with numbers on them. 'C'mon, PJ, you hafta learn your numbers or else you'll never win the lottery.'

    Bil Keane and Jeff Keane’s Family Circus for the 6th of April, 2017. I’m not familiar enough with the evolution of the Family Circus style to say whether this is a rerun, a newly-drawn strip, or an old strip with a new caption. I suppose there is a certain timelessness to it, at least once we get into the era when states sported lotteries again.

    Bill Bettwy’s Take It From The Tinkersons for the 6th is part of the universe of students resisting class. I can understand the motivation problem in caring about numbers of apples that satisfy some condition. In the role of distinct objects whose number can be counted or deduced cards are as good as apples. In the role of things to gamble on, cards open up a lot of probability questions. Counting cards is even about how the probability of future events changes as information about the system changes. There’s a lot worth learning there. I wouldn’t try teaching it to elementary school students.

    The teacher: 'How many apples will be left, Tillman?' 'When are we going to start counting things more exciting than fruit?' 'What would you like to count, Tillman?' 'Cards.'

    Bill Bettwy’s Take It From The Tinkersons for the 6th of April, 2017. That tree in the third panel is a transplant from a Slylock Fox six-differences panel. They’ve been trying to rebuild the population of trees that are sometimes three triangles and sometimes four triangles tall.

    Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 6th uses mathematics as the stuff know-it-alls know. At least I suppose it is; Doctor Know It All speaks of “the pathagorean principle”. I’m assuming that’s meant to be the Pythagorean theorem, although the talk about “in any right triangle the area … ” skews things. You can get to stuf about areas of triangles from the Pythagorean theorem. One of the shorter proofs of it depends on the areas of the squares of the three sides of a right triangle. But it’s not what people typically think of right away. But he wouldn’t be the first know-it-all to start blathering on the assumption that people aren’t really listening. It’s common enough to suppose someone who speaks confidently and at length must know something.

    Dave Whamond’s Reality Check for the 6th is a welcome return to anthropomorphic-numerals humor. Been a while.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th builds on the form of a classic puzzle, about a sequence indexed to the squares of a chessboard. The story being riffed on is a bit of mathematical legend. The King offered the inventor of chess any reward. The inventor asked for one grain of wheat for the first square, two grains for the second square, four grains for the third square, eight grains for the fourth square, and so on, through all 64 squares. An extravagant reward, but surely one within the king’s power to grant, right? And of course not: by the 64th doubling the amount of wheat involved is so enormous it’s impossibly great wealth.

    The father’s offer is meant to evoke that. But he phrases it in a deceptive way, “one penny for the first square, two for the second, and so on”. That “and so on” is the key. Listing a sequence and ending “and so on” is incomplete. The sequence can go in absolutely any direction after the given examples and not be inconsistent. There is no way to pick a single extrapolation as the only logical choice.

    We do it anyway, though. Even mathematicians say “and so on”. This is because we usually stick to a couple popular extrapolations. We suppose things follow a couple common patterns. They’re polynomials. Or they’re exponentials. Or they’re sine waves. If they’re polynomials, they’re lower-order polynomials. Things like that. Most of the time we’re not trying to trick our fellow mathematicians. Or we know we’re modeling things with some physical base and we have reason to expect some particular type of function.

    In this case, the $1.27 total is consistent with getting two cents for every chess square after the first. There are infinitely many other patterns that would work, and the kid would have been wise to ask for what precisely “and so on” meant before choosing.

    Berkeley Breathed’s Bloom County 2017 for the 7th is the climax of a little story in which Oliver Wendell Holmes has been annoying people by shoving scientific explanations of things into their otherwise pleasant days. It’s a habit some scientifically-minded folks have, and it’s an annoying one. Many of us outgrow it. Anyway, this strip is about the curious evidence suggesting that the universe is not just expanding, but accelerating its expansion. There are mathematical models which allow this to happen. When developing General Relativity, Albert Einstein included a Cosmological Constant for little reason besides that without it, his model would suggest the universe was of a finite age and had expanded from an infinitesimally small origin. He had grown up without anyone knowing of any evidence that the size of the universe was a thing that could change.

    Anyway, the Cosmological Constant is a puzzle. We can find values that seem to match what we observe, but we don’t know of a good reason it should be there. We sciencey types like to have models that match data, but we appreciate more knowing why the models look like that and not anything else. So it’s a good problem some of the cosmologists have been working on. But we’ve been here before. A great deal of physics, especially in the 20th Century, has been driven by looking for reasons behind what look like arbitrary points in a successful model. If Oliver were better-versed in the history of science — something scientifically minded people are often weak on, myself included — he’d be less easily taunted by Opus.

    Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 7th thinks that we forgot they ran this same strip back on the 17th of March. I spotted it, though. Nyah.

     
  • Joseph Nebus 6:00 pm on Thursday, 6 April, 2017 Permalink | Reply
    Tags: , , Imogen Quest, , , Sticky Comics, , Wizard of Id   

    Reading the Comics, April 1, 2017: Connotations Edition 


    Last week ended with another little string of mathematically-themed comic strips. Most of them invited, to me, talk about the cultural significance of mathematics and what connotations they have. So, this title for an artless essay.

    Berkeley Breathed’s Bloom County 2017 for the 28th of March uses “two plus two equals” as the definitive, inarguable truth. It always seems to be “two plus two”, doesn’t it? Never “two plus three”, never “three plus three”. I suppose I’ve sometimes seen “one plus one” or “two times two”. It’s easy to see why it should be a simple arithmetic problem, nothing with complicated subtraction or division or numbers as big as six. Maybe the percussive alliteration of those repeated two’s drives the phrase’s success. But then why doesn’t “two times two” show up nearly as often? Maybe the phrase isn’t iambic enough. “Two plus two” allows (to my ear) the “plus” sink in emphasis, while “times” stays a little too prominent. We need a wordsmith in to explore it. (I’m open to other hypotheses, including that “two times two” gets used more than my impression says.)

    Christiann MacAuley’s Sticky Comics for the 28th uses mathematics as the generic “more interesting than people” thing that nerds think about. The thing being thought of there is the Mandelbrot Set. It’s built on complex-valued numbers. Pick a complex number, any you like; that’s called ‘C’. Square the number and add ‘C’ back to itself. This will be some new complex-valued number. Square that new number and add the original ‘C’ back to it again. Square that new number and add the original ‘C’ back once more. And keep at this. There are two things that might happen. These squared numbers might keep growing infinitely large. They might be negative, or imaginary, or (most likely) complex-valued, but their size keeps growing. Or these squared numbers might not grow arbitrarily large. The Mandelbrot Set is the collection of ‘C’ values for which the numbers don’t just keep growing in size. That’s the sort of lumpy kidney bean shape with circles and lightning bolts growing off it that you saw on every pop mathematics book during the Great Fractal Boom of the 80s and 90s. There’s almost no point working it out in your head; the great stuff about fractals almost requires a computer. They take a lot of computation. But if you’re just avoiding conversation, well, anything will do.

    Olivia Walch’s Imogen Quest for the 29th riffs on the universe-as-simulation hypothesis. It’s one of those ideas that catches the mind and is hard to refute as long as we don’t talk to the people in the philosophy department, which we’re secretly scared of. Anyway the comic shows one of the classic uses of statistical modeling: try out a number of variations of a model in the hopes of understanding real-world behavior. This is an often-useful way to balance how the real world has stuff going on that’s important and that we don’t know about, or don’t know how to handle exactly.

    Mason Mastroianni’s The Wizard of Id for the 31st uses a sprawl of arithmetic as symbol of … well, of status, really. The sort of thing that marks someone a white-collar criminal. I suppose it also fits with the suggestion of magic that accompanies huge sprawls of mathematical reasoning. Bundle enough symbols together and it looks like something only the intellectual aristocracy, or at least secret cabal, could hope to read.

    Bob Shannon’s Tough Town for the 1st name-drops arithmetic. And shows off the attitude that anyone we find repulsive must also be stupid, as proven by their being bad at arithmetic. I admit to having no discernable feelings about the Kardashians; but I wouldn’t be so foolish as to conflate intelligence and skill-at-arithmetic.

     
    • elkement (Elke Stangl) 3:24 pm on Thursday, 20 April, 2017 Permalink | Reply

      I am replying to the previous post (March statistics) – as nothing happened when I clicked on the reply button at that post. But maybe this is related to what I actually wanted to comment about:

      Your table is displayed at the bottom of the page – below ‘Related’, the comment box, and the previous/next posting links! How did you do this? You totally hacked WordPress ;-)

      Like

  • Joseph Nebus 6:00 pm on Sunday, 2 April, 2017 Permalink | Reply
    Tags: , , Baldo, Big Top, ,   

    Reading the Comics, March 27, 2017: Not The March 26 Edition 


    My guide for how many comics to include in one of these essays is “at least five, if possible”. Occasionally there’s a day when Comic Strip Master Command sends that many strips at once. Last Sunday was almost but not quite such a day. But the business of that day did mean I had enough strips to again divide the past week’s entries. Look for more comics in a few days, if all goes well here. Thank you.

    Mark Anderson’s Andertoons for the 26th reminds me of something I had wholly forgot about: decimals inside fractions. And now that this little horror’s brought back I remember my experience with it. Decimals in fractions aren’t, in meaning, any different from division of decimal numbers. And the decimals are easily enough removed. But I get the kid’s horror. Fractions and decimals are both interesting in the way they represent portions of wholes. They spend so much time standing independently of one another it feels disturbing to have them interact. Well, Andertoons kid, maybe this will comfort you: somewhere along the lines decimals in fractions just stop happening. I’m not sure when. I don’t remember when the last one passed my experience.

    Hector Cantu and Carlos Castellanos’s Baldo for the 26th is built on a riddle. It’s one that depends on working in shifting addition from “what everybody means by addition” to “what addition means on a clock”. You can argue — I’m sure Gracie would — that “11 plus 3” does not mean “eleven o’clock plus three hours”. But on what grounds? If it’s eleven o’clock and you know something will happen in three hours, “two o’clock” is exactly what you want. Underlying all of mathematics are definitions about what we mean by stuff like “eleven” and “plus” and “equals”. And underlying the definitions is the idea that “here is a thing we should like to know”.

