Today’s A To Z term is one I’ve mentioned previously, including in this A to Z sequence. But it was specifically nominated by Goldenoj, whom I know I follow on Twitter. I’m sorry not to be able to give you an account; I haven’t been able to use my @nebusj account for several months now. Well, if I do get a Twitter, Mathstodon, or blog account I’ll refer you there.

# Operator.

An operator is a function. An operator has a domain that’s a space. Its range is also a space. It can be the same sapce but doesn’t have to be. It is very common for these spaces to be “function spaces”. So common that if you want to talk about an operator that isn’t dealing with function spaces it’s good form to warn your audience. Everything in a particular function space is a real-valued and continuous function. Also everything shares the same domain as everything else in that particular function space.

So here’s what I first wonder: why call this an operator instead of a function? I have hypotheses and an unwillingness to read the literature. One is that maybe mathematicians started saying “operator” a long time ago. Taking the derivative, for example, is an operator. So is taking an indefinite integral. Mathematicians have been doing those for a very long time. Longer than we’ve had the modern idea of a function, which is this rule connecting a domain and a range. So the term might be a fossil.

My other hypothesis is the one I’d bet on, though. This hypothesis is that there is a limit to how many different things we can call “the function” in one sentence before the reader rebels. I felt bad enough with that first paragraph. Imagine parsing something like “the function which the Laplacian function took the function to”. We are less likely to make dumb mistakes if we have different names for things which serve different roles. This is probably why there is another word for a function with domain of a function space and range of real or complex-valued numbers. That is a “functional”. It covers things like the norm for measuring a function’s size. It also covers things like finding the total energy in a physics problem.

I’ve mentioned two operators that anyone who’d read a pop mathematics blog has heard of, the differential and the integral. There are more. There are so many more.

Many of them we can build from the differential and the integral. Many operators that we care to deal with are linear, which is how mathematicians say “good”. But both the differential and the integral operators are linear, which lurks behind many of our favorite rules. Like, allow me to call from the vasty deep functions ‘f’ and ‘g’, and scalars ‘a’ and ‘b’. You know how the derivative of the function is a times the derivative of f plus b times the derivative of g? That’s the differential operator being all linear on us. Similarly, how the integral of is a times the integral of f plus b times the integral of g? Something mathematical with the adjective “linear” is giving us at least some solid footing.

I’ve mentioned before that a wonder of functions is that most things you can do with numbers, you can also do with functions. One of those things is the premise that if numbers can be the domain and range of functions, then functions can be the domain and range of functions. We can do more, though.

One of the conceptual leaps in high school algebra is that we start analyzing the things we do with numbers. Like, we don’t just take the number three, square it, multiply that by two and add to that the number three times four and add to that the number 1. We think about what if we take any number, call it x, and think of . And what if we make equations based on doing this latex 2x^2 + 4x + 1 $; what values of x make those equations true? Or tell us something interesting?

Operators represent a similar leap. We can think of functions as things we manipulate, and think of those manipulations as a particular thing to do. For example, let me come up with a differential expression. For some function u(x) work out the value of this:

Let me join in the convention of using ‘D’ for the differential operator. Then we can rewrite this expression like so:

Suddenly the differential equation looks a lot like a polynomial. Of course it does. Remember that everything in mathematics is polynomials. We get new tools to solve differential equations by rewriting them as operators. That’s nice. It also scratches that itch that I think everyone in Intro to Calculus gets, of wanting to somehow see as if it were a square of . It’s not, and is not the square of . It’s composing with itself. But it looks close enough to squaring to feel comfortable.

Nobody needs to do except to learn some stuff about operators. But you might imagine a world where we did this process all the time. If we did, then we’d develop shorthand for it. Maybe a new operator, call it T, and define it that . You see the grammar of treating functions as if they were real numbers becoming familiar. You maybe even noticed the ‘1’ sitting there, serving as the “identity operator”. You know how you’d write out if you needed to write it in full.

But there are operators that we use *all* the *time*. These do get special names, and often shorthand. For example, there’s the gradient operator. This applies to any function with several independent variables. The gradient has a great physical interpretation if the variables represent coordinates of space. If they do, the gradient of a function at a point gives us a vector that describes the direction in which the function increases fastest. And the size of that gradient — a functional on this operator — describes how fast that increase is.

The gradient itself defines more operators. These have names you get very familiar with in Vector Calculus, with names like divergence and curl. These have compelling physical interpretations if we think of the function we operate on as describing a moving fluid. A positive divergence means fluid is coming into the system; a negative divergence, that it is leaving. The curl, in fluids, describe how nearby streams of fluid move at different rate.

Physical interpretations are common in operators. This probably reflects how much influence physics has on mathematics and vice-versa. Anyone studying quantum mechanics gets familiar with a host of operators. These have comfortable names like “position operator” or “momentum operator” or “spin operator”. These are operators that apply to the wave function for a problem. They transform the wave function into a probability distribution. That distribution describes what positions or momentums or spins are likely, how likely they are. Or how unlikely they are.

They’re not all physical, though. Or not purely physical. Many operators are useful because they are powerful mathematical tools. There is a variation of the Fourier series called the Fourier transform. We can interpret this as an operator. Suppose the original function started out with time or space as its independent variable. This often happens. The Fourier transform operator gives us a new function, one with frequencies as independent variable. This can make the function easier to work with. The Fourier transform is an integral operator, by the way, so don’t go thinking everything is a complicated set of derivatives.

Another integral-based operator that’s important is the Laplace transform. This is a great operator because it turns differential equations into algebraic equations. Often, into polynomials. You saw that one coming.

This is all a lot of good press for operators. Well, they’re powerful tools. They help us to see that we can manipulate functions in the ways that functions let us manipulate numbers. It should sound good to realize there is much new that you can do, and you already know most of what’s needed to do it.

This and all the other Fall 2019 A To Z posts should be gathered here. And once I have the time to fiddle with tags I’ll have all past A to Z essays gathered at this link. Thank you for reading. I should be back on Thursday with the letter P.