    Addition of hours on a clock face — I never see it done with minutes or seconds — is often used as an introduction to modulo arithmetic. This is arithmetic on a subset of the whole numbers. For example, we might use 0, 1, 2, and 3. Addition starts out working the way it does in normal numbers. But then 1 + 3 we define to be 0. 2 + 3 is 1. 3 + 3 is 2. 2 + 2 is 0. 2 + 3 is 1 again. And so on. We get subtraction the same way. This sort of modulo arithmetic has practical uses. Many cryptography schemes rely on it, for example. And it has pedagogical uses; modulo arithmetic turns up all over a mathematics major’s Introduction to Not That Kind Of Algebra Course. You can use it to learn a lot of group theory with something a little less exotic than rotations and symmetries of polygonal shapes or permutations of lists of items. A clock face doesn’t quite do it, though. We have to pretend the ’12’ at the top is a ‘0’. I’ve grown more skeptical about whether appealing to clocks is useful in introducing modulo arithmetic. But it’s been a while since I’ve needed to discuss the matter at all.

    Rob Harrell’s Big Top rerun for the 26th mentions sudoku. Remember when sudoku was threatening to take over the world, or at least the comics page? Also, remember comics pages? Good times. It’s not one of my hobbies, but I get the appeal.

    Bob Shannon’s Tough Town I’m not sure if I’ve featured here before. It’s one of those high concept comics. The patrons at a bar are just what you see on the label, and there’s a lot of punning involved. Now that I’ve over-explained the joke please enjoy the joke. There are a couple of strips prior to this one featuring the same characters; they just somehow didn’t mention enough mathematics words for me to bring up here.

    Overhearing customers: 'Kids today can't even do basic math. If the computer doesn't tell them how much change to give you, they don't know what to do.' Customer asking: 'How much is 50% off of $49.99 ? Does that mean it's free?' Clerk: Sigh.

    Norm Feuti’s Retail for the 27th of March, 2017. Of course customers aren’t generally good at arithmetic either. I’m reminded (once more) of when I worked at Walden Books and a customer wanted to know whether the sticker-promised 10 percent discount on the book was applied to the price before or after the 6 percent sales tax was added to it, or whether it was applied afterwards. I could not speak to the cash register’s programming, but I could promise that the process would come to the same number either way, and I told him what it would be. I think the book had a $14.95 cover price — let’s stipulate it was for the sake of my anecdote — so it would come to $14.26 in the end. He judged me suspiciously and then allowed me to ring it up; the register made it out to be $15.22 and he pounced, saying, see?. Yes: he had somehow found the one freaking book in the store where the UPC bar code price, $15.95, was different from the thing listed as the cover price. I told him why it was and showed him where in the UPC to find the encoded price (it’s in the last stanza of digits underneath the bars) but he was having none of it, even when I manually corrected the error.

    Norm Feuti’s Retail for the 27th is about the great concern-troll of mathematics education: can our cashiers make change? I’m being snottily dismissive. Shops, banks, accountants, and tax registries are surely the most common users of mathematics — at least arithmetic — out there. And if people are going to do a thing, ordinarily, they ought to be able to do it well. But, of course, the computer does arithmetic extremely well. Far better, or at least more indefatigably, than any cashier is going to be able to do. The computer will also keep track of the prices of everything, and any applicable sales or discounts, more reliably than the mere human will. The whole point of the Industrial Revolution was to divide tasks up and assign them to parties that could do the separate parts better. Why get worked up about whether you imagine the cashier knows what $22.14 minus $16.89 is?

    I will say the time the bookstore where I worked lost power all afternoon and we had to do all the transactions manually we ended up with only a one-cent discrepancy in the till, thank you.

     
    • The Chaos Realm 1:05 pm on Monday, 3 April, 2017 Permalink | Reply

      Forget school-taught math, that’s how I best learned math…as a cashier…

      Like

      • Joseph Nebus 2:18 am on Tuesday, 4 April, 2017 Permalink | Reply

        I shouldn’t be surprised! Doing anything often will encourage people to find more accurate and faster ways to do it. So one speeds up either by just being better at recognizing common operations or by developing useful shortcuts. (The shortcuts can be disastrous if, for example, they accidentally cause some needed safety precaution not to be taken, but that doesn’t tend to apply in cashier work.)

        Liked by 1 person

        • The Chaos Realm 2:29 am on Tuesday, 4 April, 2017 Permalink | Reply

          Yeah, I used to drive my math teachers crazy with my shortcuts. But, I love when I see the light bulb go off in kids when I show them other ways to do math problems (even as a sub, I do sometimes get to teach :-) )
          .

          Like

          • Joseph Nebus 5:23 am on Friday, 14 April, 2017 Permalink | Reply

            There is that. A weird shortcut or novel trick for a problem, even if it doesn’t lead to a generally useful technique, is good to have on the record. It inspires the imagination and lets folks know that there’s almost never just one way to do things.

            Liked by 1 person

    • davekingsbury 9:10 pm on Monday, 3 April, 2017 Permalink | Reply

      Guestimation keeps the common sense in maths I, er … guess. As for Sudoku, is there any other way to do it than listing all possible #s in each box? I see people on buses and trains just staring at it – are they hoping for inspiration or else doing prodigious memory work?

      Like

      • Joseph Nebus 2:23 am on Tuesday, 4 April, 2017 Permalink | Reply

        I’m not an expert sudoku solver. I’d done some for a little while, especially after some students gave me a book of puzzles as a parting gift, but I never caught the bug.

        But when I do them, it is … I wouldn’t say a prodigious amount of memory work. It would be picking out a cell and checking what the valid possible numbers are, then going across the row, column, and cell to see if there were any obvious contradictions, or whether that forced something suspicious in a nearby cell. I don’t suppose that works well for hard puzzles, but for the silly little easy and almost-medium puzzles I attacked it was fine. Something would turn up soon.

        Liked by 1 person

  • Joseph Nebus 6:00 pm on Sunday, 26 March, 2017 Permalink | Reply
    Tags: , , , Moderately Confused, Pardon My Planet, , , , , Todd the Dinosaur   

    Reading the Comics, March 25, 2017: Slow Week Edition 


    Slow week around here for mathematically-themed comic strips. These happen. I suspect Comic Strip Master Command is warning me to stop doing two-a-week essays on reacting to comic strips and get back to more original content. Message received. If I can get ahead of some projects Monday and Tuesday we’ll get more going.

    Patrick Roberts’s Todd the Dinosaur for the 20th is a typical example of mathematics being something one gets in over one’s head about. Of course it’s fractions. Is there anything in elementary school that’s a clearer example of something with strange-looking rules and processes for some purpose students don’t even know what they are? In middle school and high school we get algebra. In high school there’s trigonometry. In high school and college there’s calculus. In grad school there’s grad school. There’s always something.

    Teacher: 'Todd, are you wearing water wings? Why, pray tell?' 'So I can make it to the third grade! We're startin' fractions today and YOU said you had a feeling I was gonna get in over my head.' 'Dang!'

    Patrick Roberts’s Todd the Dinosaur for the 20th of March, 2017. I’ll allow the kids-say-the-darndest-things setup for the strip. I’m stuck on wondering just how much good water wings that size could do. Yes, he’s limited by his anatomy but aren’t we all?

    Jeff Stahler’s Moderately Confused for the 21st is the usual bad-mathematics-of-politicians joke. It may be a little more on point considering the Future Disgraced Former President it names, but the joke is surely as old as politicians and hits all politicians with the same flimsiness.

    John Graziano’s Ripley’s Believe It Or Not for the 22nd names Greek mathematician Pythagoras. That’s close enough to on-point to include here, especially considering what a slow week it’s been. It may not be fair to call Pythagoras a mathematician. My understanding is we don’t know that actually did anything in mathematics, significant or otherwise. His cult attributed any of its individuals’ discoveries to him, and may have busied themselves finding other, unrelated work to credit to their founder. But there’s so much rumor and gossip about Pythagoras that it’s probably not fair to automatically dismiss any claim about him. The beans thing I don’t know about. I would be skeptical of anyone who said they were completely sure.

    Vic Lee’s Pardon My Planet for the 23rd is the usual sort of not-understanding-mathematics joke. In this case it’s about percentages, which are good for baffling people who otherwise have a fair grasp on fractions. I wonder if people would be better at percentages if they learned to say “percent” as “out of a hundred” instead. I’m sure everyone who teaches percentages teaches that meaning, but that doesn’t mean the warning communicates.

    'OK, then let's compromise. I'll be right most of the time - at least 46 percent of the time. And you can be right whenever there is math involved.'

    Vic Lee’s Pardon My Planet for the 23rd of March, 2017. Don’t mind me, I’m busy trying to convince myself the back left leg of that park bench is hidden behind the guy’s leg and not missing altogether and it’s still pretty touch-and-go on that.

    Stephan Pastis’s Pearls Before Swine for the 24th jams a bunch of angle puns into its six panels. I think it gets most of the basic set in there.

    Samson’s Dark Side Of The Horse for the 25th mentions sudokus, and that’s enough for a slow week like this. I thought Horace was reaching for a calculator in the last panel myself, and was going to say that wouldn’t help any. But then I checked the numbers in the boxes and that made it all better.

     
  • Joseph Nebus 6:00 pm on Sunday, 19 March, 2017 Permalink | Reply
    Tags: 2 Cows And A Chicken, , , Arlo and Janis, Lard's World Peace Tips, , Off The Mark, , , , Working Daze   

    Reading the Comics, March 18, 2017: Pi Day Edition 


    No surprise what the recurring theme for this set of mathematics-mentioning comic strips is. Look at the date range. But here goes.

    Henry Scarpelli and Craig Boldman’s Archie rerun for the 13th uses algebra as the thing that will stun a class into silence. I know the silence. As a grad student you get whole minutes of instructions on how to teach a course before being sent out as recitation section leader for some professor. And what you do get told is the importance of asking students their thoughts and their ideas. This maybe works in courses that are obviously friendly to opinions or partially formed ideas. But in Freshman Calculus? It’s just deadly. Even if you can draw someone into offering an idea how we might start calculating a limit (say), they’re either going to be exactly right or they’re going to need a lot of help coaxing the idea into something usable. I’d like to have more chatty classes, but some subjects are just hard to chat about.

    Mr Weatherby walks past a silent class. 'What a well-behaved class! ... Flutesnoot, how do you get them to be so quiet and still?' 'I just asked for a volunteer to solve an algebra problem!'

    Henry Scarpelli and Craig Boldman’s Archie rerun for the 13th of March, 2017. I didn’t know the mathematics teacher’s name and suppose that “Flutesnoot” is as plausible as anything. Anyway, I admire his ability to stand in front of a dead-silent class. The stage fright the scenario produces is powerful. At least when I was taught how to teach we got nothing about stage presence or how to remain confident during awkward pauses. What I know I learned from a half-year Drama course in high school.

    Steve Skelton’s 2 Cows And A Chicken for the 13th includes some casual talk about probability. As normally happens, they figure the chances are about 50-50. I think that’s a default estimate of the probability of something. If you have no evidence to suppose one outcome is more likely than the other, then that is a reason to suppose the chance of something is 50 percent. This is the Bayesian approach to probability, in which we rate things as more or less likely based on what information we have about how often they turn out. It’s a practical way of saying what we mean by the probability of something. It’s terrible if we don’t have much reliable information, though. We need to fall back on reasoning about what is likely and what is not to save us in that case.

    Scott Hilburn’s The Argyle Sweater lead off the Pi Day jokes with an anthropomorphic numerals panel. This is because I read most of the daily comics in alphabetical order by title. It is also because The Argyle Sweater is The Argyle Sweater. Among π’s famous traits is that it goes on forever, in decimal representations, yes. That’s not by itself extraordinary; dull numbers like one-third do that too. (Arguably, even a number like ‘2’ does, if you write all the zeroes in past the decimal point.) π gets to be interesting because it goes on forever without repeating, and without having a pattern easily describable. Also because it’s probably a normal number but we don’t actually know that for sure yet.

    Mark Parisi’s Off The Mark panel for the 14th is another anthropomorphic numerals joke and nearly the same joke as above. The answer, dear numeral, is “chained tweets”. I do not know that there’s a Twitter bot posting the digits of π in an enormous chained Twitter feed. But there’s a Twitter bot posting the digits of π in an enormous chained Twitter feed. If there isn’t, there is now.

    John Zakour and Scott Roberts’s Working Daze for the 14th is your basic Pi Day Wordplay panel. I think there were a few more along these lines but I didn’t record all of them. This strip will serve for them all, since it’s drawn from an appealing camera angle to give the joke life.

    Dave Blazek’s Loose Parts for the 14th is a mathematics wordplay panel but it hasn’t got anything to do with π. I suspect he lost track of what days he was working on, back six or so weeks when his deadline arrived.

    Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 15th is some sort of joke about the probability of the world being like what it seems to be. I’m not sure precisely what anyone is hoping to express here or how it ties in to world peace. But the world does seem to be extremely well described by techniques that suppose it to be random and unpredictable in detail. It is extremely well predictable in the main, which shows something weird about the workings of the world. It seems to be doing all right for itself.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 15th is built on the staggering idea that the Earth might be the only place with life in the universe. The cosmos is a good stand-in for infinitely large things. It might be better as a way to understand the infinitely large than actual infinity would be. Somehow thinking of the number of stars (or whatnot) in the universe and writing out a representable number inspires an understanding for bigness that the word “infinity” or the symbols we have for it somehow don’t seem to, at least to me.

    Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 17th gives us valuable information about how long ahead of time the comic strips are working. Arithmetic is probably the easiest thing to use if one needs an example of a fact. But even “2 + 2 = 4” is a fact only if we accept certain ideas about what we mean by “2” and “+” and “=” and “4”. That we use those definitions instead of others is a reflection of what we find interesting or useful or attractive. There is cultural artifice behind the labelling of this equation as a fact.

    Jimmy Johnson’s Arlo and Janis for the 18th capped off a week of trying to explain some point about the compression and dilution of time in comic strips. Comic strips use space and time to suggest more complete stories than they actually tell. They’re much like every other medium in this way. So, to symbolize deep thinking on a subject we get once again a panel full of mathematics. Yes, I noticed the misquoting of “E = mc2” there. I am not sure what Arlo means by “Remember the boat?” although thinking on it I think he did have a running daydream about living on a boat. Arlo and Janis isn’t a strongly story-driven comic strip, but Johnson is comfortable letting the setting evolve. Perhaps all this is forewarning that we’re going to jump ahead to a time in Arlo’s life when he has, or has had, a boat. I don’t know.

     
  • Joseph Nebus 6:00 pm on Thursday, 16 March, 2017 Permalink | Reply
    Tags: , , , Dustin, , Red and Rover, , weddings   

    Reading the Comics, March 11, 2017: Accountants Edition 


    And now I can wrap up last week’s delivery from Comic Strip Master Command. It’s only five strips. One certainly stars an accountant. one stars a kid that I believe is being coded to read as an accountant. The rest, I don’t know. I pick Edition titles for flimsy reasons anyway. This’ll do.

    Ryan North’s Dinosaur Comics for the 6th is about things that could go wrong. And every molecule of air zipping away from you at once is something which might possibly happen but which is indeed astronomically unlikely. This has been the stuff of nightmares since the late 19th century made probability an important part of physics. The chance all the air near you would zip away at once is impossibly unlikely. But such unlikely events challenge our intuitions about probability. An event that has zero chance of happening might still happen, given enough time and enough opportunities. But we’re not using our time well to worry about that. If nothing else, even if all the air around you did rush away at once, it would almost certainly rush back right away.

    'The new SAT multiple-choice questions have 4 answers instead of 5, with no penalty for guessing.' 'Let's see ... so if I took it now ... that would be one chance in four, which would be ... 25%?' 'Yes.' 'But back when I took it, my chances were ... let's see ... um ...' 'Remember, there's no penalty for guessing.'

    Steve Kelley and Jeff Parker’s Dustin for the 7th of March, 2017. It’s the title character doing the guessing there. Also, Kelley and Parker hate their title character with a thoroughness you rarely see outside Tom Batiuk and Funky Winkerbean. This is a mild case of it but, there we are.

    Steve Kelley and Jeff Parker’s Dustin for the 7th of March talks about the SATs and the chance of picking right answers on a multiple-choice test. I haven’t heard about changes to the SAT but I’ll accept what the comic strip says about them for the purpose of discussion here. At least back when I took it the SAT awarded one point to the raw score for a correct answer, and subtracted one-quarter point for a wrong answer. (The raw scores were then converted into a 200-to-800 range.) I liked this. If you had no idea and guessed on answers you should expect to get one in five right and four in five wrong. On average then you would expect no net change to your raw score. If one or two wrong answers can be definitely ruled out then guessing from the remainder brings you a net positive. I suppose the change, if it is being done, is meant to be confident only right answers are rewarded. I’m not sure this is right; it seems to me there’s value in being able to identify certainly wrong answers even if the right one isn’t obvious. But it’s not my test and I don’t expect to need to take it again either. I can expression opinions without penalty.

    Mark Anderson’s Andertoons for the 7th is the Mark Anderson’s Andertoons for last week. It’s another kid-at-the-chalkboard panel. What gets me is that if the kid did keep one for himself then shouldn’t he have written 38?

    Brian Basset’s Red and Rover for the 8th mentions fractions. It’s just there as the sort of thing a kid doesn’t find all that naturally compelling. That’s all right I like the bug-eyed squirrel in the first panel.

    'The happy couple is about to cut the cake!' 'What kind is it?' 'A math cake.' (It has a square root of 4 sign atop it.)

    Bill Holbrook’s On The Fastrack for the 9th of March, 2017. I confess I’m surprised Holbrook didn’t think to set the climax a couple of days later and tie it in to Pi Day.

    Bill Holbrook’s On The Fastrack for the 9th concludes the wedding of accountant Fi. It uses the square root symbol so as to make the cake topper clearly mathematical as opposed to just an age.

     
  • Joseph Nebus 6:00 pm on Sunday, 12 March, 2017 Permalink | Reply
    Tags: , Basic Instructions, , Little Iodine, Phoebe and her Unicorn, Piranha Club,   

    Reading the Comics, March 6, 2017: Blackboards Edition 


    I can’t say there’s a compelling theme to the first five mathematically-themed comics of last week. Screens full of mathematics turned up in a couple of them, so I’ll run with that. There were also just enough strips that I’m splitting the week again. It seems fair to me and gives me something to remember Wednesday night that I have to rush to complete.

    Jimmy Hatlo’s Little Iodine for the 1st of January, 1956 was rerun on the 5th of March. The setup demands Little Iodine pester her father for help with the “hard homework” and of course it’s arithmetic that gets to play hard work. It’s a word problem in terms of who has how many apples, as you might figure. Don’t worry about Iodine’s boss getting fired; Little Iodine gets her father fired every week. It’s their schtick.

    Little Iodine wakes her father early after a night at the lodge. 'You got to help me with my [hard] homework.' 'Ooh! My head! Wha'?' 'The first one is, if John has twice as many apples as Tom and Sue put together ... ' 'Huh? kay! Go on, let's get this over with.' They work through to morning. Iodine's teacher sees her asleep in class and demands she bring 'a note from your parents as to why you sleep in school instead of at home!' She goes to her father's office where her father's boss is saying, 'Well, Tremblechin, wake up! The hobo hotel is three blocks south and PS: DON'T COME BACK!'

    Jimmy Hatlo’s Little Iodine for the 1st of January, 1956. I guess class started right back up the 2nd, but it would’ve avoided so much trouble if she’d done her homework sometime during the winter break. That said, I never did.

    Dana Simpson’s Phoebe and her Unicorn for the 5th mentions the “most remarkable of unicorn confections”, a sugar dodecahedron. Dodecahedrons have long captured human imaginations, as one of the Platonic Solids. The Platonic Solids are one of the ways we can make a solid-geometry analogue to a regular polygon. Phoebe’s other mentioned shape of cubes is another of the Platonic Solids, but that one’s common enough to encourage no sense of mystery or wonder. The cube’s the only one of the Platonic Solids that will fill space, though, that you can put into stacks that don’t leave gaps between them. Sugar cubes, Wikipedia tells me, have been made only since the 19th century; the Moravian sugar factory director Jakub Kryštof Rad got a patent for cutting block sugar into uniform pieces in 1843. I can’t dispute the fun of “dodecahedron” as a word to say. Many solid-geometric shapes have names that are merely descriptive, but which are rendered with Greek or Latin syllables so as to sound magical.

    Bud Grace’s Piranha Club for the 6th started a sequence in which the Future Disgraced Former President needs the most brilliant person in the world, Bud Grace. A word balloon full of mathematics is used as symbol for this genius. I feel compelled to point out Bud Grace was a physics major. But while Grace could as easily have used something from the physics department to show his deep thinking abilities, that would all but certainly have been rendered as equation and graphs, the stuff of mathematics again.

    At the White Supremacist House: 'I have the smartest people I could find to help me run this soon-to-be-great-again country, but I'm worried that they're NOT SMART ENOUGH! I want the WORLD'S SMARTEST GENIUS to be my SPECIAL ADVISOR!' Meanwhile, cartoonist Bud Grace thinks of stuff like A = pi*r^2 and a^2 + b^2 = c^2 and tries working out 241 times 365, 'carry the one ... hmmmm ... '

    Bud Grace’s Piranha Club for the 6th of March, 2017. 241 times 635 is 153,035 by the way. I wouldn’t work that out in my head if I needed the number. I might work out an estimate of how big it was, in which case I’d do this: 241 is about 250, which is one-quarter of a thousand. One-quarter of 635 is something like 150, which times a thousand is 150,000. If I needed it exactly I’d get a calculator. Unless I just needed something to occupy my mind without having any particular emotional charge.

    Scott Meyer’s Basic Instructions rerun for the 6th is aptly titled, “How To Unify Newtonian Physics And Quantum Mechanics”. Meyer’s advice is not bad, really, although generic enough it applies to any attempts to reconcile two different models of a phenomenon. Also there’s not particularly a problem reconciling Newtonian physics with quantum mechanics. It’s general relativity and quantum mechanics that are so hard to reconcile.

    Still, Basic Instructions is about how you can do a thing, or learn to do a thing. It’s not about how to allow anything to be done for the first time. And it’s true that, per quantum mechanics, we can’t predict exactly what any one particle will do at any time. We can say what possible things it might do and how relatively probable they are. But big stuff, the stuff for which Newtonian physics is relevant, involve so many particles that the unpredictability becomes too small to notice. We can see this as the Law of Large Numbers. That’s the probability rule that tells us we can’t predict any coin flip, but we know that a million fair tosses of a coin will not turn up 800,000 tails. There’s more to it than that (there’s always more to it), but that’s a starting point.

    Michael Fry’s Committed rerun for the 6th features Albert Einstein as the icon of genius. Natural enough. And it reinforces this with the blackboard full of mathematics. I’m not sure if that blackboard note of “E = md3” is supposed to be a reference to the famous Far Side panel of Einstein hearing the maid talk about everything being squared away. I’ll take it as such.

     
  • Joseph Nebus 6:00 pm on Sunday, 5 March, 2017 Permalink | Reply
    Tags: , , Joe Vanilla, Luann Againn, , , Poor Richard's Almanac, ,   

    Reading the Comics, March 4, 2017: Frazz, Christmas Trees, and Weddings Edition 


    It was another of those curious weeks when Comic Strip Master Command didn’t send quite enough comics my way. Among those they did send were a couple of strips in pairs. I can work with that.

    Samson’s Dark Side Of The Horse for the 26th is the Roman Numerals joke for this essay. I apologize to Horace for being so late in writing about Roman Numerals but I did have to wait for Cecil Adams to publish first.

    In Jef Mallett’s Frazz for the 26th Caulfield ponders what we know about Pythagoras. It’s hard to say much about the historical figure: he built a cult that sounds outright daft around himself. But it’s hard to say how much of their craziness was actually their craziness, how much was just that any ancient society had a lot of what seems nutty to us, and how much was jokes (or deliberate slander) directed against some weirdos. What does seem certain is that Pythagoras’s followers attributed many of their discoveries to him. And what’s certain is that the Pythagorean Theorem was known, at least a thing that could be used to measure things, long before Pythagoras was on the scene. I’m not sure if it was proved as a theorem or whether it was just known that making triangles with the right relative lengths meant you had a right triangle.

    Greg Evans’s Luann Againn for the 28th of February — reprinting the strip from the same day in 1989 — uses a bit of arithmetic as generic homework. It’s an interesting change of pace that the mathematics homework is what keeps one from sleep. I don’t blame Luann or Puddles for not being very interested in this, though. Those sorts of complicated-fraction-manipulation problems, at least when I was in middle school, were always slogs of shuffling stuff around. They rarely got to anything we’d like to know.

    Jef Mallett’s Frazz for the 1st of March is one of those little revelations that statistics can give one. Myself, I was always haunted by the line in Carl Sagan’s Cosmos about how, in the future, with the Sun ageing and (presumably) swelling in size and heat, the Earth would see one last perfect day. That there would most likely be quite fine days after that didn’t matter, and that different people might disagree on what made a day perfect didn’t matter. Setting out the idea of a “perfect day” and realizing there would someday be a last gave me chills. It still does.

    Richard Thompson’s Poor Richard’s Almanac for the 1st and the 2nd of March have appeared here before. But I like the strip so I’ll reuse them too. They’re from the strip’s guide to types of Christmas trees. The Cubist Fur is described as “so asymmetrical it no longer inhabits Euclidean space”. Properly neither do we, but we can’t tell by eye the difference between our space and a Euclidean space. “Non-Euclidean” has picked up connotations of being so bizarre or even horrifying that we can’t hope to understand it. In practice, it means we have to go a little slower and think about, like, what would it look like if we drew a triangle on a ball instead of a sheet of paper. The Platonic Fir, in the 2nd of March strip, looks like a geometry diagram and I doubt that’s coincidental. It’s very hard to avoid thoughts of Platonic Ideals when one does any mathematics with a diagram. We know our drawings aren’t very good triangles or squares or circles especially. And three-dimensional shapes are worse, as see every ellipsoid ever done on a chalkboard. But we know what we mean by them. And then we can get into a good argument about what we mean by saying “this mathematical construct exists”.

    Mark Litzler’s Joe Vanilla for the 3rd uses a chalkboard full of mathematics to represent the deep thinking behind a silly little thing. I can’t make any of the symbols out to mean anything specific, but I do like the way it looks. It’s quite well-done in looking like the shorthand that, especially, physicists would use while roughing out a problem. That there are subscripts with forms like “12” and “22” with a bar over them reinforces that. I would, knowing nothing else, expect this to represent some interaction between particles 1 and 2, and 2 with itself, and that the bar means some kind of complement. This doesn’t mean much to me, but with luck, it means enough to the scientist working it out that it could be turned into a coherent paper.

    'Has Carl given you any reason not to trust him?' 'No, not yet. But he might.' 'Fi ... you seek 100% certainty in people, but that doesn't exist. In the end,' and Dethany is drawn as her face on a pi symbol, 'we're *all* irrational numbers.'

    Bill Holbrook’s On The Fastrack for the 3rd of March, 2017. Fi’s dress isn’t one of those … kinds with the complicated pattern of holes in it. She got it torn while trying to escape the wedding and falling into the basement.

    Bill Holbrook’s On The Fastrack is this week about the wedding of the accounting-minded Fi. And she’s having last-minute doubts, which is why the strip of the 3rd brings in irrational and anthropomorphized numerals. π gets called in to serve as emblematic of the irrational numbers. Can’t fault that. I think the only more famously irrational number is the square root of two, and π anthropomorphizes more easily. Well, you can draw an established character’s face onto π. The square root of 2 is, necessarily, at least two disconnected symbols and you don’t want to raise distracting questions about whether the root sign or the 2 gets the face.

    That said, it’s a lot easier to prove that the square root of 2 is irrational. Even the Pythagoreans knew it, and a bright child can follow the proof. A really bright child could create a proof of it. To prove that π is irrational is not at all easy; it took mathematicians until the 19th century. And the best proof I know of the fact does it by a roundabout method. We prove that if a number (other than zero) is rational then the tangent of that number must be irrational, and vice-versa. And the tangent of π/4 is 1, so therefore π/4 must be irrational, so therefore π must be irrational. I know you’ll all trust me on that argument, but I wouldn’t want to sell it to a bright child.

    'Fi ... humans are complicated. Like the irrational number pi, we can go on forever. You never get to the bottom of us! But right now, upstairs, there are two variables who *want* you in their lives. Assign values to them.' Carl, Fi's fiancee, is drawn as his face with a y; his kid as a face on an x.

    Bill Holbrook’s On The Fastrack for the 4th of March, 2017. I feel bad that I completely forgot Carl had a kid and that the face on the x doesn’t help me remember anything.

    Holbrook continues the thread on the 4th, extends the anthropomorphic-mathematics-stuff to call people variables. There’s ways that this is fair. We use a variable for a number whose value we don’t know or don’t care about. A “random variable” is one that could take on any of a set of values. We don’t know which one it does, in any particular case. But we do know — or we can find out — how likely each of the possible values is. We can use this to understand the behavior of systems even if we never actually know what any one of it does. You see how I’m going to defend this metaphor, then, especially if we allow that what people are likely or unlikely to do will depend on context and evolve in time.

     
  • Joseph Nebus 6:00 pm on Sunday, 26 February, 2017 Permalink | Reply
    Tags: , , Flo and Friends, , , , Promises Promises, , , , Tiger   

    Reading the Comics, February 23, 2017: The Week At Once Edition 


    For the first time in ages there aren’t enough mathematically-themed comic strips to justify my cutting the week’s roundup in two. No, I have no idea what I’m going to write about for Thursday. Let’s find out together.

    Jenny Campbell’s Flo and Friends for the 19th faintly irritates me. Flo wants to make sure her granddaughter understands that just because it takes people on average 14 minutes to fall asleep doesn’t mean that anyone actually does, by listing all sorts of reasons that a person might need more than fourteen minutes to sleep. It makes me think of a behavior John Allen Paulos notes in Innumeracy, wherein the statistically wise points out that someone has, say, a one-in-a-hundred-million chance of being killed by a terrorist (or whatever) and is answered, “ah, but what if you’re that one?” That is, it’s a response that has the form of wisdom without the substance. I notice Flo doesn’t mention the many reasons someone might fall asleep in less than fourteen minutes.

    But there is something wise in there nevertheless. For most stuff, the average is the most common value. By “the average” I mean the arithmetic mean, because that is what anyone means by “the average” unless they’re being difficult. (Mathematicians acknowledge the existence of an average called the mode, which is the most common value (or values), and that’s most common by definition.) But just because something is the most common result does not mean that it must be common. Toss a coin fairly a hundred times and it’s most likely to come up tails 50 times. But you shouldn’t be surprised if it actually turns up tails 51 or 49 or 45 times. This doesn’t make 50 a poor estimate for the average number of times something will happen. It just means that it’s not a guarantee.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th shows off an unusually dynamic camera angle. It’s in service for a class of problem you get in freshman calculus: find the longest pole that can fit around a corner. Oh, a box-spring mattress up a stairwell is a little different, what with box-spring mattresses being three-dimensional objects. It’s the same kind of problem. I want to say the most astounding furniture-moving event I’ve ever seen was when I moved a fold-out couch down one and a half flights of stairs single-handed. But that overlooks the caged mouse we had one winter, who moved a Chinese finger-trap full of crinkle paper up the tight curved plastic to his nest by sheer determination. The trap was far longer than could possibly be curved around the tube. We have no idea how he managed it.

    J R Faulkner’s Promises, Promises for the 20th jokes that one could use Roman numerals to obscure calculations. So you could. Roman numerals are terrible things for doing arithmetic, at least past addition and subtraction. This is why accountants and mathematicians abandoned them pretty soon after learning there were alternatives.

    Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. Probably anything would do for the blackboard problem, but something geometry reads very well.

    Jef Mallett’s Frazz for the 21st makes some comedy out of the sort of arithmetic error we all make. It’s so easy to pair up, like, 7 and 3 make 10 and 8 and 2 make 10. It takes a moment, or experience, to realize 78 and 32 will not make 100. Forgive casual mistakes.

    Bud Fisher’s Mutt and Jeff rerun for the 22nd is a similar-in-tone joke built on arithmetic errors. It’s got the form of vaudeville-style sketch compressed way down, which is probably why the third panel could be made into a satisfying final panel too.

    'How did you do on the math test?' 'Terrible.' 'Will your mom be mad?' 'Maybe. But at least she'll know I didn't cheat!'

    Bud Blake’s Tiger for the 23rd of February, 2017. I want to blame the colorists for making Hugo’s baby tooth look so weird in the second and third panels, but the coloring is such a faint thing at that point I can’t. I’m sorry to bring it to your attention if you didn’t notice and weren’t bothered by it before.

    Bud Blake’s Tiger rerun for the 23rd just name-drops mathematics; it could be any subject. But I need some kind of picture around here, don’t I?

    Mike Baldwin’s Cornered for the 23rd is the anthropomorphic numerals joke for the week.

     
  • Joseph Nebus 6:00 pm on Thursday, 23 February, 2017 Permalink | Reply
    Tags: , , compulsions, , Over The Hedge, , , Wide Open   

    Reading the Comics, February 15, 2017: SMBC Does Not Cut In Line Edition 


    On reflection, that Saturday Morning Breakfast Cereal I was thinking about was not mathematically-inclined enough to be worth including here. Helping make my mind up on that was that I had enough other comic strips to discuss here that I didn’t need to pad my essay. Yes, on a slow week I let even more marginal stuff in. Here’s the comic I don’t figure to talk about. Enjoy!

    Jack Pullan’s Boomerangs rerun for the 16th is another strip built around the “algebra is useless in real life” notion. I’m too busy noticing Mom in the first panel saying “what are you doing play [sic] video games?” to respond.

    Ruben Bolling’s Super-Fun-Pak Comix excerpt for the 16th is marginal, yeah, but fun. Numeric coincidence and numerology can sneak into compulsions with terrible ease. I can believe easily the need to make the number of steps divisible by some favored number.

    Rich Powell’s Wide Open for the 16th is a caveman science joke, and it does rely on a chalkboard full of algebra for flavor. The symbols come tantalizingly close to meaningful. The amount of kinetic energy, K or KE, of a particle of mass m moving at speed v is indeed K = \frac{1}{2} m v^2 . Both 16 and 32 turn up often in the physics of falling bodies, at least if we’re using feet to measure. a = -\frac{k}{m} x turns up in physics too. It comes from the acceleration of a mass on a spring. But an equation of the same shape turns up whenever you describe things that go through tiny wobbles around the normal value. So the blackboard is gibberish, but it’s a higher grade of gibberish than usual.

    Rick Detorie’s One Big Happy rerun for the 17th is a resisting-the-word-problem joke, made fresher by setting it in little Ruthie’s playing at school.

    T Lewis and Michael Fry’s Over The Hedge for the 18th mentions the three-body problem. As Verne the turtle says, it’s a problem from physics. The way two objects — sun and planet, planet and moon, pair of planets, whatever — orbit each other if they’re the only things in the universe is easy. You can describe it all perfectly and without using more than freshman physics majors know. Introduce a third body, though, and we don’t know anymore. Chaos can happen.

    Emphasis on can. There’s no good way to solve the “general” three-body problem, the one where the star and planets can have any sizes and any starting positions and any starting speeds. We can do well for special cases, though. If you have a sun, a planet, and a satellite — each body negligible compared to the other — we can predict orbits perfectly well. If the bodies have to stay in one plane of motion, instead of moving in three-dimensional space, we can do pretty well. If we know two of the bodies orbit each other tightly and the third is way off in the middle of nowhere we can do pretty well.

    But there’s still so many interesting cases for which we just can’t be sure chaos will not break out. Three interacting bodies just offer so much more chance for things to happen. (To mention something surely coincidental, it does seem to be a lot easier to write good comedy, or drama, with three important characters rather than two. Any pair of characters can gang up on the third, after all. I notice how much more energetic Over The Hedge became when Hammy the Squirrel joined RJ and Verne as the core cast.)

    Dave Whamond’s Reality Check for the 18th is your basic mathematics-illiteracy joke, done well enough.

     
  • Joseph Nebus 6:00 pm on Sunday, 19 February, 2017 Permalink | Reply
    Tags: , fandom, , , , , , , Wandering Melon   

    Reading the Comics, February 15, 2017: SMBC Cuts In Line Edition 


    It’s another busy enough week for mathematically-themed comic strips that I’m dividing the harvest in two. There’s a natural cutting point since there weren’t any comics I could call relevant for the 15th. But I’m moving a Saturday Morning Breakfast Cereal of course from the 16th into this pile. That’s because there’s another Saturday Morning Breakfast Cereal of course from after the 16th that I might include. I’m still deciding if it’s close enough to on topic. We’ll see.

    John Graziano’s Ripley’s Believe It Or Not for the 12th mentions the “Futurama Theorem”. The trivia is true, in that writer Ken Keeler did create a theorem for a body-swap plot he had going. The premise was that any two bodies could swap minds at most one time. So, after a couple people had swapped bodies, was there any way to get everyone back to their correct original body? There is, if you bring two more people in to the body-swapping party. It’s clever.

    From reading comment threads about the episode I conclude people are really awestruck by the idea of creating a theorem for a TV show episode. The thing is that “a theorem” isn’t necessarily a mind-boggling piece of work. It’s just the name mathematicians give when we have a clearly-defined logical problem and its solution. A theorem and its proof can be a mind-wrenching bit of work, like Fermat’s Last Theorem or the Four-Color Map Theorem are. Or it can be on the verge of obvious. Keeler’s proof isn’t on the obvious side of things. But it is the reasoning one would have to do to solve the body-swap problem the episode posited without cheating. Logic and good story-telling are, as often, good partners.

    Teresa Burritt’s Frog Applause is a Dadaist nonsense strip. But for the 13th it hit across some legitimate words, about a 14 percent false-positive rate. This is something run across in hypothesis testing. The hypothesis is something like “is whatever we’re measuring so much above (or so far below) the average that it’s not plausibly just luck?” A false positive is what it sounds like: our analysis said yes, this can’t just be luck, and it turns out that it was. This turns up most notoriously in medical screenings, when we want to know if there’s reason to suspect a health risk, and in forensic analysis, when we want to know if a particular person can be shown to have been a particular place at a particular time. A 14 percent false positive rate doesn’t sound very good — except.

    Suppose we are looking for a rare condition. Say, something one person out of 500 will have. A test that’s 99 percent accurate will turn up positives for the one person who has got it and for five of the people who haven’t. It’s not that the test is bad; it’s just there are so many negatives to work through. If you can screen out a good number of the negatives, though, the people who haven’t got the condition, then the good test will turn up fewer false positives. So suppose you have a cheap or easy or quick test that doesn’t miss any true positives but does have a 14 percent false positive rate. That would screen out 430 of the people who haven’t got whatever we’re testing for, leaving only 71 people who need the 99-percent-accurate test. This can make for a more effective use of resources.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 13th is an algebra-in-real-life joke and I can’t make something deeper out of that.

    Mike Shiell’s The Wandering Melon for the 13th is a spot of wordplay built around statisticians. Good for taping to the mathematics teacher’s walls.

    Eric the Circle for the 14th, this one by “zapaway”, is another bit of wordplay. Tans and tangents.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th identifies, aptly, a difference between scientists and science fans. Weinersmith is right that loving trivia is a hallmark of a fan. Expertise — in any field, not just science — is more about recognizing patterns of problems and concepts, ways to bring approaches from one field into another, this sort of thing. And the digits of π are great examples of trivia. There’s no need for anyone to know the 1,681st digit of π. There’s few calculations you could ever do when you needed more than three dozen digits. But if memorizing digits seems like fun then π is a great set to learn. e is the only other number at all compelling.

    The thing is, it’s very hard to become an expert in something without first being a fan of it. It’s possible, but if a field doesn’t delight you why would you put that much work into it? So even though the scientist might have long since gotten past caring how many digits of π, it’s awfully hard to get something memorized in the flush of fandom out of your head.

    I know you’re curious. I can only remember π out to 3.14158926535787962. I might have gotten farther if I’d tried, but I actually got a digit wrong, inserting a ‘3’ before that last ’62’, and the effort to get that mistake out of my head obliterated any desire to waste more time memorizing digits. For e I can only give you 2.718281828. But there’s almost no hope I’d know that far if it weren’t for how e happens to repeat that 1828 stanza right away.

     
  • Joseph Nebus 6:00 pm on Thursday, 16 February, 2017 Permalink | Reply
    Tags: , , Crock, , , Mr Lowe, , , ,   

    Reading the Comics, February 11, 2017: Trivia Edition 


    And now to wrap up last week’s mathematically-themed comic strips. It’s not a set that let me get into any really deep topics however hard I tried overthinking it. Maybe something will turn up for Sunday.

    Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 7th tries setting arithmetic versus celebrity trivia. It’s for the old joke about what everyone should know versus what everyone does know. One might question whether Kardashian pet eating habits are actually things everyone knows. But the joke needs some hyperbole in it to have any vitality and that’s the only available spot for it. It’s easy also to rate stuff like arithmetic as trivia since, you know, calculators. But it is worth knowing that seven squared is pretty close to 50. It comes up when you do a lot of estimates of calculations in your head. The square root of 10 is pretty near 3. The square root of 50 is near 7. The cube root of 10 is a little more than 2. The cube root of 50 a little more than three and a half. The cube root of 100 is a little more than four and a half. When you see ways to rewrite a calculation in estimates like this, suddenly, a lot of amazing tricks become possible.

    Leigh Rubin’s Rubes for the 7th is a “mathematics in the real world” joke. It could be done with any mythological animals, although I suppose unicorns have the advantage of being relatively easy to draw recognizably. Mermaids would do well too. Dragons would also read well, but they’re more complicated to draw.

    Mark Pett’s Mr Lowe rerun for the 8th has the kid resisting the mathematics book. Quentin’s grounds are that how can he know a dated book is still relevant. There’s truth to Quentin’s excuse. A mathematical truth may be universal. Whether we find it interesting is a matter of culture and even fashion. There are many ways to present any fact, and the question of why we want to know this fact has as many potential answers as it has people pondering the question.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th is a paean to one of the joys of numbers. There is something wonderful in counting, in measuring, in tracking. I suspect it’s nearly universal. We see it reflected in people passing around, say, the number of rivets used in the Chrysler Building or how long a person’s nervous system would reach if stretched out into a line or ever-more-fanciful measures of stuff. Is it properly mathematics? It’s delightful, isn’t that enough?

    Scott Hilburn’s The Argyle Sweater for the 10th is a Fibonacci Sequence joke. That’s a good one for taping to the walls of a mathematics teacher’s office.

    'Did you ever take a date to a drive-in movie in high school?' 'Once, but she went to the concession stand and never came back.' 'Did you wonder why?' 'Yeah, but I kept on doing my math homework.'

    Bill Rechin’s Crock rerun for the 11th of February, 2017. They actually opened a brand-new drive-in theater something like forty minutes away from us a couple years back. We haven’t had the chance to get there. But we did get to one a fair bit farther away where yes, we saw Turbo, that movie about the snail that races in the Indianapolis 500. The movie was everything we hoped for and it’s just a shame Roger Ebert died too young to review it for us.

    Bill Rechin’s Crock rerun for the 11th is a name-drop of mathematics. Really anybody’s homework would be sufficiently boring for the joke. But I suppose mathematics adds the connotation that whatever you’re working on hasn’t got a human story behind it, the way English or History might, and that it hasn’t got the potential to eat, explode, or knock a steel ball into you the way Biology, Chemistry, or Physics have. Fair enough.

     
  • Joseph Nebus 6:00 pm on Sunday, 12 February, 2017 Permalink | Reply
    Tags: Agnes, , , , , Lay Lines, , Pooch Cafe, Rabbits Against Magic,   

    Reading the Comics, February 6, 2017: Another Pictureless Half-Week Edition 


    Got another little flood of mathematically-themed comic strips last week and so once again I’ll split them along something that looks kind of middle-ish. Also this is another bunch of GoComics.com-only posts. Since those seem to be accessible to anyone whether or not they’re subscribers indefinitely far into the future I don’t feel like I can put the comics directly up and will trust you all to click on the links that you find interesting. Which is fine; the new GoComics.com design makes it annoyingly hard to download a comic strip. I don’t think that was their intention. But that’s one of the two nagging problems I have with their new design. So you know.

    Tony Cochran’s Agnes for the 5th sees a brand-new mathematics. Always dangerous stuff. But mathematicians do invent, or discover, new things in mathematics all the time. Part of the task is naming the things in it. That’s something which takes talent. Some people, such as Leonhard Euler, had the knack a great novelist has for putting names to things. The rest of us muddle along. Often if there’s any real-world inspiration, or resemblance to anything, we’ll rely on that. And we look for terminology that evokes similar ideas in other fields. … And, Agnes would like to know, there is mathematics that’s about approximate answers, being “right around” the desired answer. Unfortunately, that’s hard. (It’s all hard, if you’re going to take it seriously, much like everything else people do.)

    Scott Hilburn’s The Argyle Sweater for the 5th is the anthropomorphic numerals joke for this essay.

    Carol Lay’s Lay Lines for the 6th depicts the hazards of thinking deeply and hard about the infinitely large and the infinitesimally small. They’re hard. Our intuition seems well-suited to handing a modest bunch of household-sized things. Logic guides us when thinking about the infinitely large or small, but it takes a long time to get truly conversant and comfortable with it all.

    Paul Gilligan’s Pooch Cafe for the 6th sees Poncho try to argue there’s thermodynamical reasons for not being kind. Reasoning about why one should be kind (or not) is the business of philosophers and I won’t overstep my expertise. Poncho’s mathematics, that’s something I can write about. He argues “if you give something of yourself, you inherently have less”. That seems to be arguing for a global conservation of self-ness, that the thing can’t be created or lost, merely transferred around. That’s fair enough as a description of what the first law of thermodynamics tells us about energy. The equation he reads off reads, “the change in the internal energy (Δ U) equals the heat added to the system (U) minus the work done by the system (W)”. Conservation laws aren’t unique to thermodynamics. But Poncho may be aware of just how universal and powerful thermodynamics is. I’m open to an argument that it’s the most important field of physics.

    Jonathan Lemon’s Rabbits Against Magic for the 6th is another strip Intro to Calculus instructors can use for their presentation on instantaneous versus average velocities. There’s been a bunch of them recently. I wonder if someone at Comic Strip Master Command got a speeding ticket.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th is about numeric bases. They’re fun to learn about. There’s an arbitrariness in the way we represent concepts. I think we can understand better what kinds of problems seem easy and what kinds seem harder if we write them out different ways. But base eleven is only good for jokes.

     
    • davekingsbury 10:01 pm on Monday, 13 February, 2017 Permalink | Reply

      He argues “if you give something of yourself, you inherently have less”. That seems to be arguing for a global conservation of self-ness, that the thing can’t be created or lost, merely transferred around.

      How, I wonder, to marry that with Juliet’s declaration of love for Juliet?

      “My bounty is as boundless as the sea,
      My love as deep; the more I give to thee,
      The more I have, for both are infinite.”

      Like

      • Joseph Nebus 11:08 pm on Thursday, 16 February, 2017 Permalink | Reply

        Oh, well, infinities are just trouble no matter what. Anything can happen with them.

        I suppose there’s also the question of how the Banach-Tarski Paradox affects love.

        Liked by 1 person

    • Downpuppy (@Downpuppy) 12:30 am on Tuesday, 14 February, 2017 Permalink | Reply

      Agnes is the first Fuzzy Math reference I’ve seen in about 10 years.

      Squirrel Girl counted to 31 on one hand to defeat Count Nefario, but SMBC is more an ASL snub

      Like

      • Joseph Nebus 11:12 pm on Thursday, 16 February, 2017 Permalink | Reply

        I’m a little surprised fuzzy mathematics doesn’t get used for more comic strips, but I don’t suppose it lends itself to too many different jokes. On the other hand, neither does Pi Day and we’ll see a bunch of those over the coming month.

        I had expected, really, Saturday Morning Breakfast Cereal to go with 1,024 as a natural base if you use your hands in a particularly digit-efficient way.

        Like

  • Joseph Nebus 6:00 pm on Thursday, 9 February, 2017 Permalink | Reply
    Tags: , , , Dogs of C Kennel, , , , Nest Heads,   

    Reading the Comics, February 3, 2017: Counting Edition 


    And now I can close out last week’s mathematically-themed comic strips. Two of them are even about counting, which is enough for me to make that the name of this set.

    John Allen’s Nest Heads for the 2nd mentions a probability and statistics class and something it’s supposed to be good for. I would agree that probability and statistics are probably (I can’t find a better way to write this) the most practically useful mathematics one can learn. At least once you’re past arithmetic. They’re practical by birth; humans began studying them because they offer guidance in uncertain situations. And one can use many of their tools without needing more than arithmetic.

    I’m not so staunchly anti-lottery as many mathematics people are. I’ll admit I play it myself, when the jackpot is large enough. When the expectation value of the prize gets to be positive, it’s harder to rationalize not playing. This happens only once or twice a year, but it’s fun to watch and see when it happens. I grant it’s a foolish way to use two dollars (two tickets are my limit), but you know? My budget is not so tight I can’t spend four dollars foolishly a year. Besides, I don’t insist on winning one of those half-billion-dollar prizes. I imagine I’d be satisfied if I brought in a mere $10,000.

    'Hey, Ruthie's Granny, how old are you?' 'You can't count that high, James.' 'I can too!' 'Fine! Start at one and I'll tell you when you get to my age.' '1, 2, 3, 4, 11, 22, 88, 99, 200, a gazillion!' 'Very good! It's somewhere between 22 and a gazillion!' 'Gazowie!'

    Rick Detorie’s One Big Happy for the 3rd of February, 2017. A ‘gazillion’ is actually a surprisingly low number, hovering as it does somewhere around 212. Fun fact!

    Rick Detorie’s One Big Happy for the 3rd continues my previous essay’s bit of incompetence at basic mathematics, here, counting. But working out that her age is between 22 an a gazillion may be worth doing. It’s a common mathematical challenge to find a correct number starting from little information about it. Usually we find it by locating bounds: the number must be larger than this and smaller than that. And then get the bounds closer together. Stop when they’re close enough for our needs, if we’re numerical mathematicians. Stop when the bounds are equal to each other, if we’re analytic mathematicians. That can take a lot of work. Many problems in number theory amount to “improve our estimate of the lowest (or highest) number for which this is true”. We have to start somewhere.

    Samson’s Dark Side of the Horse for the 3rd is a counting-sheep joke and I was amused that the counting went so awry here. On looking over the strip again for this essay, though, I realize I read it wrong. It’s the fences that are getting counted, not the sheep. Well, it’s a cute little sheep having the same problems counting that Horace has. We don’t tend to do well counting more than around seven things at a glance. We can get a bit farther if we can group things together and spot that, say, we have four groups of four fences each. That works and it’s legitimate; we’re counting and we get the right count out of it. But it does feel like we’re doing something different from how we count, say, three things at a glance.

    Mick Mastroianni and Mason MastroianniDogs of C Kennel for the 3rd is about the world’s favorite piece of statistical mechanics, entropy. There’s room for quibbling about what exactly we mean by thermodynamics saying all matter is slowly breaking down. But the gist is fair enough. It’s still mysterious, though. To say that the disorder of things is always increasing forces us to think about what we mean by disorder. It’s easy to think we have an idea what we mean by it. It’s hard to make that a completely satisfying definition. In this way it’s much like randomness, which is another idea often treated as the same as disorder.

    Bill Amend’s FoxTrot Classics for the 3rd reprinted the comic from the 10th of February, 2006. Mathematics teachers always want to see how you get your answers. Why? … Well, there are different categories of mistakes someone can make. One can set out trying to solve the wrong problem. One can set out trying to solve the right problem in a wrong way. One can set out solving the right problem in the right way and get lost somewhere in the process. Or one can be doing just fine and somewhere along the line change an addition to a subtraction and get what looks like the wrong answer. Each of these is a different kind of mistake. Knowing what kinds of mistakes people make is key to helping them not make these mistakes. They can get on to making more exciting mistakes.

     
  • Joseph Nebus 6:00 pm on Sunday, 5 February, 2017 Permalink | Reply
    Tags: , , , , , , Pajama Diaries, ,   

    Reading the Comics, February 2, 2017: I Haven’t Got A Jumble Replacement Source Yet 


    If there was one major theme for this week it was my confidence that there must be another source of Jumble strips out there. I haven’t found it, but I admit not making it a priority either. The official Jumble site says I can play if I activate Flash, but I don’t have enough days in the year to keep up with Flash updates. And that doesn’t help me posting mathematics-relevant puzzles here anyway.

    Mark Anderson’s Andertoons for January 29th satisfies my Andertoons need for this week. And it name-drops the one bit of geometry everyone remembers. To be dour and humorless about it, though, I don’t think one could likely apply the Pythagorean Theorem. Typically the horizontal axis and the vertical axis in a graph like this measure different things. Squaring the different kinds of quantities and adding them together wouldn’t mean anything intelligible. What would even be the square root of (say) a squared-dollars-plus-squared-weeks? This is something one learns from dimensional analysis, a corner of mathematics I’ve thought about writing about some. I admit this particular insight isn’t deep, but everything starts somewhere.

    Norm Feuti’s Gil rerun for the 30th is a geometry name-drop, listing it as the sort of category Jeopardy! features. Gil shouldn’t quit so soon. The responses for the category are “What is the Pythagorean Theorem?”, “What is acute?”, “What is parallel?”, “What is 180 degrees?” (or, possibly, 360 or 90 degrees), and “What is a pentagon?”.

    Parents' Glossary Of Terms: 'Mortifraction': That utter shame when you realize you can no longer do math in your head. Parent having trouble making change at a volunteer event.

    Terri Libenson’s Pajama Diaries for the 1st of February, 2017. You know even for a fundraising event $17.50 seems a bit much for a hot dog and bottled water. Maybe the friend’s 8-year-old child is way off too.

    Terri Libenson’s Pajama Diaries for the 1st of February shows off the other major theme of this past week, which was busy enough that I have to again split the comics post into two pieces. That theme is people getting basic mathematics wrong. Mostly counting. (You’ll see.) I know there’s no controlling what people feel embarrassed about. But I think it’s unfair to conclude you “can no longer” do mathematics in your head because you’re not able to make change right away. It’s normal to be slow or unreliable about something you don’t do often. Inexperience and inability are not the same thing, and it’s unfair to people to conflate them.

    Gordon Bess’s Redeye for the 21st of September, 1970, got rerun the 1st of February. And it’s another in the theme of people getting basic mathematics wrong. And even more basic mathematics this time. There’s more problems-with-counting comics coming when I finish the comics from the past week.

    'That was his sixth shot!' 'Good! OK, Paleface! You've had it now!' (BLAM) 'I could never get that straight, does six come after four or after five?'

    Gordon Bess’s Redeye for the 21st of September, 1970. Rerun the 1st of February, 2017. I don’t see why they’re so worried about counting bullets if being shot just leaves you a little discombobulated.

    Dave Whamond’s Reality Check for the 1st hopes that you won’t notice the label on the door is painted backwards. Just saying. It’s an easy joke to make about algebra, also, that it should put letters in to perfectly good mathematics. Letters are used for good reasons, though. We’ve always wanted to work out the value of numbers we only know descriptions of. But it’s way too wordy to use the whole description of the number every time we might speak of it. Before we started using letters we could use placeholder names like “re”, meaning “thing” (as in “thing we want to calculate”). That works fine, although it crashes horribly when we want to track two or three things at once. It’s hard to find words that are decently noncommittal about their values but that we aren’t going to confuse with each other.

    So the alphabet works great for this. An individual letter doesn’t suggest any particular number, as long as we pretend ‘O’ and ‘I’ and ‘l’ don’t look like they do. But we also haven’t got any problem telling ‘x’ from ‘y’ unless our handwriting is bad. They’re quick to write and to say aloud, and they don’t require learning to write any new symbols.

    Later, yes, letters do start picking up connotations. And sometimes we need more letters than the Roman alphabet allows. So we import from the Greek alphabet the letters that look different from their Roman analogues. That’s a bit exotic. But at least in a Western-European-based culture they aren’t completely novel. Mathematicians aren’t really trying to make this hard because, after all, they’re the ones who have to deal with the hard parts.

    Bu Fisher’s Mutt and Jeff rerun for the 2nd is another of the basic-mathematics-wrong jokes. But it does get there by throwing out a baffling set of story-problem-starter points. Particularly interesting to me is Jeff’s protest in the first panel that they couldn’t have been doing 60 miles an hour as they hadn’t been out an hour. It’s the sort of protest easy to use as introduction to the ideas of average speed and instantaneous speed and, from that, derivatives.

     
  • Joseph Nebus 6:00 pm on Sunday, 29 January, 2017 Permalink | Reply
    Tags: , , , , , , , Randy Glasbergen, ,   

    Reading the Comics, January 28, 2017: Chuckle Brothers Edition 


    The week started out quite busy and I was expecting I’d have to split my essay again. It didn’t turn out that way; Comic Strip Master Command called a big break on mathematically-themed comics from Tuesday on. And then nobody from Comics Kingdom or from Creators.com needed inclusion either. I just have a bunch of GoComics links and a heap of text here. I bet that changes by next week. Still no new Jumble strips.

    Brian Boychuk and Ron Boychuk’s The Chuckle Brothers for the 22nd was their first anthropomorphic numerals joke of the week.

    Kevin Fagan’s Drabble for the 22nd uses arithmetic as the sort of problem it’s easy to get clearly right or clearly wrong. It’s a more economical use of space than (say) knowing how many moons Saturn’s known to have. (More than we thought there were as long ago as Thursday.) I do like that there’s a decent moral to this on the way to the punch line.

    Bill Amend’s FoxTrot for the 22nd has Jason stand up for “torus” as a better name for doughnuts. You know how nerdy people will like putting a complicated word onto an ordinary thing. But there are always complications. A torus ordinarily describes the shape made by rotating a circle around an axis that’s in the plane of the circle. The result is a surface, though, the shell of a doughnut and none of the interior. If we’re being fussy. I don’t know of a particular name for the torus with its interior and suspect that, if pressed, a mathematician would just say “torus” or maybe “doughnut”.

    We can talk about toruses in two dimensions; those look just like circles. The doughnut-shell shape is a torus in three dimensions. There’s torus shapes made by rotating spheres, or hyperspheres, in four or more dimensions. I’m not going to draw them. And we can also talk about toruses by the number of holes that go through them. If a normal torus is the shape of a ring-shaped pool toy, a double torus is the shape of a two-seater pool toy, a triple torus something I don’t imagine exists in the real world. A quadruple torus could look, I imagine, like some pool toys Roller Coaster Tycoon allows in its water parks. I’m saying nothing about whether they’re edible.

    Brian Boychuk and Ron Boychuk’s The Chuckle Brothers for the 23rd was their second anthropomorphic numerals joke of the week. I suppose sometimes you just get an idea going.

    Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 23rd jokes about mathematics skills versus life. The growth is fine enough; after all, most of us are at, or get to, our best at something while we’re training in it or making regular use of it. So the joke peters out into the usual “I never use mathematics in real life” crack, which, eh. I agree it’s what I feel like my mathematics skills have done ever since I got my degree, at any rate.

    Teresa Burritt’s Frog Applause for the 24th describes an extreme condition which hasn’t been a problem for me. I’m not an overindulgey type.

    Randy Glasbergen’s Glasbergen Cartoons rerun for the 26th is the pie chart joke for this week.

    Michael Fry’s Committed rerun for the 28th just riffs on the escalation of hyperbole, and what sure looks like an exponential growth of hyperbolic numbers. There’s a bit of scientific notation in the last panel. The “1 x” part isn’t necessary. It doesn’t change the value of the expression “1 x 1026”. But it might be convenient to use the “1 x” anyway. Scientific notation is about separating the size of the number from the interesting digits that the number has. Often when you compare numbers you’re interested in the size or else you’re interested in the important digits. Get into that habit and it’s not worth making an exception just because the interesting digits turn out to be boring in this case.

     
  • Joseph Nebus 6:00 pm on Thursday, 26 January, 2017 Permalink | Reply
    Tags: , Clear Blue Water, Hi and Lois, , , One Big Family, ,   

    Reading the Comics, January 21, 2017: Homework Edition 


    Now to close out what Comic Strip Master Command sent my way through last Saturday. And I’m glad I’ve shifted to a regular schedule for these. They ordered a mass of comics with mathematical themes for Sunday and Monday this current week.

    Karen Montague-Reyes’s Clear Blue Water rerun for the 17th describes trick-or-treating as “logarithmic”. The intention is to say that the difficulty in wrangling kids from house to house grows incredibly fast as the number of kids increases. Fair enough, but should it be “logarithmic” or “exponential”? Because the logarithm grows slowly as the number you take the logarithm of grows. It grows all the slower the bigger the number gets. The exponential of a number, though, that grows faster and faster still as the number underlying it grows. So is this mistaken?

    I say no. It depends what the logarithm is, and is of. If the number of kids is the logarithm of the difficulty of hauling them around, then the intent and the mathematics are in perfect alignment. Five kids are (let’s say) ten times harder to deal with than four kids. Sensible and, from what I can tell of packs of kids, correct.

    'Anne has six nickels. Sue has 41 pennies. Who has more money?' 'That's not going to be easy to figure out. It all depends on how they're dressed!'

    Rick Detorie’s One Big Happy for the 17th of January, 2017. The section was about how the appearance and trappings of wealth matter for more than the actual substance of wealth so everyone’s really up to speed in the course.

    Rick Detorie’s One Big Happy for the 17th is a resisting-the-word-problem joke. There’s probably some warning that could be drawn about this in how to write story problems. It’s hard to foresee all the reasonable confounding factors that might get a student to the wrong answer, or to see a problem that isn’t meant to be there.

    Bill Holbrook’s On The Fastrack for the 19th continues Fi’s story of considering leaving Fastrack Inc, and finding a non-competition clause that’s of appropriate comical absurdity. As an auditor there’s not even a chance Fi could do without numbers. Were she a pure mathematician … yeah, no. There’s fields of mathematics in which numbers aren’t all that important. But we never do without them entirely. Even if we exclude cases where a number is just used as an index, for which Roman numerals would be almost as good as regular numerals. If nothing else numbers would keep sneaking in by way of polynomials.

    'Uh, Fi? Have you looked at the non-compete clause in your contract?' 'I wouldn't go to one of Fastrack's competitors.' 'No, but, um ... you'd better read this.' 'I COULDN'T USE NUMBERS FOR TWO YEARS???' 'Roman numerals would be okay.'

    Bill Holbrook’s On The Fastrack for the 19th of January, 2017. I feel like someone could write a convoluted story that lets someone do mathematics while avoiding any actual use of any numbers, and that it would probably be Greg Egan who did it.

    Dave Whamond’s Reality Check for the 19th breaks our long dry spell without pie chart jokes.

    Mort Walker and Dik Browne’s Vintage Hi and Lois for the 27th of July, 1959 uses calculus as stand-in for what college is all about. Lois’s particular example is about a second derivative. Suppose we have a function named ‘y’ and that depends on a variable named ‘x’. Probably it’s a function with domain and range both real numbers. If complex numbers were involved then the variable would more likely be called ‘z’. The first derivative of a function is about how fast its values change with small changes in the variable. The second derivative is about how fast the values of the first derivative change with small changes in the variable.

    'I hope our kids are smart enough to win scholarships for college.' 'We can't count on that. We'll just have to save the money!' 'Do you know it costs about $10,000 to send one child through college?!' 'That's $40,000 we'd have to save!' Lois reads to the kids: (d^2/dx^2)y = 6x - 2.

    Mort Walker and Dik Browne’s Vintage Hi and Lois for the 27th of July, 1959. Fortunately Lois discovered the other way to avoid college costs: simply freeze the ages of your children where they are now, so they never face student loans. It’s an appealing plan until you imagine being Trixie.

    The ‘d’ in this equation is more of an instruction than it is a number, which is why it’s a mistake to just divide those out. Instead of writing it as \frac{d^2 y}{dx^2} it’s permitted, and common, to write it as \frac{d^2}{dx^2} y . This means the same thing. I like that because, to me at least, it more clearly suggests “do this thing (take the second derivative) to the function we call ‘y’.” That’s a matter of style and what the author thinks needs emphasis.

    There are infinitely many possible functions y that would make the equation \frac{d^2 y}{dx^2} = 6x - 2 true. They all belong to one family, though. They all look like y(x) = \frac{1}{6} 6 x^3 - \frac{1}{2} 2 x^2 + C x + D , where ‘C’ and ‘D’ are some fixed numbers. There’s no way to know, from what Lois has given, what those numbers should be. It might be that the context of the problem gives information to use to say what those numbers should be. It might be that the problem doesn’t care what those numbers should be. Impossible to say without the context.

     
    • Joshua K. 6:26 am on Monday, 30 January, 2017 Permalink | Reply

      Why is the function in the Hi & Lois discussion stated as y(x) = (1/6)6x^3 – (1/2)2x^2 + Cx +D? Why not just y(x) = x^3 – x^2 + Cx + D?

      Like

      • Joseph Nebus 5:43 pm on Friday, 3 February, 2017 Permalink | Reply

        Good question! I actually put a fair bit of thought into this. If I were doing the problem myself I’d have cut right to x^3 – x^2 + Cx + D. But I thought there’s a number of people reading this for whom calculus is a perfect mystery and I thought that if I put an intermediate step it might help spot the pattern at work, that the coefficients in front of the x^3 and x^2 terms don’t vanish without cause.

        That said, I probably screwed up by writing them as 1/6 and 1/2. That looks too much like I’m just dividing by what the coefficients are. If I had taken more time to think out the post I should have written 1/(23) and 1/(12). This might’ve given a slightly better chance at connecting the powers of x and the fractions in the denominator. I’m not sure how much help that would give, since I didn’t describe how to take antiderivatives here. But I think it’d be a better presentation and I should remember that in future situations like that.

        Like

  • Joseph Nebus 6:00 pm on Sunday, 22 January, 2017 Permalink | Reply
    Tags: , BC, dummy variables, Edge City, , , , ,   

    Reading the Comics, January 16, 2017: Numerals Edition 


    Comic Strip Master Command decreed that last week should be busy again. So I’m splitting its strips into two essays. It’s a week that feels like it had more anthropomorphic numerals jokes than usual, but see if I actually count these things.

    2 asks 4: 'Six, six, six, can't you think of anything but six?'

    Mike Peters’s Mother Goose and Grimm for the 15th of January, 2017. I understand that sometimes you just have to use the idea you have instead of waiting for something that can best use the space available, but really, a whole Sunday strip for a single panel? And a panel that’s almost a barren stage?

    Mike Peters’s Mother Goose and Grimm for the 15th I figured would be the anthropomorphic numerals joke for the week. Shows what I know. It is an easy joke, but I do appreciate the touch of craft involved in picking the numerals. The joke is just faintly dirty if the numbers don’t add to six. If they were a pair of 3’s, there’d be the unwanted connotations of a pair of twins talking about all this. A 6 and a 0 would make at least one character weirdly obsessed. So it has to be a 4 and a 2, or a 5 and a 1. I imagine Peters knew this instinctively, at this point in his career. It’s one of the things you learn in becoming an expert.

    Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 15th is mostly physical comedy, with a touch of — I’m not sure what to call this kind of joke. The one where a little arithmetic error results in bodily harm. In this sort of joke it’s almost always something not being carried that’s the error. I suppose that’s a matter of word economy. “Forgot to carry the (number)” is short, and everybody’s done it. And even if they don’t remember making this error, the phrasing clarifies to people that it’s a little arithmetic mistake. I think in practice mistaking a plus for a minus (or vice-versa) is the more common arithmetic error. But it’s harder to describe that clearly and concisely.

    Jef Mallett’s Frazz for the 15th puzzled me. I hadn’t heard this thing the kid says about how if you can “spew ten random lines from a classic movie” to convince people you’ve seen it. (I don’t know the kid’s name; it happens.) I suppose that it would be convincing, though. I certainly know a couple lines from movies I haven’t seen, what with living in pop culture and all that. But ten would be taxing for all but the most over-saturated movies, like any of the Indiana Jones films. (There I’m helped by having played the 90s pinball machine a lot.) Anyway, knowing ten random mathematics things isn’t convincing, especially since you can generate new mathematical things at will just by changing a number. But I would probably be convinced that someone who could describe what’s interesting about ten fields of mathematics had a decent understanding of the subject. That requires remembering more stuff, but then, mathematics is a bigger subject than even a long movie is.

    In Bill Holbrook’s On The Fastrack for the 16th Fi speaks of tallying the pluses and minuses of her life. Trying to make life into something that can be counted is an old decision-making technique. I think Benjamin Franklin explained how he found it so useful. It’s not a bad approach if a choice is hard. The challenging part is how to weight each consideration. Getting into fractions seems rather fussy to me, but some things are just like that. There is the connotation here that a fraction is a positive number smaller than 1. But the mathematically-trained (such as Fi) would be comfortable with fractions larger than 1. Or also smaller than zero. “Fraction” is no more bounded than “real number”. So, there’s the room for more sweetness here than might appear to the casual reader.

    'In a couple of weeks I'm getting married, so I'm taking stock of my life, adding up the pluses and minuses that factor into my goals.' 'Am I a positive or a negative integer?' 'You're a fraction.' 'How presumptuous of me.'

    Bill Holbrook’s On The Fastrack for the 16th of January, 2017. Were I in Dethany’s position I would have asked about being a positive or negative number, but then that would leave Holbrook without a third panel. Dethany knows what her author needs most.

    Scott Hilburn’s The Argyle Sweater for the 16th is the next anthropomorphic numerals joke for this week. I’m glad Hilburn want to be in my pages more. 5’s concern about figuring out x might be misplaced. We use variables for several purposes. One of them is as a name to give a number whose value we don’t know but wish to work out, and that’s how we first see them in high school algebra. But a variable might also be a number whose value we don’t particularly care about and will never try to work out. This could be because the variable is a parameter, with a value that’s fixed for a problem but not what we’re interested in. We don’t typically use ‘x’ for that, though; usually parameter are something earlier in the alphabet. That’s merely convention, but it is convention that dates back to René Descartes. Alternatively, we might use ‘x’ as a dummy variable. A dummy variable serves the same role that falsework on a building or a reference for an artistic sketch does. We use dummy variables to organize and carry out work, but we don’t care what its values are and we don’t even see the dummy variable in the final result. A dummy variable can be any name, but ‘x’ and ‘t’ are popular choices.

    Terry LaBan and Patty LaBan’s Edge City rerun for the 16th plays on the idea that mathematics people talk in algebra. Funny enough, although, “the opposing defense is a variable of 6”? That’s an idiosyncratic use of “variable”. I’m going to suppose that Charles is just messing with Len’s head because, really, it’s fun doing a bit of that.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: