You Could Help Make an Educational Kickstarter More Successful


Many of my readers likely remember Denise Gaskins, who organizes the Playful Math Education Blog Carnival. Gaskins has other projects to help people, particularly parents, with mathematics education. One of them is a Kickstarter. It’s nearly completed — it’s to close the 1st of September at 9 pm Eastern — and it has already made most of its goals. But a bit of help could get it over its highest (listed) stretch goal.

The project is the publication of Word Problems From Literature, as described here. It’s a guide about not just how to calculate, but how to tackle word problems. Everyone learning mathematics hates these, but they’re the heart of so much real mathematics. You need to work out what to calculate, and where to find the pieces needed for that. Gaskins’s project is to publish word problems inspired by the books kids might actually read, and to guide them in setting up calculations and finding what they need to do the calculations.

The project has already met its basic and most of its stretch goals, which is nice to see. If you’d like to see more details, or help it reach its highest stretch goals, though, please check it at this link. Thank you.

Here’s the 157th Playful Math Blog Carnival


I’d missed the chance to share it last week, as the readership report somehow took priority and the publication slot. Sue VanHattum’s Math Momma Writes … blog is the most recent host of the Playful Math Blog Carnival. Here’s the July 2022 installment, the 157th of the series. VanHattum won me over right away by leading with a nighttime picture of a carnival. That isn’t required for people who host the educational-and-recreational mathematics feature, but it doesn’t hurt.

Besides the expected references to blogs and games and such, VanHattum has a nice section describing present or upcoming books. These are mostly aimed at kids, which I suspect might be younger than my usual audience. But you might know someone who’d like to know.

And if you have a mathematics or education blog, and want to try gathering a bundle of interesting or educational or fun mathematics links together, I recommend contacting Denise Gaskins and hosting for a month. I regret that I haven’t had the time or resources to host myself in a long while, and hope that wil change soon. It’s a fun challenge.

Reading the Comics, June 26, 2022: First Doldrums of Summer Edition


I have not kept secret that I’ve had little energy lately. I hope that’s changing but can do little more than hope. I find it strange that my lack of energy seems to be matched by Comic Strip Master Command. Last week saw pretty slim pickings for mathematically-themed comics. Here’s what seems worth the sharing from my reading.

Lincoln Peirce’s Big Nate for the 22nd is a Pi Day joke, displaced to the prank day at the end of Nate’s school year. It’s also got a surprising number of people in the comments complaining that 3.1416 is only an approximation to π. It is, certainly, but so is any representation besides π or a similar mathematical expression. And introducing it with 3.1416 gives the reader the hint that this is about a mathematics expression and not an arbitrary symbol. It’s important to the joke that this be communicated clearly, and it’s hard to think of better ways to do that.

Teacher: 'What's this? One of you left a card on my desk?' He picks it up. 'Hm. All it says is 3.1416! That's pi!' A clown leaps on-panel and shoves a pie into the teacher's face: 'Did somebody say PIE?' The class breaks up in laughter. Francis leans over, 'How'd you find the clown?' Big Nate says, 'I held auditions.'
Lincoln Peirce’s Big Nate for the 22nd of June, 2022. This and other essays mentioning something from Big Nate are at this link.

Dave Whamond’s Reality Check for the 24th is another in the line of “why teach algebra instead of something useful” strips. There are several responses. One is that certainly one should learn how to do a household budget; this was, at least back in the day, called home economics, and it was a pretty clear use of mathematics. Another is that a good education is about becoming literate in all the great thinking of humanity: you should come out knowing at least something coherent about mathematics and literature and exercise and biology and music and visual arts and more. Schools often fail to do all of this — how could they not? — but that’s not reason to fault them on parts of the education that they do. And anther is that algebra is about getting comfortable working with numbers before you know just what they are. That is, how to work out ways to describe a thing you want to know, and then to find what number (or range of numbers) that is. Still, these responses hardly matter. Mathematics has always lived in a twin space, of being both very practical and very abstract. People have always and will always complain that students don’t learn how to do the practical well enough. There’s not much changing that.

Teacher pointing to the quadratic formula on the whiteboard: 'Algebra!' Student: 'Why don't you teach me something more useful, that I will actually use in life? Like, oh, I don't know, how to do a household budget?' Silent panel. The teacher points to the quadratic formula again; 'Algebra!'
Dave Whamond’s Reality Check for the 24th of June, 2022. This and the many other comic strips mentioning Reality Check are available at this link.

Charles Schulz’s Peanuts Begins for the 26th sees Violet challenge Charlie Brown to say what a non-perfect circle would be. I suppose this makes the comic more suitable for a philosophy of language blog, but I don’t know any. To be a circle requires meeting a particular definition. None of the things we ever point to and call circles meets that. We don’t generally have trouble connecting our imperfect representations of circles to the “perfect” ideal, though. And Charlie Brown said something meaningful in describing his drawing as being “a perfect circle”. It’s tricky pinning down exactly what it is, though.

Charlie Brown points to a circle he's drawn on a fence: 'How's that? A *perfect* circle!' Violet looks it over: 'Uh huh ... what other kind of circles are there?' Charlie Brown is left silent by this.
Charles Schulz’s Peanuts Begins for the 26th of June, 2022. The strip originally ran the 29th of June, 1954. (The regular Peanuts feed offers comics from the late 1950s through the mid-70s. Peanuts Begins offers comics from the early 1950s.) Essays with some mention of Peanuts or the Peanuts Begins repeats are at this link.

And that is as much as last week moved me to write. This and my other Reading the Comics posts should be at this link. We’ll see whether the upcoming week picks up any.

A Moment Which Turns Out to Be Universal


I was reading a bit farther in Charles Coulson Gillispie’s Pierre-Simon Laplace, 1749 – 1827, A Life In Exact Science and reached this paragraph, too good not to share:

Wishing to study [ Méchanique céleste ] in advance, [ Jean-Baptiste ] Biot offered to read proof. When he returned the sheets, he would often ask Laplace to explain some of the many steps that had been skipped over with the famous phrase, “it is easy to see”. Sometimes, Biot said, Laplace himself would not remember how he had worked something out and would have difficulty reconstructing it.

So, it’s not just you and your instructors.

(Gillispie wrote the book along with Robert Fox and Ivor Grattan-Guinness.)

My Little 2021 Mathematics A-to-Z: Embedding


Elkement, who’s one of my longest blog-friends here, put forth this suggestion for an ‘E’ topic. It’s a good one. They’re author of the Theory and Practice of Trying to Combine Just Anything blog. Their blog has recently been exploring complex-valued numbers and how to represent rotations.

Embedding.

Consider a book. It’s a collection. It’s easy to see the ordered setting of words, maybe pictures, possibly numbers or even equations. The important thing is the ideas those all represent.

Set the book in a library. How can this change the book?

Perhaps the comparison to other books shows us something the original book neglected. Perhaps something in the original book we now realize was a brilliantly-presented insight. The way we appreciate the book may change.

What can’t change is the content of the original book. The words stay the same, in the same order. If it’s a physical book, the number of pages stays the same, as does the size of the page. The ideas expressed remain the same.

So now you understand embedding. It’s a broad concept, something that can have meaning for any mathematical structure. A structure here is a bunch of items and some things you can do with them. A group, for example, is a good structure to use with this sort of thing. So, for example, the integers and regular addition. This original structure’s embedded in another when everything in the original structure is in the new, and everything you can do with the original structure you can do in the new and get the same results. So, for example, the group you get by taking the integers and regular addition? That’s embedded in the group you get by taking the rational numbers and regular addition. 4 + 8 is 12 whether or not you consider 6.5 a topic fit for discussion. It’s an embedding that expands the set of elements, and that modifies the things you can do to match.

The group you get from the integers and addition is embedded in other things. For example, it’s embedded in the ring you get from the integers and regular addition and regular multiplication. 4 + 8 remains 12 whether or not you can multiply 4 by 8. This embedding doesn’t add any new elements, just new things you can do with them.

Once you have the name, you see embedding everywhere. When we first learn arithmetic we — I, anyway — learn it as adding whole numbers together. Then we embed that into whole numbers with addition and multiplication. And then the (nonnegative) rational numbers with addition and multiplication. At some point (I forget when) the negative numbers came in. So did the whole set of real numbers. Eventually the real numbers got embedded into the complex numbers. And the complex numbers got embedded into the quaternions, although we found real and complex numbers enough for most of our work. I imagine something similar goes on these days.

There’s never only one embedding possible. Consider, for example, two-dimensional geometry, the shapes of figures on a sheet of paper. It’s easy to put that in three dimensions, by setting the paper on the floor, and expand it by drawing in chalk on the wall. Or you can set the paper on the wall, and extend its figures by drawing in chalk on the floor. Or set the paper at an angle to the floor. What you use depends on what’s most convenient. And that can be driven by laziness. It’s easy to match, say, the point in two dimensions at coordinates (3, 4) with the point in three dimensions at coordinates (3, 4, 0), even though (0, 3, 4) or (4, 0, 3) are as valid.

Why embed something in another thing? For the same reasons we do any transformation in mathematics. One is that we figure to embed the thing we’re working on into something easier to deal with. A famous example of this is the Nash embedding theorem. It describes when certain manifolds can be embedded into something that looks like normal space. And that’s useful because it can turn nonlinear partial differential equations — the most insufferable equations — into something solvable.

Another good reason, though, is the one implicit in that early arithmetic education. We started with whole-numbers-with-addition. And then we added the new operation of multiplication. And then new elements, like fractions and negative numbers. If we follow this trail we get to some abstract, tricky structures like octonions. But by small steps in which we have great experience guiding us into new territories.


I hope to return in a week with a fresh A-to-Z essay. This week’s essay, and all the essays for the Little Mathematics A-to-Z, should be at this link. And all of this year’s essays, and all A-to-Z essays from past years, should be at this link. Thank you once more for reading.

The 148th Playful Math Education Carnival is posted


I apologize for missing its actual publication date, but better late than not at all. Math Book Magic, host of the Playful Math Education Blog Carnival, posted the 148th in the series, and it’s a good read. A healthy number of recreational mathematics puzzles, including some geometry puzzles I’ve been enjoying. As these essays are meant to do, this one gathers some recreational and some educational and some just fun mathematics.

Math In Nature is scheduled to host the next carnival. If you have any mathematics writing or videos or podcasts or such to share, or are aware of any that people might like, please let them know. And if you’d like to host a Playful Math Education Blog Carnival Denise Gaskins has several slots available over the next few months, including the chance to host the 150th of this series. It’s exhausting work, but it is satisfying work. Consider giving it a try.

Math Book Magic is hosting the next Playful Math Education Blog Carnival


Another mere little piece today. I’d wanted folks to know that Kelly Darke’s Math Book Magic is the next host for the Playful Math Education Blog Carnival. And would likely be able to use any nominations you had for blog posts, YouTube videos, books, games, or other activities that share what’s delightful about mathematics. The Playful Math Education Blog Carnival is a fun roundup to read, and to write — I’ve been able to host it a few times myself — and I hope anyone reading this will consider supporting it too.

Iva Sallay teaches you how to host the Playful Math Education Blog Carnival


Iva Sallay, creator of the Find The Factors recreational mathematics puzzle and a kind friend to my blog, posted Yes, YOU Can Host a Playful Math Education Blog Carnival. It explains in quite good form how to join in Denise Gaskins’s roaming blog event. It tries to gather educational or recreational or fun or just delightful mathematics links.

Hosting the blog carnival is a great experience I recommend for mathematics bloggers at least once. I seem to be up to hosting it about once a year, most recently in September 2020. Most important in putting one together is looking at your mathematics reading with different eyes. Sallay, though, goes into specifics about what to look for, and how to find that.

If you’d like to host a carnival you can sign up now for the June slot, blog #147, or for most of the rest of the year.

No, You Can’t Say What 6/2(1+2) Equals


I am made aware that a section of Twitter argues about how to evaluate an expression. There may be more than one of these going around, but the expression I’ve seen is:

6 \div 2\left(1 + 2\right) =

Many people feel that the challenge is knowing the order of operations. This is reasonable. That is, that to evaluate arithmetic, you evaluate terms inside parentheses first. Then terms within exponentials. Then multiplication and division. Then addition and subtraction. This is often abbreviated as PEMDAS, and made into a mnemonic like “Please Excuse My Dear Aunt Sally”.

That is fine as far as it goes. Many people likely start by adding the 1 and 2 within the parentheses, and that’s fair. Then they get:

6 \div 2(3) =

Putting two quantities next to one another, as the 2 and the (3) are, means to multiply them. And then comes the disagreement: does this mean take 6\div 2 and multiply that by 3, in which case the answer is 9? Or does it mean take 6 divided by 2\cdot 3, in which case the answer is 1?

And there is the trick. Depending on which way you choose to parse these instructions you get different answers. But you don’t get to do that, not and have arithmetic. So the answer is that this expression has no answer. The phrasing is ambiguous and can’t be resolved.

I’m aware there are people who reject this answer. They picked up along the line somewhere a rule like “do multiplication and division from left to right”. And a similar rule for addition and subtraction. This is wrong, but understandable. The left-to-right “rule” is a decent heuristic, a guide to how to attack a problem too big to do at once. The rule works because multiplication-and-division associates. The quantity a-times-b, multiplied by c, has to be the same number as the quantity a multiplied by the quantity b-times-c. The rule also works for addition-and-subtraction because addition associates too. The quantity a-plus-b, plus the quantity c, has to be the same as the quantity a plus the quantity b-plus-c.

This left-to-right “rule”, though, just helps you evaluate a meaningful expression. It would be just as valid to do all the multiplications-and-divisions from right-to-left. If you get different values working left-to-right from right-to-left, you have a meaningless expression.

But you also start to see why mathematicians tend to avoid the \div symbol. We understand, for example, a \div b to mean a \cdot \frac{1}{b} . Carry that out and then there’s no ambiguity about

6 \cdot \frac{1}{2} \cdot 3 =

I understand the desire to fix an ambiguity. Believe me. I’m a know-it-all; I only like ambiguities that enable logic-based jokes. (“Would you like ice cream or cake?” “Yes.”) But the rules that could remove the ambiguity in 6\div 2(1 + 2) also remove associativity from multiplication. Once you do that, you’re not doing arithmetic anymore. Resist the urge.

(And the mnemonic is a bit dangerous. We can say division has the same priority as multiplication, but we also say “multiplication” first. I bet you can construct an ambiguous expression which would mislead someone who learned Please Excuse Dear Miss Sally Andrews.)

And now a qualifier: computer languages will often impose doing a calculation in some order. Usually left-to-right. The microchips doing the work need to have some instructions. Spotting all possible ambiguous phrasings ahead of time is a challenge. But we accept our computers doing not-quite-actual-arithmetic. They’re able to do not-quite-actual-arithmetic much faster and more reliably than we can. This makes the compromise worthwhile. We need to remember the difference between what the computer does and the calculation we intend.

And another qualifier: it is possible to do interesting mathematics with operations that aren’t associative. But if you are it’s in your research as a person with a postgraduate degree in mathematics. It’s possible it might fit in social media, but I would be surprised. It won’t draw great public attention, anyway.

Reading the Comics, April 1, 2021: Why Is Gunther Taking Algebraic Topology Edition


I’m not yet looking to discuss every comic strip with any mathematics mention. But something gnawed at me in this installment of Greg Evans and Karen Evans’s Luann. It’s about the classes Gunther says he’s taking.

The main characters in Luann are in that vaguely-defined early-adult era. They’re almost all attending a local university. They’re at least sophomores, since they haven’t been doing stories about the trauma and liberation of going off to school. How far they’ve gotten has been completely undefined. So here’s what gets me.

Gunther, looking at sewing patterns: 'You want me to sew pirate outfits?' Bets: 'I'm thinking satin brocade doublet and velvet pantaloons.' Les, not in the conversation: 'Nerd.' Gunther: 'I'm thinking algebraic topology and vector calculus homework.' (He shows his textbooks.) Les: 'And nerdier. (Les pets a cat.)
Greg Evans and Karen Evans’s Luann for the 1st of April, 2021. This and other essays discussing topics raised by Luann are at this link. The overall story here is that Bets wants to have this pirate-themed dinner and trusts Gunther, who’s rather good at clothes-making, to do the decorating.

Gunther taking vector calculus? That makes sense. Vector calculus is a standard course if you’re taking any mathematics-dependent major. It might be listed as Multivariable Calculus or Advanced Calculus or Calculus III. It’s where you learn partial derivatives, integrals along a path, integrals over a surface or volume. I don’t know Gunther’s major, but if it’s any kind of science, yeah, he’s taking vector calculus.

Algebraic topology, though. That I don’t get. Topology at all is usually an upper-level course. It’s for mathematics majors, maybe physics majors.  Not every mathematics major takes topology.   Algebraic topology is a deeper specialization of the subject. I’ve only seen courses listed as algebraic topology as graduate courses. It’s possible for an undergraduate to take a graduate-level course, yes. And it may be that Gunther is taking a regular topology course, and the instructor prefers to focus on algebraic topology.

But even a regular topology course relies on abstract algebra. Which, again, is something you’ll get as an undergraduate. If you’re a mathematics major you’ll get at least two years of algebra. And, if my experience is typical, still feel not too sure about the subject. Thing is that Intro to Abstract Algebra is something you’d plausibly take at the same time as Vector Calculus.  Then you’d get Abstract Algebra and then, if you wished, Topology.

So you see the trouble. I don’t remember anything in algebra-to-topology that would demand knowing vector calculus. So it wouldn’t mean Gunther took courses without taking the prerequisites. But it’s odd to take an advanced mathematics course at the same time as a basic mathematics course. Unless Gunther’s taking an advanced vector calculus course, which might be. Although since he wants to emphasize that he’s taking difficult courses, it’s odd to not say “advanced”. Especially if he is tossing in “algebraic” before topology.

And, yes, I’m aware of the Doylist explanation for this. The Evanses wanted courses that sound impressive and hard. And that’s all the scene demands. The joke would not be more successful if they picked two classes from my actual Junior year schedule. None of the characters have a course of study that could be taken literally. They’ve been university students full-time since 2013 and aren’t in their senior year yet. It would be fun, is all, to find a way this makes sense.


This and my other essays discussing something from the comic strips are at this link.

The 145th Playful Math Education Blog Carnival is posted


John Golden, MathHombre, was host this month for the Playful Math Education Blog Carnival. And this month’s collection of puzzles, essays, and creative mathematics projects. Among them are some quilts and pattern-block tiles, which manifest all that talk about the structure of mathematical objects and their symmetries in easy-to-see form. There’s likely to be something of interest there.

Among the wonderful things I discovered there is Math Zine Fest 2021. It’s as the name suggests, a bunch of zines — short printable magazines on a niche topic — put together for the end of February. I had missed this organizing, but hope to get to see later installments. I don’t know what zine I might make, but I must have something I could do.

Denise Gaskins, who organizes the carnival, has hosting slots available for later this year. Hosting is an exciting challenge I encourage people to try at least the once.

My Things for Pi Day


I regret not having the time or energy to write something original about π for today. I hope you’ll accept this offering of past Reading the Comics posts covering the day, and some of my other π-related writings:

For the Pi Day Of The Century (3/14/15) I wrote Calculating Pi Terribly. It’s about a legitimate way to calculate the digits of π, using so very much work that nobody will ever do it. But the wonderful thing about it is it’s experimental. And it doesn’t involve something with an obvious circle. A couple months later I followed up with Calculating Pi Less Terribly, using one of the most famous numerical methods for calculating the digits of π. It’s still not that good, but it’s far better than the experimental approach.

In 2019, as part of that year’s A-to-Z, I wrote more extensively about Buffon’s Needle problem, the core of this experimental method for finding digits of π.

And then there’s comic strips. I seem to complain every year that there’s fewer Pi Day comic strips than I expected, which invites the question of just what I expect. Here’s, as best I can tell, the actual record:

I have not yet read today’s comics, so don’t know what they’ll offer. We shall see! Also, I apologize but some of the comics may have been removed from GoComics or Comics Kingdom, and so the links may be dead. I’m not happy about that. But if I wanted the essays discussing these strips to stay permanently sensible I’d have posted the comics on my own web site.

And one last thing, bringing up an essay I’ve shared before. The End 2016 Mathematics A To Z: Normal Numbers is … maybe … about π. Nobody knows whether π is a normal number. It most likely is, but we haven’t been able to prove it.

And the last thing. When I thought I would have time this March, I hoped to write something about how π can be defined starting from differential equations. Things changed my plans out from under me. But my 2020 A-to-Z essay on the Exponential gets at some of why π should turn up in the correct differential equation. That essay sets you up more to understand a famous equation, that e^{\pi \imath} + 1 = 0 . But it’s not too far to getting π out of solving y''(t) = -y(t) in the right circumstances. I may get to writing that one yet.

Denise Gaskins hosted the 142nd Playful Math Education Blog Carnival


It’s the final week of the month and so the Playful Math Education Blog Carnival has published again. The host this time is Denise Gaskins, who also runs the project. You can read the 142nd Blog Carnival essay here, and find something interesting or delightful or useful.

If you’d like to host the carnival some month, you can sign up here. Most of 2021 is open, as I write this. I’ve had the chance to host several times. It’s a novel challenge, and something that pushes me to look beyond my usual familiar mathematics reading. You might find it similarly energizing.

Playful Math Education Blog Carnival 141


This is the 141st Playful Math Education Blog Carnival. And I will be taking this lower-key than I have past times I was able to host the carnival. I do not have higher keys available this year.

The Numbers

I will start by borrowing a page from Iva Sallay, kind creator and host of FindTheFactors.com, and say some things about 141. I owe Iva Sallay many things, including this comfortable lead-in to the post, and my participation in the Playful Math Education Blog Carnival. She was also kind enough to send me many interesting blogs and pages and I am grateful.

141 is a centered pentagonal number. It’s like 1 or 6 or 16 that way. That is, if I give you six pennies and ask you to do something with it, a natural thing is one coin in the center and a pentagon around that. With 16 coins, you can add a nice regular pentagon around that, one that reaches three coins from vertex to vertex. 31, 51, 76, and 106 are the next couple centered pentagonal numbers. 181 and 226 are the next centered pentagonal numbers. The units number in these follow a pattern, too, in base ten. The last digits go 1-6-6-1, 1-6-6-1, 1-6-6-1, and so on.

141’s also a hendecagonal number. That is, arrange your coins to make a regular 11-sided polygon. 1 and then 11 are hendecagonal numbers. Then 30, 58, 95, and 141. 196 and 260 are the next couple. There are many of these sorts of polygonal numbers, for any regular polygon you like.

141 is also a Hilbert Prime, a class of number I hadn’t heard of before. It’s still named for the Hilbert of Hilbert’s problems. 141 is not a prime number, which you notice from adding up the digits. But a Hilbert Prime is a different kind of beast. These come from looking at counting numbers that are one more than a whole multiple of four. So, numbers like 1, 5, 9, 13, and so on. This sequence describes a lot of classes of numbers. A Hilbert Prime, at least as some number theorists use it, is a Hilbert Number that can’t be divided by any other Hilbert Number (other than 1). So these include 5, 9, 13, 17, and 21, and some of those are already not traditional primes. There are Hilbert Numbers that are the products of different sets of Hilbert Primes, such as 441 or 693. (441 is both 21 times 21 and also 9 times 49. 693 is 9 times 77 and also 21 times 33) So I don’t know what use Hilbert Primes are specifically. If someone knows, I’d love to hear.

Banner art the Playful Math Education Blog Carnival, showing three carousel figures (a bear, a coati, and a horse). The background is a stream of mathematical symbols in gradients of blue-green and yellow light.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Landscape

I first want to thank Denise Gaskins for organizing the Playful Math Education Blog Carnival. It must be always a challenging and exhausting task and to carry it on for years is a great effort. The plan for the next several hosts of the Carnival is here, and if you would like to host a month, it’s a good place to volunteer.

For myself, you’re already looking at my mathematics blog. My big, ambitious project for this year is The All 2020 Mathematics A-to-Z. Each Wednesday I try to publish a long-form piece explaining some piece of mathematics. This week, I should reach the letter P. If you’d like to suggest a topic for the letters Q or R please leave a comment here. My other major project, Reading the Comics and writing about their mathematical content, is on hiatus. I’ll likely get back to it once the A-to-Z is finished.

One of my newer regular readers is Laura, teacher and tutor and author of the MathSux2: Putting math into normal people language blog. There’s new essays every week.

Grassy field with a long string of cars approaching, and groups of people walking the opposite direction. There is no hint that there's an amusement park anywhere in frame.
Second round of overflow parking at Dorney Park. From a visit we took in August of 2014, you remember, that day everybody in eastern Pennsylvania, north Jersey, and southern New York State decided to go to Dorney Park. All these amusement park pictures are ones I’ve taken and I’m happy to say, truthfully, that they’re all connected to something in the main text.

Features

A friend knowing me well shared the Stand-Up Maths video Why is there no equation for the perimeter of an ellipse? The friend knew me well. I once assigned the problem, without working it out, to a vector-calculus class. The integral to do this formula is easy to write. It’s one of the many, many integrals that can’t be done. Attempting to do it leads to fascinating formulas, as seen in the video. And also to elliptic curves, a major research topic in mathematics.

Christian Lawson-Perfect, writing at The Aperiodical, looked at The enormous difficulty of telling the truth about escalators with statistics. Lawson-Perfect saw a sign claiming the subway station’s escalators worked 95% of the time. What did that mean? Defining what it means to have “escalators working” is a challenge. And it’s hard to define “95% of the time” in a way that harmonizes with our intuitions.

Also, at the risk of causing trouble, The Aperiodical also hosts a monthly Carnival of Mathematics. It’s a similar gathering of interesting mathematics content. It doesn’t look necessarily for educational or playful pieces.

I do not have a Desmos account. It’s been long enough since I had a real class that I haven’t yet joined the site. This may need to change. Christopher Sewards posted a set of activities in Permutations and Combinations which may be useful. There’s three so far and they may be joined by more. This I learned through Dan Meyer’s weekly roundup of links.

Meyer’s also made me aware of TheCalt, a mathematics tournament to be held the 17th of October. They’re taking signups even now. Here’s a page with three sample problems for guidance.

Sarah Carter similarly attempts a Monday Must-Reads collection at the MathEqualsLove blog. Given the disruptions of this year this was the first in the series in months. This collects a good number of links, many of them about being interesting while doing online classes.

Photograph of a model of the Montana Rusa roller coaster, under glass, and watched over by a Alebrije-styled dragon-ish figure. It sits on the platform for a roller coaster.
Montaña Rusa, in Mexico City, seen in 2018. It’s one of three Möbius-strip wooden roller coasters in existence.

Helene Osana writes Mathematical thinking begins in the early years with dialogue and real-world exploration. This is an essay about priming the mathematical thinking for the youngest children, those up to about five years old. One can encourage kids with small, casual activities that don’t look like education.

The Reflective Educator posted Precision In Language. This is about one of the hardest bits of teaching. That is to say things which are true and which can’t be mis-remembered as something false. Author David Wees points out an example of this hazard, as kids apply rules outside their context.

Simon Gregg’s essay The Gardener and the Carpenter follows a connected theme. The experience students have with a thing can be different depending on how the teacher presents it. The lead example of Gregg’s essay is about the different ways students played with a toy depending on how the teacher prompted them to explore it.

Also crossing my desk this month was a couple-year-old article Melinda D Anderson published in The Atlantic. How Does Race Affect a Student’s Math Education? Mathematics affects a pose of being a culturally-independent, value-neutral study. The conclusions it draws might be. But what we choose to study, and how we choose to study it, is not. And how we teach it is socially biased and determined. So here are thoughts about that.

The last several links describe things we know thanks to modern psychology and neuroscience studies. Nicklas Balboa and Richard D Glaser published in Psychology Today Three Habits That Reduce Conversational Success. There are conversations which are, effectively, teaching attempts. To be aware of how those attempts go wrong, and how to fix them, is surely worth while.

Ben Orlin, of the popular Math With Bad Drawings blog, wrote Democracy isn’t math. But it isn’t NOT math. He contributed recently to David Litt’s Democracy In One Book Or Less. The broad goal of democracy, the setting of social rules by common consensus, might not be mathematical. When we look to the practical matters of implementing this, though, then we get a lot of mathematics. I have not read Litt’s book, or any recently-published book, so can’t say anything about its contents. I bet it includes Arrow’s Impossibility Theorem, though.

Photograph of the lift hill for a wooden roller coaster, taken with the sunlight gleaming on the tracks. Standing traverse to the end of the coaster in front is another roller coaster, a steel coaster with a more scaffold-like structure and seen in silhouette against the blue sky.
Lift hill for Thunderhawk, Dorney Park’s antique wooden roller coaster. Behind it, if I’ve got this right, is Steel Force, a much taller steel coaster. Photo from August 2014.


Anyone attempting to teach this year is having a heck of a time. Sarah Carter offered Goals for the 2020-2021 School Year – PANDEMIC STYLE as an attempt to organize planning. And shared her goals, which may help other people too.

Emelina Minero offered 8 Strategies to Improve Participation in Your Virtual Classroom. Class participation was always the most challenging part of my teaching, when I did any of that, and this was face-to-face. Online is a different experience, with different challenges. That there is usually the main channel of voice chat and the side channel of text offers new ways to get people to share, though.

The National Centre for Excellence in the Teaching of Mathematics offered Two Pleas to Maths Teachers at the Start of the School Year. This is about how to keep the unusual circumstances of the whole year from encouraging bad habits. This particularly since no one is on track, or near it.

S Leigh Nataro, of the MathTeacher24 blog, writes Learning Math is Social: We Are in This Together. Many teachers have gotten administrative guidance that … doesn’t … guide well. The easy joke is to say it never did. But the practical bits of most educational strategies we learn from long experience. There’s no comparable experience here. What are ways to reduce the size of the crisis? Nataro has thoughts.

Enlightenment

Now I can come to more bundles of things to teach. Colleen Young gathered Maths at school … and at home, bundles of exercises and practice sheets. One of the geometry puzzles, about the missing lengths in the perimeter of a hexagon, brings me a smile as this is a sort of work I’ve been doing for my day job.

Starting Points Maths has a page of Radian Measure — Intro. The goal here is building comfort in the use of radians as angle measure. Mathematicians tend to think in radians. The trigonometric functions for radian measure behave well. Derivatives and integrals are easy, for example. We do a lot of derivatives and integrals. The measures look stranger, is all, especially as they almost always involve fractions times π.

Small swing ride, in mid-ride-cycle, with the swings lifted into the air and tilted. There are only two people on the whole ride and they are barely visible against the silhouette of background trees.
(Children’s) swing ride at Seabreeze Park in Rochester, New York (2019). It was a cool day when we visited.

The Google Images picture gallery How Many? offers a soothing and self-directed counting puzzle. Each picture is a collection of things. How to count them, and even what you choose to count, is yours to judge.

Miss Konstantine of MathsHKO posted Area (Equal — Pythagorean Triples). Miss Konstantine had started with Pythagorean triplets, sets of numbers that can be the legs of a right triangle. And then explored other families of shapes that can have equal areas, including looking to circles and rings.

Sarah Carter makes another appearance here with New Puzzle: Only ‘Takes’ and ‘Adds’. This is in part about the challenge of finding new puzzles to make each week. And then an arithmetic challenge. Carter mentions how one presentation is quite nice for how it teaches so many rules of the puzzle.

Cassandra Lowry with the Australian Mathematical Sciences Institute offers Finding the Maths in Books. This is about how to read a book to find mathematical puzzles within. This is for children up to about second grade. The problems are about topics like counting and mapping and ordering.

Lowry also has Helping Your Child Learn Time, using both analog and digital clocks. That lets me mention a recent discussion with my love, who teaches. My love’s students were not getting the argument that analog clocks can offer a better sense of how time is elapsing. I had what I think a compelling argument: an analog clock is like a health bar, a digital clock like the count of hit points. Logic tells me this will communicate well.

YummyMath’s Fall Equinox 2020 describes some of the geometry of the equinoxes. It also offers questions about how to calculate the time of daylight given one’s position on the Earth. This is one of the great historic and practical uses for trigonometry.

Games

To some play! Miguel Barral wrote Much More Than a Diversion: The Mathematics of Solitaire. There are many kinds of solitaire, which is ultimately just a game that can be played alone. They’re all subject to study through game theory. And to questions like “what is the chance of winning”? That’s often a question best answered by computer simulation. Working out that challenge helped create Monte Carlo methods. These can find approximate solutions to problems too difficult to find perfect solutions for.

At Bedtime Math, Laura Overdeck wrote How Do Doggie Treats Taste? And spun this into some basic arithmetic problems built around the fun of giving dogs treats.

Conditional probability is fun. It’s full of questions easy to present and contradicting intuition to solve. Wayne Chadburn’s Big Question explores one of them. It’s based on a problem which went viral a couple years ago, called “Hannah’s Sweet”. I missed the problem when it was getting people mad. But Chadburn explores how to think through the problem.

Photograph of a large carousel, seen by night. The four horses in front are each at a different position despite being in the same column: the white horse nearest the camera is several feet behind the tan horse farther from it, and a grey and a black horse are scattered forward and back of those.
A column of horses at Cedar Point (Ohio)’s Cedar Downs, a racing merry-go-round. The horses move forward and backward in those slots. Also the carousel moves fast, which makes it much better. (October 2019.)

Paul Godding’s 7 Puzzle Blog gives a string of recreational mathematics puzzles. Some include factoring, some include making expressions equal to particular numbers. They’re all things you can do when Slylock Fox printed the Six Differences puzzle too small for your eyes.

FractalKitty has a cute cartoon, No 5-second rule … about how the set of irrational numbers interacts with rationals in basic arithmetic.

Carnivals

Now to some deeper personal interests. I am an amusement park enthusiast: I’ve ridden at least 250 different roller coasters at least once each. This includes all the wooden Möbius-strip roller coasters out there. Also all three racing merry-go-rounds. The oldest roller coaster still standing. And I had hoped, this year, to get to the centennial years for the Jackrabbit roller coaster at Kennywood Amusement Park (Pittsburgh) and Jack Rabbit roller coaster at Seabreeze Park (Rochester, New York). Jackrabbit (with spelling variants) used to be a quite popular roller coaster name.

So plans went awry and it seems unlikely we’ll get to any amusement parks this year. No county fairs or carnivals. We can still go to virtual ones, though. Amusement parks and midway games inspire many mathematical questions. So let’s take some in.

Michigan State University’s Connected Mathematics Program set up set up a string of carnival-style games. The event’s planners figured on then turning the play money into prize raffles but you can also play games. Some are legitimate midway games, such as plinko, spinner wheels, or racing games, too.

Resource Area For Teaching’s Carnival Math offers for preschool through grade six a semi-practical carnival game. There’s different goals for different education levels.

Hooda Math’s Carnival Fun offers a series of games, many of them Flash, a fair number HTML5, and mostly for kindergraden through 8th grade. There are a lot of mathematics games here, along with some physics and word games.

Photograph of a couple of midway games: Knock It Off (a milk-cans game), Hot Shots (basketball game), Cat Rack (knocking over cat figures), and Balloon Darts (a pop-the-balloons game). No one is playing them yet and it's not clear they're attended.
Some midway gaves on offer at Seabreeze Park in Rochester, New York (2019). It was a slow day and the park had just opened minutes before.

I found interesting the talk about Math Midway, a touring exhibition meant to make mathematics ideas tactile. I’m not sure it’s still a going concern, though. Its schedule lists it as being at the Singapore Science Centre from February 2016 to present. But it’s not mentioned on the Singapore Science Centre’s page. (They do have a huge Tesla coil, though. Also they at least used to have an Albert Einstein animatronic, forever ascending and descending a rope. I enjoyed visiting it, although I would recommend going to the Tiger Balm Gardens as higher prioerity.) Still, exploring this did lead me to The National Museum of Mathematics, located in New York City. It has a fair number of exhibits and its events online.

Rides

But enough of the carnival as a generic theme. How about specific, actual rides and games? Theme Park Insider, one of the web’s top amusement-park-industry news, published Master the Midway: The Theme Park Insider Guide to Winning Carnival Games several years ago. The take from midway games is an expression of the Law of Large Numbers. The number of prizes won and their value will fluctuate day to day, but the averages will be predictable. And what players can do to better their chances is subject to reason.

Specific rides, though, are always beautiful and worth looking at. Ann-Marie Pendrill’s Rotating swings—a theme with variations looks at rotating swing rides. These have many kinds of motion and many can be turned into educational problems. Pendrill looks at some of them. There are other articles recommended by this, which seem relevant, but this was the only article I found which I had permission to read in full. Your institution might have better access.

Lin McMullin’s The Scrambler, or A Family of Vectors at the Amusement Park looks at the motion of the most popular thrill ride out there. (There are more intense rides. But they’re also ones many people feel are too much for them. Few people in a population think the Scrambler is too much for them.) McMullin uses the language of vectors to examine what path the rider traces out during a ride, and what they say about velocity and acceleration. These are all some wonderful shapes.

Evening photograph of a Scrambler, yellow and lit by its neon tube lighting. The greater focus is on the Googie-style Scrambler ride sign, self-illuminated in panels of rectangles rising and falling around the baseline and in a gorgeous thin typeface.
You may have wondered on a Scrambler ride how long it takes to get back to the same ground position. The answer is that it depends on just how the pieces rotate. (Lakeside Park, Denver, visited in June 2018.)

And Amusement Parks

Many amusement parks host science and mathematics education days. In fact I’ve never gone to the opening day of my home park, Michigan’s Adventure, as that’s a short four-hour day filled with area kids. Many of the parks do have activity pages, though, suggesting the kinds of things to think about at a park. Some of the mathematics is things one can use; some is toying with curiosity.

Here’s The State Fair of Texas’s Grade 6 STEM games. I don’t know whether there’s a more recent edition. But also imagine that tasks like counting the traffic flow or thinking about what energies are shown at different times in a ride do not age.

Photograph of a Dentzel antique carousel, focused on a black horse with red-and-white rose-themed saddle and leading the gryphon-themed chariot.
Dorney Park’s antique carousel, which at one time turned in the small Lake Lansing Amusement Park. Photo from August 2014.

Dorney Park, in northeastern Pennsylvania, was never my home park, but it was close. And I’ve had the chance to visit several times. People with Kutztown University, regional high schools, and Dorney Park prepared Coaster Quest – Geometry. These include a lot of observations and measurements all tied to specific rides at the park. (And a side fact, fun for me: Dorney Park’s carousel used to be at Lake Lansing Amusement Park, a few miles from me. Lake Lansing’s park closed in 1972, and the carousel spent several decades at Cedar Point in Ohio before moving to Pennsylvania. The old carousel building at Lake Lansing still stands, though, and I happened to be there a few weeks ago.)

And I have yet to make it to Six Flags America, but their Math & Science In Action page offers a similar roster of activities tied to that park. Six Flags America is their park in Maryland; the one in Illinois is Six Flags Great America.

Math Word Problems Solved offers a booklet of Amusement Park Word Problems Starring Pre-Algebra. These tie in to no particular amusement park. They do draw from real parks, though. For example it lists the highest point on the tallest steel roller coaster as 456 feet; it doesn’t name the ride, but that’s Kingda Ka, at Great Adventure. The highest point on the tallest wooden roller coaster is given as 218 feet, which was true at its 2009 publication: Son of Beast at Kings Island. Sad to say Son Of Beast closed in 2009, and was torn down in 2012. The current record heights in wooden coasters are T Express at Everland in South Korea, and Wildfire at Kolmården in Sweden. (Too much height is not really that good for wooden roller coasters.)

A 2018 posting on Social Mathematics asks: Do height restrictions matter to safety on Roller Coasters? Of course they do, or else we’d have more roller coasters that allowed mice to ride. The question is how much the size restriction matters, and how sensitive that dependence is. So the leading question is a classic example of applying mathematics to the real world. This includes practical subtleties like if a person 39.5 inches tall could ride safely, is it fair to round that off to 40 inches? It also includes the struggle to work out how dangerous an amusement park is.

Speaking from my experience as a rider and lover of amusement parks: don’t try to plead someone’s “close enough”. You’re putting an unfair burden on the ride operator. Accept the rules as posted. Everybody who loves amusement parks has their disappointment stories; accept yours in good grace.


Three roller coasters, one a tall skinny steel coaster, one a chunky white racing wooden coaster, and one a sleek modern wooden roller coaster, seen side-by-side.
Kingda Ka, Rolling Thunder, and El Toro, side by side. Rolling Thunder, itself a racing roller coaster, has since been torn down. Rolling Thunder’s greatest height was 96 feet, on both sides of the train. (Photo from July 2013.)

This leads me into planning amusement park fun. School Specialty’s blog particularly offers PLAY & PLAN: Amusement Park. This is a guide to building an amusement park activity packet for any primary school level. It includes, by the way, some mention of the historical and cultural aspects. That falls outside my focus on mathematics with a side of science here. But there is a wealth of culture in amusement parks, in their rides, their attractions, and their policies.

And to step away from the fun a moment. Many aspects of the struggle to bring equality to Americans are reflected in amusement parks, or were fought by proxy in them. This is some serious matter, and is challenging to teach. Few amusement parks would mention segregation or racist attractions or policies except elliptically. (That midway game where you throw a ball at a clown’s face? The person taking the hit was not always a clown.) Claire Prentice’s The Lost Tribe of Coney Island: Headhunters, Luna Park, and the Man Who Pulled Off the Spectacle of the Century is a book I recommend. It reflects one slice of this history.


Let me resume the fun, by looking to imaginary amusement parks. TeachEngineering’s Amusement Park Ride: Ups and Downs in Design designs and builds model “roller coasters”. This from foam tubes, toothpicks, masking tape, and marbles. It’s easier to build a ride in Roller Coaster Tycoon but that will always lack some of the thrill of having a real thing that doesn’t quite do what you want. The builders of Son Of Beast had the same frustration.

The Howard County Public Schools Office published a Mathatastic Amusement Park worksheet. It uses the problem of finding things on a park map to teach about (Cartesian) coordinates in a well-motivated way.

The Brunswick (Ohio) City Schools published a nice Amusement Park Map Project. It also introduces students to coordinate systems. This by having them lay out and design their own amusement park. It includes introductions to basic shapes. I am surprised reading the requirements that merry-go-rounds aren’t included, as circles. I am delighted that the plan calls for eight to ten roller coasters and a petting zoo, though. That plan works for me.

Cheryl Q Nelson and Nicole L Williams, writing for Mathematics Teacher, published the article Sprinklers and Amusement Parks: What Do They Have To Do With Geometry? Both (water) sprinklers and amusement park vendors are about covering spaces without waste. Someone might wonder at their hypothetical park where the bumper cars are one of the three most popular rides. I recommend a visit, when possible, to Conneaut Lake Park, in northwestern Pennsylvania. Their bumper cars are wild. Their roller coaster’s pretty great too.

And finally a bit of practical yet light news. Dickinson University was happy to share how The Traveling Salesman Problem Finds A Novel Application in Summer Student-Faculty Research Project. The Traveling Salesman Problem is the challenge to find the most efficient way to any set of points. It’s a problem both important and difficult. As you try to get to more points the problem (typically) gets far more difficult. I hadn’t seen it applied to amusement park itineraries before, but that’s a legitimate use. I am disappointed the press release did not share their work on most efficient routes around Hersheypark and Disney World. They did publish a comparison of ways to attack the problem.


Evening photograph showing the outlines of Kingda Ka and El Toro roller coasters against night clouds. A streak of pinpoint lights go over the top of Kingda Ka.
Kingda Ka and El Toro seen by night. It looks like there’s a train going right over the top of El Toro. (Photo from July 2013.)

And this closes the carnival, for today. If you’d like to follow this blog, please click the “Follow NebusReseearch” button the page. Or you can add the articles feed to your favorite RSS reader. My Twitter account @Nebusj is all but moribund. For whatever reason Safari often doesn’t want to let me see it. I am also present and active on Mathstodon. This is the mathematics-themed instance of Mastodon, as @Nebusj@mathstodon.xyz. I would be glad to have more people to chat with there. Thank you as ever for reading.

I’d like to know of any playful, educational mathematics you’ve seen


I am hosting, later this month, the 141st installment of Denise Gaskins’s Playful Math Education Blog Carnival. If you’ve seen recently any mathematics piece — a blog, a YouTube video, a magazine article — that you found educational or enlightening or just fun, please, share it with me in comments so I can share it with the wider world.

The current carnival, #140, is at Iva Sallay’s Find The Factors blog. The next one, #142, is scheduled to be at Denise Gaskins’ own Let’s Play Math blog. And if you would like the challenge and excitement of hosting one yourself, there are always months available. You might enjoy the time spent looking at your mathematics reading with a different focus. Thank you all.

So I’m hosting the 141th Playful Math Education Blog Carnival


I mentioned yesterday Iva Sallay’s hosting of the 140th Playful Math Education Blog Carnival. This is a collection of pieces of educational, recreational, or otherwise just delightful mathematics posts. I’d said I hoped I might have the energy to host one again this year and, you know? Denise Gaskins, who organizes this monthly event, took me up on the offer.

So, if you write, or read, or are just aware of a good mathematics or mathematics-related blog, please, leave me a comment! I’ll need all the help I can get finding things worth sharing. Anything that you’ve learned from, or that’s delighted you, is worth it. It’ll teach and delight other people too.

And if you have a blog and would like to try out hosting it, please do! There are always months available, and it’s a neat different sort of blogging challenge.

Reading the Comics, May 7, 2020: Getting to Golf Edition


Last week saw a modest number of mathematically-themed comic strips. Then it threw in a bunch of them all on Thursday. I’m splitting the week partway through that, since it gives me some theme to this collection.

Tim Rickard’s Brewster Rockit for the 3rd of May is a dictionary joke, with Brewster naming each kind of chart and making a quick joke about it. The comic may help people who’ve had trouble remembering the names of different kinds of graphs. I doubt people are likely to confuse a pie chart with a bar chart, admittedly. But I could imagine thinking a ‘line graph’ is what we call a bar chart, especially if the bars are laid out horizontally as in the second panel here.

Brewster giving a presentation: 'For my presentation, I couldn't decide what graphs to use.' [ In front of a bar chart ] 'I did a bar chart to find the most-used graphs.' [ In front of a line graph ] 'This line graph shows the growing popularity of bar graphs.' [ Scatter plot ] 'This scatter plot graph shows a pattern of people who don't understand scatter plot graphs.' [ Pie chart ] 'This one shows which graph most reminds us of food.' Audience member: 'Wasn't your presentation supposed to be on not getting distracted?' [ Brewster looks at his bubble chart ] 'And bubble charts really pop!'
Tim Rickard’s Brewster Rockit for the 3rd of May, 2020. It’s been surprisingly long since I last reviewed this strip here. Essays featuring Brewster Rockit are at this link.

The point of all these graphs is to understand data geometrically. We have fair intuitions about relatives lengths and areas. Bar charts represent relative magnitudes in lengths. Pie charts and bubble charts represent magnitudes in area. We have okay skills in noticing structures in complex shapes. Line graphs and scatter plots use that skill. So these pictures can help us understand some abstraction or something we can’t sense using a sense we do have. It’s not necessarily great; note that I said our intuitions were ‘fair’ and ‘okay’. But we hope to use reason helped by intuition to better understand what we are doing.

Jef Mallett’s Frazz for the 3rd is a resisting-the-story-problem joke. It’s built not just on wondering the point of story problems at all, but of these story problems during the pandemic. (Which Mallett on the 27th of April, would be taking “some liberties” with the real world. It’s a respectable decision.)

And, yes, in the greater scheme of things, any homework or classwork problem is trivial. It’s meant to teach how to calculate things we would like to know. The framing of the story is meant to give us a reason to want to know a thing. But they are practice, and meant to be practice. One practices on something of no consequence, where errors in one’s technique can be corrected without breaking anything.

Students looking at story problems: '... how many more pints will it take to empty Alec's barrel?' '... and Doug waves to Qing four-tenths of the way across, how long is the bridge?' '... 12 per bag and 36 are left on the shelf, how many bags of bagels did Bill Banks buy?' Mrs Olsen, looking over papers: 'Suddenly every story problem answer begins with 'in the greater scheme of things' ... ' Frazz: 'These are interesting times.'
Jef Mallett’s Frazz for the 3rd of May, 2020. Reading the Comics essays with some mention of something in Frazz are gathered at this link.

It happens a round of story problems broke out among my family. My sister’s house has some very large trees. There turns out to be a poorly-organized process for estimating the age of these trees from their circumference. This past week saw a lot of chatter and disagreement about what the ages of these trees might be.

Jason Poland’s Robbie and Bobby for the 4th riffs on the difference between rectangles and trapezoids. It’s also a repeat, featured here just five years ago. Amazing how time slips on like that.

Samson’s Dark Side of the Horse for the 4th is another counting-sheep joke. It features one of those shorthands for large numbers which often makes them more manageable.

Michael Fry’s Committed rerun for the 7th finally gets us to golf. The Lazy Parent tries to pass off watching golf as educational, with working out the distance to the pin as a story problem. Structurally this is just fine, though: a golfer would be interested to know how far the ball has yet to go. All the information needed is given. It’s the question of whether anyone but syndicated cartoonists cares about golf that’s a mystery.

Bill Amend’s FoxTrot Classics for the 7th is another golf and mathematics joke. Jason has taken the homonym of ‘fore’ for ‘four’, and then represented ‘four’ in a needlessly complicated way. Amend does understand how nerd minds work. The strip originally ran the 21st of May, 1998.


That’s enough comics for me for today. I should have the rest of last week’s in a post at this link soon. Thank you.

The Playful Math Education Blog Carnival #136


Greetings, friends, and thank you for visiting the 136th installment of Denise Gaskins’s Playful Math Education Blog Carnival. I apologize ahead of time that this will not be the merriest of carnivals. It has not been the merriest of months, even with it hosting Pi Day at the center.

Playful Math Education Blog Carnival banner, showing a coati dressed in bright maroon ringmaster's jacket and top hat, with multiplication and division signs sitting behind atop animal-training podiums; a greyscale photograph audience is in the far background.
Banner art again by Thomas K Dye, creator of Newshounds, Infinity Refugees, Something Happens, and his current comic strip, Projection Edge. You can follow him on Patreon and read his comic strip nine months ahead of its worldwide publication. The banner art was commissioned several weeks ago when I expected I would be in a more playful mood this week.

In consideration of that, let me lead with Art in the Time of Transformation by Paula Beardell Krieg. This is from the blog Playful Bookbinding and Paper Works. The post particularly reflects on the importance of creating a thing in a time of trouble. There is great beauty to find, and make, in symmetries, and rotations, and translations. Simple polygons patterned by simple rules can be accessible to anyone. Studying just how these symmetries and other traits work leads to important mathematics. Thus how Kreig’s page has recent posts with names like “Frieze Symmetry Group F7” but also to how symmetry is for five-year-olds. I am grateful to Goldenoj for the reference.

Kreig’s writing drew the attention of another kind contributor to my harvesting. Symmetry and Multiplying Negative Numbers explores one of those confusing things about negative numbers: how can a negative number times a negative number be positive? One way to understand this is to represent arithmetic operations as geometric operations. Particularly, we can see negation as a reflection.

That link was brought to my attention by Iva Sallay, another longtime friend of my little writings here. She writes fun pieces about every counting number, along with recreational puzzles. And asked to share 1458 Tangrams Can Be A Pot of Gold, as an example of what fascinating things can be found in any number. This includes a tangram. Tangrams we see in recreational-mathematics puzzles based on ways that you can recombine shapes. It’s always exciting to be able to shift between arithmetic and shapes. And that leads to a video and related thread again pointed to me by goldenoj …

This video, by Mathologer on YouTube, explains a bit of number theory. Number theory is the field of asking easy questions about whole numbers, and then learning that the answers are almost impossible to find. I exaggerate, but it does often involve questions that just suppose you understand what a prime number should be. And then, as the title asks, take centuries to prove.

Fermat’s Two-Squares Theorem, discussed here, is not the famous one about a^n + b^2 = c^n . Pierre de Fermat had a lot of theorems, some of which he proved. This one is about prime numbers, though, and particularly prime numbers that are one more than a multiple of four. This means it’s sometimes called Fermat’s 4k+1 Theorem, which is the name I remember learning it under. (k is so often a shorthand for “some counting number” that people don’t bother specifying it, the way we don’t bother to say “x is an unknown number”.) The normal proofs of this we do in the courses that convince people they’re actually not mathematics majors.

What the video offers is a wonderful alternate approach. It turns key parts of the proof into geometry, into visual statements. Into sliding tiles around and noticing patterns. It’s also a great demonstration of one standard problem-solving tool. This is to look at a related, different problem that’s easier to say things about. This leads to what seems like a long path from the original question. But it’s worth it because the path involves thinking out things like “is the count of this thing odd or even”? And that’s mathematics that you can do as soon as you can understand the question.

Iva Sallay also brought up Jenna Laib’s Making Meaning with Arrays: More Preschooler Division which similarly sees numerical truths revealed through geometric reasoning. Here, particularly, by the problem of baking muffins and thinking through how to divide them up. A key piece here, for a particular child’s learning, was being able to pick up and move things around. Often in shifting between arithmetic and geometry we suppose that we can rearrange things without effort. As adults it’s easy to forget that this is an abstraction that we need to learn.

Sharing of food, in this case cookies, appears in Helena Osana’s Mathematical thinking begins in the early years with dialogue and real-world exploration. Mathematic, Osana notes, is primarily about thinking. An important part in mathematics education is working out how the thinking children most like to do can also find mathematics.

I again thank Iva Sallay for that link, as well as this essay. Dan Meyer’s But Artichokes Aren’t Pinecones: What Do You Do With Wrong Answers? looks at the problem of students giving wrong answers. There is no avoiding giving wrong answers. A parent’s or teacher’s response to wrong answers will vary, though, and Meyer asks why that is. Meyer has some hypotheses. His example notes that he doesn’t mind a child misidentifying an artichoke as a pinecone. Not in the same way identifying the sum of 1 and 9 as 30 would. What is different about those mistakes?

Jessannwa’s Soft Start In The Intermediate Classroom looks to the teaching of older students. No muffins and cookies here. That the students might be more advanced doesn’t change the need to think of what they have energy for, and interest in. She discusses a class setup that’s meant to provide structure in ways that don’t feel so authority-driven. And ways to turn practicing mathematics problems into optimizing game play. I will admit this is a translation of the problem which would have worked well for me. But I also know that not everybody sees a game as, in part, something to play at maximum efficiency. It depends on the game, though. They’re on Twitter as @jesannwa.

Speaking of the game, David Coffey’s Creating Positive Change in Math Class was written in anticipation of the standardized tests meant to prove out mathematics education. Coffey gets to thinking about how to frame teaching to more focus on why students should have a skill, and how they can develop it. How to get students to feel involved in their work. Even how to get students to do homework more reliably. Coffey’s scheduled to present at the Michigan Council of Teachers of Mathematics conference in Grand Rapids this July. This if all starts going well. And this is another post I know of thanks to Goldenoj.

These are thoughts about how anyone can start learning mathematics. What does it look like to have learned a great deal, though, to the point of becoming renowned for it? Life Through A Mathematician’s Eyes posted Australian Mathematicians in late January. It’s a dozen biographical sketches of Australian mathematicians. It also matches each to charities or other public-works organizations. They were trying to help the continent through the troubles it had even before the pandemic struck. They’re in no less need for all that we’re exhausted. The page’s author is on Twitter as @lthmath.

Mathematical study starts small, though. Often it starts with games. There are many good ones, not least Iva Sallay’s Find the Factors puzzles.

Besides that, Dads Worksheets has provided a set of Math Word Search Puzzles. It’s a new series from people who create worksheets for many grade levels and many aspects of mathematics. They’re on Twitter as @dadsworksheets.

Mr Wu, of the Singapore Math Tuition blog, has also begun a new series of recreational mathematics puzzles. He lays out the plans for this, puzzles aimed at children around eight to ten years old. One of the early ones is the Stickers Math Question. A more recent one is The Secret of the Sweets (Sweet Distribution Problem). Mr Wu can be found on Twitter as @mathtuition88.

Denise Gaskins, on Twitter as @letsplaymath, and indefatigable coordinator for this carnival, offers the chance to Play Math with Your Kids for Free. This is an e-book sampler of mathematics gameplay.

I have since the start of this post avoided mentioning the big mathematical holiday of March. Pi Day had the bad luck to fall on a weekend this year, and then was further hit by the Covid-19 pandemic forcing the shutdown of many schools. Iva Sallay again helped me by noting YummyMath’s activities page It’s Time To Gear Up For Pi Day. This hosts several worksheets, about the history of π and ways to calculate it, and several formulas for π. This even gets into interesting techniques like how to use continued fractions in finding a numerical value.

The Guys and Good Health blog presented Happy Pi Day on the 14th, with — in a move meant to endear the blog to me — several comic strips. This includes one from Grant Snider, who draws lovely strips. I’m sad that his Incidental Comics has left GoComics.com, so I can’t feature it often during my Reading the Comics roundups anymore.

Virtual Brush Box, meanwhile, offers To Celebrate Pi Day, 10 Examples of Numbers and 10 Examples of Math Involved with Horses which delights me by looking at π, and mathematics, as they’re useful in horse-related activities. This may be the only blog post written specifically for me and my sister, and I am so happy that there is the one.

There’s a bit more, a bit of delight. It was my greatest surprise in looking for posts for this month. That is poetry. I mean this literally.

Whimsy-Mimsy wrote on Pi Day a haiku.

D Avery, on Shift N Shake, wrote the longer Another Slice of Pi Day, the third year of their composing poems observing the day.

Rolands Rag Bag shared A Pi-Ku for Pi-Day featuring a poem written in a form I wasn’t aware anyone did. The “Pi-Ku” as named here has 3 syllables for the first time, 1 syllable in the second line, 4 syllables in the third line, 1 syllable the next line, 5 syllables after that … you see the pattern. (One of Avery’s older poems also keeps this form.) The form could, I suppose, go on to as many lines as one likes. Or at least to the 40th line, when we would need a line of zero syllables. Probably one would make up a rule to cover that.

Blind On The Light Side similarly wrote Pi poems, including a Pi-Ku, for March 12, 2020. These poems don’t reach long enough to deal with the zero-syllable line, but we can forgive someone not wanting to go on that long.

As a last note, I have joined Mathstodon, the Mastodon instance with a mathematics theme. You can follow my shy writings there as @nebusj@mathstodon.xyz, or follow a modest number of people talking, largely, about mathematics. Mathstodon is a mathematically-themed microblogging site. On WordPress, I do figure to keep reading the comics for their mathematics topics. And sometime this year, when I feel I have the energy, I hope to do another A to Z, my little glossary project.

And this is what I have to offer. I hope the carnival has brought you some things of interest, and some things of delight. And, if I may, please consider this Grant Snider cartoon, Hope.

Life Through A Mathematician’s Eyes is scheduled to host the 137th installment of the Playful Math Education Blog Carnival, at the end of April. I look forward to seeing it. Good luck to us all.

One last call for the Playful Math Education Blog Carnival


I hope to publish the March 2020 Playful Math Education Blog Carnival tomorrow. If you’ve recently seen any web site that shares and explains some aspect of mathematics or mathematics education that interested or delighted you, please, share it with me, so I can share it with more people. If you do, please, let me know of your own projects, besides that, so I can mention that to this month’s audience. Thank you.

Getting Ready for Pi Day, and also the Playful Math Blog Carnival


So the first bit of news: I’m hosting the Playful Math Education Blog Carnival later this month. This is a roaming blog link party, sharing blogs that delight or educate, or ideally both, about mathematics. As mentioned the other day Iva Sallay of Find the Factors hosted the 135th of these. My entry, the 136th, I plan to post sometime the last week of March.

And I’ll need help! If you’ve run across a web site, YouTube video, blog post, or essay that discusses something mathematical in a way that makes you grin, please let me know, and let me share it with the carnival audience.


This Saturday is March 14th, which we’ve been celebrating as Pi Day. I remain skeptical that it makes a big difference in people’s view of mathematics or in their education. But an afternoon spent talking about mathematics with everyone agreeing that, for today, we won’t complain about how hard it always was or how impossible we always found it, is pleasant. And that’s a good thing. I don’t know how much activity there’ll be for it, since the 14th is a weekend day this year. And the Covid-19 problem has got all the schools in my state closed through to April, so any calendar relevance is shattered.

But I have some things in the archive anyway. Last year I gathered Six Or Arguably Four Things For Pi Day, a collection of short essays about ways to calculate π well or poorly, and about some of the properties we’re pretty sure that π has, even if we can’t prove it. Also this fascinating physics problem that yields the digits of π.

And the middle of March often brings out Comic Strip Master Command. It looks like I’ve had at least five straight Pi Day editions of Reading the Comics, although most of them cover strips from more than just the 14th of March. From the past:

What will 2020 offer? There’s no guessing about anything in 2020 anymore, really. But when I get to look at the Pi Day comic strips for 2020 my essay on them should appear at this link. Thanks ever for reading. And for letting me know about sites that would be good for this month’s Carnival.

Reading the Comics, February 19, 2020: 90s Doonesbury Edition


The weekday Doonesbury has been in reruns for a very long while. Recently it’s been reprinting strips from the 1990s and something that I remember producing Very Worried Editorials, back in the day.

Garry Trudeau’s Doonesbury for the 17th reprints a sequence that starts off with the dread menace and peril of Grade Inflation, the phenomenon in which it turns out students of the generational cohort after yours are allowed to get A’s. (And, to a lesser extent, the phenomenon in which instructors respond to the treatment of education as a market by giving the “customers” the grades they’re “buying”.) The strip does depict an attitude common towards mathematics, though, the idea that it must be a subject immune to Grade Inflation: “aren’t there absolute answers”? If we are careful to say what we mean by an “absolute answer” then, sure.

Dean: 'Sir, you're going to have to speak to the faculty about grade inflation. Standards are just falling off the chart. The pressure to pander is even beginning to affect the math department.' President: 'Math? How can that be? Aren't there absolute answers in math?' Dean: 'Well, yes and no.' President, thinking: 'Yes and now?' [ Math Class ] Student: '17!' Other Student: '39!' Math Professor: 'Excellent guesses! Well done!'
Garry Trudeau’s Doonesbury rerun for the 17th of February, 2020 of February, 2020. It originally ran the 20th of December, 1993. I have few essays which mention this long-running strip, oddly. What essays are inspired by something in Doonesbury appear at this link.

But grades? Oh, there is so much subjectivity as to what goes into a course. And into what level to teach that course at. How to grade, and how harshly to grade. It may be easier, compared to other subjects, to make mathematics grading more consistent year-to-year. One can make many problems that test the same skill and yet use different numbers, at least until you get into topics like abstract algebra where numbers stop being interesting. But the factors that would allow any course’s grade to inflate are hardly stopped by the department name.

Mathematician: 'I went massively into debt to build a machine that generates holographic numbers and equations whenever I wish to appear thoughtful.' Friend: 'Was that a good use money?' [ Panel of the mathematician looking thoughtful with equations spread out in space behind and in front of her. ] Mathematician: 'Yes.' Friend: 'A thousand times yes.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th of February, 2020. I have a few essays which don’t mention this long-running web strip, oddly. What essays are inspired by something in Saturday Morning Breakfast Cereal appear at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th is a strip about using a great wall of equations as emblem of deep, substantial thought. The equations depicted are several meaningful ones. The top row is from general relativity, the Einstein Field Equations. These relate the world-famous Ricci curvature tensor with several other tensors, describing how mass affects the shape of space. The P = NP line describes a problem of computational science with an unknown answer. It’s about whether two different categories of problems are, in fact, equivalent. The line about L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} is a tensor-based scheme to describe the electromagnetic field. The next two lines look, to me, like they’re deep in Schrödinger’s Equation, describing quantum mechanics. It’s possible Weinersmith has a specific problem in mind; I haven’t spotted it.

Guy Walks Into A Bar comics. Man holding a horse's reins, to the bartender: 'I'll bet $50 my horse can do arithmetic!' Bartender: 'OK, what's 2 + 2?' Horse: '10.' Horse, to the angry guy, outside the bar: 'Well, think about it. Why would a horse use base ten?'
Ruben Bolling’s Super-Fun-Pak Comix for the 18th of February, 2020. There are a fair number of essays inspired by one of the Super-Fun-Pak Comics, and they’re gathered at this link. All the Super-Fun-Pak Comics first ran in Tom The Dancing Bug, essays about which appear here.

Ruben Bolling’s Super-Fun-Pak Comix for the 18th is one of the Guy Walks Into A Bar line, each of which has a traditional joke setup undermined by a technical point. In this case, it’s the horse counting in base four, in which representation the number 2 + 2 is written as 10. Really, yes, “10 in base four” is the number four. I imagine properly the horse should say “four” aloud. But it is quite hard to read the symbols “10” as anything but ten. It’s not as though anyone looks at the hexadecimal number “4C” and pronounces it “76”, either.

Garry Trudeau’s Doonesbury for the 19th twisted the Grade Inflation peril to something that felt new in the 90s: an attack on mathematics as “Eurocentric”. The joke depends on the reputation of mathematics as finding objectively true things. Many mathematicians accept this idea. After all, once we’ve seen a proof that we can do the quadrature of a lune, it’s true regardless of what anyone thinks of quadratures and lunes, and whether that person is of a European culture or another one.

Student: 'This B+ is wrong, man! You're dissin me big time here.' Professor: 'Mr Slocum, I merely gave you the grade you deserved.' Student: 'Can't be, man! This is WAY off base!' Professor: 'As was your entire first proof, in which you held the square root of 144 to be 15. It is, in fact, 12.' Student: 'Well, sure, from a narrow, absolutist, Eurocentric perspective, maybe it's 12.' Professor: 'So?' Student: 'So my culture teaches it's 15, man!' Professor: 'Fascinating. Would this be an advanced civilization?'
Garry Trudeau’s Doonesbury rerun for the 19th of February, 2020 of February, 2020. It originally ran the 22nd of December, 1993. I am reminded once again of a fellow grad student, doing his teaching-assistant duties, watching student after student on the calculus exam reduce 1002 to 10. When enough students make the same mistake you start to question your grading scheme. Which is sometimes fair: if everyone gets partway through a question and fails at the same step there’s a prima facie case that the problem was your instruction, not their comprehension. Doesn’t cover dumb arithmetic glitches, though.

But there are several points to object to here. The first is, what’s a quadrature? … This is a geometric thing; it’s finding a square that’s the same area as some given shape, using only straightedge and compass constructions. The second is, what’s a lune? It’s a crescent moon-type shape (hence the name) that you can make by removing the overlap from two circles of specific different radiuses arranged in a specific way. It turns out you can find the quadrature for the lune shape, which makes it seem obvious that you should be able to find the quadrature for a half-circle, a way easier (to us) shape. And it turns out you can’t. The third question is, who cares about making squares using straightedge and compass? And the answer is, well, it’s considered a particularly elegant way of constructing shapes. To the Ancient Greeks. And to those of us who’ve grown in a mathematics culture that owes so much to the Ancient Greeks. Other cultures, ones placing more value on rulers and protractors, might not give a fig about quadratures and lunes.

This before we get into deeper questions. For example, if we grant that some mathematical thing is objectively true, independent of the culture which finds it, then what role does the proof play? It can’t make the thing more or less true. It doesn’t eve matter whether the proof is flawed, or whether it convinces anyone. It seems to imply a mathematician isn’t actually needed for their mathematics. This runs contrary to intuition.

Anyway, this gets off the point of the student here, who’s making a bad-faith appeal to multiculturalism to excuse laziness. It’s difficult to imagine a culture that doesn’t count, at least, even if they don’t do much work with numbers like 144. Granted that, it seems likely they would recognize that 12 has some special relationship with 144, even if they don’t think too much of square roots as a thing.


And do please stop in later this Leap Day week. I figure to have one of my favorite little things, a Reading the Comics day that’s all one day. It should be at this link, when posted. Thank you.

My 2019 Mathematics A To Z: Unitizing


Goldenoj suggested my topic for today’s essay. It delighted me because I had no idea what it was. It wasn’t even listed on Mathworld, where I start all my research for these essays. It turned out to be something that I use all the time, but that I learned so long ago that it’s faded to invisibility. I didn’t even know that the concept had a name. So that makes it a great topic for an essay like this. I hope.

Cartoony banner illustration of a coati, a raccoon-like animal, flying a kite in the clear autumn sky. A skywriting plane has written 'MATHEMATIC A TO Z'; the kite, with the letter 'S' on it to make the word 'MATHEMATICS'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Unitizing.

I once interviewed for a job I didn’t expect to get (or take). I would have taught for a university that provided courses for United States armed forces dependents. One bit of small talk that I thought went well had my potential department head mention a weird little quirk. United States-raised children were unusually good in multiplying stuff by 25. I had a ready hypothesis: the United States (and Canada) have a quarter-dollar coin. Many other countries just don’t, making do with 20-cent and 50-cent pieces instead. The potential department head said that was a good observation. United States-raised kids got practice turning four 25’s into a block of 100.

And this is the thing labelled as unitizing. A unit is, in this context, the thing we think of as “one thing”. This can be dollars, or feet of distance, or loaves of bread, or weeks of paid vacation. Whatever we need to measure. A unit often is made up of tinier pieces, cents or inches or slices or days. It can often be bundled up into bigger ones. Unitizing is about finding the bundle of things that makes the work one wants to do easy to understand.

This is a difficult topic for me to write about. I find it hard to notice myself doing it. But, for example, consider counting. Most people have a fair time counting up to five or six things at a glance. Eighteen things? There’s no telling that at a glance. What you can do, though, is notice that they group together, a block of six things here, another six here, another six there. Then the mass of things has turned into a manageable several collections of manageable counts of things. And, if we need to reverse the process, we can do that. Recognize that the 36 little triangular-wedge game tokens can be given out nine each to the four players. They can in turn arrange six of the tokens into an attractive complete wheel, and make do with the three remainder.

Slices of things turn up a good bit in thought about unitizing. One of particular delight that I found is this paper, by Susan J Lamon. It’s The Development of Unitizing: Its Role in Children’s Partitioning Strategies. Lamon investigated how children understand quantity, and the paper describes several experiments. A typical example is asking children how to evenly divide four pizzas among six people. And how their strategies change if all the pizzas are cut beforehand, versus whether they have to make the cuts themselves. Or how the question changes if things that are not pizza are considered. One child had different cutting strategies for four pizzas versus four cookies. The good reason: cookies are harder to slice than pizzas. You need to be more economical with your cuts so you don’t ruin the food.

And what kids found to be units depended on what was being divided. Four pizzas with different toppings would be divided differently from four identical pizzas. Four Chinese dinners were split by different strategies too. One child explained it just didn’t seem right to call what each person got four-sixths of each dinners. Lamon speculates this reflects cultural conventions about meals that are often eaten in common, and that feels right to me.

There’s obvious uses to this unitizing, in figuring how to divide pizzas and cases of 24 pop cans. There are subtler uses. Positional notation depends on unitizing. We group ten individual things into a new block, and denote it as something in a tens column. Or ten individual blocks-of-ten, which we denote as something in a hundreds column. And we go the other way as we need, when subtracting or dividing.

When I was learning base-ten (and other) arithmetic, they taught me to think of exchanging ten pennies for a dime, or ten dimes for a dollar, or back the other way. To someone hoarding pennies so as to afford things from the bookmobile the practice working out units worked well.

With that context you see why it’s hard to point out what’s happening. You aren’t reading a pop mathematics blog unless you’re quite at ease with calculation. That there is a particular skill done becomes invisible due to its ubiquity. It takes special circumstances to see it again.


Thanks for reading. This and the other essays for the Fall 2019 A to Z should appear at this link. I hope to publish the letter V on Thursday. And all past A to Z essays ought to be at this link.

Reading the Comics, July 26, 2019: Children With Mathematics Edition


Three of the strips I have for this installment feature kids around mathematics talk. That’s enough for a theme name.

Gary Delainey and Gerry Rasmussen’s Betty for the 23rd is a strip about luck. It’s easy to form the superstitious view that you have a finite amount of luck, or that you have good and bad lucks which offset each other. It feels like it. If you haven’t felt like it, then consider that time you got an unexpected $200, hours before your car’s alternator died.

If events are independent, though, that’s just not so. Whether you win $600 in the lottery this week has no effect on whether you win any next week. Similarly whether you’re struck by lightning should have no effect on whether you’re struck again.

Betty: 'We didn't use up our luck winning $600 in the lottery!' Bub: 'You don't think so? Shorty's brother got hit by lightning and lived. The second time, he also lived, but it ruined his truck.' Betty: 'I don't know how to respond to that.' Bub: 'And the third time ... '
Gary Delainey and Gerry Rasmussen’s Betty for the 23rd of July, 2019. I thought this might be a new tag, but, no. Other essays mentioning Betty are at this link.

Except that this assumes independence. Even defines independence. This is obvious when you consider that, having won $600, it’s easier to buy an extra twenty dollars in lottery tickets and that does increase your (tiny) chance of winning again. If you’re struck by lightning, perhaps it’s because you tend to be someplace that’s often struck by lightning. Probability is a subtler topic than everyone acknowledges, even when they remember that it is such a subtle topic.

It sure seems like this strip wants to talk about lottery winners struck by lightning, doesn’t it?

Susan: 'What are you so happy about?' Lemont: 'This morning Lionel and I were had breakfast at Pancake-ville. When it came time to calculate a tip I asked 'What's 20% of $22.22' and it told me. It occurred to me, we're living in the future! We have electric cars, drones, instant knowledge at our fingertips ... it's the future I've dreamt of my entire life!' Susan: 'Sigh ... you always did hate math.' Lemont: 'Only in the FUTURE can a man track down his old math teacher on Facebook and gloat.'
Darrin Bell’s Candorville for the 23rd of July, 2019. Essays inspired by Candorville in some way are here.

Darrin Bell’s Candorville for the 23rd jokes about the uselessness of arithmetic in modern society. I’m a bit surprised at Lemont’s glee in not having to work out tips by hand. The character’s usually a bit of a science nerd. But liking science is different from enjoying doing arithmetic. And bad experiences learning mathematics can sour someone on the subject for life. (Which is true of every subject. Compare the number of people who come out of gym class enjoying physical fitness.)

If you need some Internet Old, read the comments at GoComics, which include people offering dire warnings about what you need in case your machine gives the wrong answer. Which is technically true, but for this application? Getting the wrong answer is not an immediately awful affair. Also a lot of cranky complaining about tipping having risen to 20% just because the United States continues its economic punishment of working peoples.

Woman: 'Oh my gosh, you have twins!' Mathematician: 'Yeah. Please meet my sons.' 'Did you give them rhyming names?' 'No.' 'Alliterative names? Are they named for twins from any books?' 'Lady, I'm a mathematician. I think in clear logical terms. None of this froufrou nonsense for my kids.' 'Okay, okay. So their names are?' 'Benjamin and Benjamax.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th of July, 2019. Haven’t seen this comic mentioned since two days ago. Essays mentioning some aspect of Saturday Morning Breakfast Cereal should be gathered at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th is some wordplay. Mathematicians often need to find minimums of things. Or maximums of things. Being able to do one lets you do the other, as you’d expect. If you didn’t expect, think about it a moment, and then you expect it. So min and max are often grouped together.

Thatababy drawing on a Scalene Triangle, scales and eyes added to one. An Octagon: octopus legs added to an octagon. Rhombus: rhombus with wheels, windows, and a driver added to it, and a passenger hailing it down.
Paul Trap’s Thatababy for the 26th of July, 2019. Essays exploring some topic mentioned by Thatababy are here.

Paul Trap’s Thatababy for the 26th is circling around wordplay, turning some common shape names into pictures. This strip might be aimed at mathematics teachers’ doors. I’d certainly accept these as jokes that help someone learn their shapes.


And you know what? I hope to have another Reading the Comics post around Thursday at this link. And that’s not even thinking what I might do for this coming Sunday.

What Does It Take To Get A C This Class?


I’m posting this for several sordid reasons. First is that I want to test whether WordPress has changed something in how pingbacks — a post linking to another post — get handled. Second is I want to get my post count for the month up from its pitifully low number. I’m at something like negative four posts for all April. Third is that oh, yes, it is about that time of the semester when a kind of student is trying to study just hard enough to get a 79.6 percent in their classwork. So they want to study up to an 86.2 on the final and not waste their efforts studying up to an 86.5.

So here’s a couple tables I set up years ago. They show, for some common breakdowns of how much the final exam is worth, and what your class average is before going into the finals, what you’d need to get a 60, 65, 70, 80, or 90.

If your case isn’t handled in the above examples, here’s an essay with the complete formula needed to handle any circumstance, including extra credit.

But seriously you can’t study yourself up to “just” enough to get your target grade for the course. Study to understand the subject and take the grade as it is.

Find The Factors hosts the 127th Playful Mathematics Education Blog Carnival


I continue to tell myself I’ll put together the hour needed to write a good quick 3,500 words on continuous functions. I’m wrong. But you all might like to know that Iva Sallay, of the Find The Factors blog, hosts the Playful Mathematics Education Blog Carnival this month. As traditional this is a great variety of mathematics essays, references, games, and trivia. And finding the factors is a reliable and fun puzzle anytime. Do please enjoy.

Reading the Comics, March 23, 2019: March 23, 2019 Edition


I didn’t cover quite all of last week’s mathematics comics with Sunday’s essay. There were a handful that all ran on Saturday. And, as has become tradition, I’ll also list a couple that didn’t rate a couple paragraphs.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd has a neat variation on story problems. Zoe’s given the assignment to make her own. I don’t remember getting this as homework, in elementary school, but it’s hard to see why I wouldn’t. It’s a great exercise: not just set up an arithmetic problem to solve, but a reason one would want to solve it.

Composing problems is a challenge. It’s a skill, and you might be surprised that when I was in grad school we didn’t get much training in it. We were just taken to be naturally aware of how to identify a skill one wanted to test, and to design a question that would mostly test that skill, and to write it out in a question that challenged students to identify what they were to do and how to do it, and why they might want to do it. But as a grad student I wasn’t being prepared to teach elementary school students, just undergraduates.

Dad: 'Homework?' Zoe: 'Yeah, math. Our teacher is having us write our own story problem.' Dad: 'What have you got?' Zoe: 'If Hammie picks his nose at the rate of five boogers an hour ... ' Hammie: 'Ooh! Put me on a jet ski!'
Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd of March, 2019. Essays inspired by some Baby Blues strip appear at this link.

Mastroianni and Hart’s B.C. for the 23rd is a joke in the funny-definition category, this for “chaos theory”. Chaos theory formed as a mathematical field in the 60s and 70s, and it got popular alongside the fractal boom in the 80s. The field can be traced back to the 1890s, though, which is astounding. There was no way in the 1890s to do the millions of calculations needed to visualize any good chaos-theory problem. They had to develop results entirely by thinking.

Wiley’s definition is fine enough about certain systems being unpredictable. Wiley calls them “advanced”, although they don’t need to be that advanced. A compound pendulum — a solid rod that swings on the end of another swinging rod — can be chaotic. You can call that “advanced” if you want but then people are going to ask if you’ve had your mind blown by this post-singularity invention, the “screw”.

Cute Chick, reading Wiley's Dictionary: 'Chaos Theory. Mathematical principle that advanced systems are wholly unpredictable due to the introduction of random tweets.'
Mastroianni and Hart’s B.C. for the 23rd of March, 2019. Appearances here inspired by B.C., current syndication or 1960s reprints on GoComics, are at this link. Yeah, the character here is named ‘Cute Chick’ because that was funny when the comic started in 1958 and it can’t be updated for some reason?

What makes for chaos is not randomness. Anyone knows the random is unpredictable in detail. That’s no insight. What’s exciting is when something’s unpredictable but deterministic. Here it’s useful to think of continental divides. These are the imaginary curves which mark the difference in where water runs. Pour a cup of water on one side of the line, and if it doesn’t evaporate, it eventually flows to the Pacific Ocean. Pour the cup of water on the other side, it eventually flows to the Atlantic Ocean. These divides are often wriggly things. Water may mostly flow downhill, but it has to go around a lot of hills.

So pour the water on that line. Where does it go? There’s no unpredictability in it. The water on one side of the line goes to one ocean, the water on the other side, to the other ocean. But where is the boundary? And that can be so wriggly, so crumpled up on itself, so twisted, that there’s no meaningfully saying. There’s just this zone where the Pacific Basin and the Atlantic Basin merge into one another. Any drop of water, however tiny, dropped in this zone lands on both sides. And that is chaos.

Neatly for my purposes there’s even a mountain at a great example of this boundary. Triple Divide Peak, in Montana, rests on the divides between the Atlantic and the Pacific basins, and also on the divide between the Atlantic and the Arctic oceans. (If one interprets the Hudson Bay as connecting to the Arctic rather than the Atlantic Ocean, anyway. If one takes Hudson Bay to be on the Atlantic Ocean, then Snow Dome, Alberta/British Columbia, is the triple point.) There’s a spot on this mountain (or the other one) where a spilled cup of water could go to any of three oceans.

There's at least a 99.9 percent chance that in a group of 70 people at least two will share a birthday. The Pentagon had to ban staff from playing Pokemon Go in the building. Picasso created more than 13,500 paintings and designs, 10,000 prints and engravings, 34,000 book illustrations, and 300 sculptures and ceramics --- making him one of the world's most prolific artists.
John Graziano’s Ripley’s Believe It Or Not for the 23rd of March, 2019. The various pieces of mathematics trivia featured in Ripley’s Believe It Or Not get shown off at this link. I still think it’s weird to write Graziano’s Ripley’s. Anyway, with 57,800 listed pieces of art here Picasso is only credited as “one of” the world’s most prolific artists? Who’s out there with 57,802 pieces?

John Graziano’s Ripley’s Believe It Or Not for the 23rd mentions one of those beloved bits of mathematics trivia, the birthday problem. That’s finding the probability that no two people in a group of some particular size will share a birthday. Or, equivalently, the probability that at least two people share some birthday. That’s not a specific day, mind you, just that some two people share a birthday. The version that usually draws attention is the relatively low number of people needed to get a 50% chance there’s some birthday pair. I haven’t seen the probability of 70 people having at least one birthday pair before. 99.9 percent seems plausible enough.

The birthday problem usually gets calculated something like this: Grant that one person has a birthday. That’s one day out of either 365 or 366, depending on whether we consider leap days. Consider a second person. There are 364 out of 365 chances that this person’s birthday is not the same as the first person’s. (Or 365 out of 366 chances. Doesn’t make a real difference.) Consider a third person. There are 363 out of 365 chances that this person’s birthday is going to be neither the first nor the second person’s. So the chance that all three have different birthdays is \frac{364}{365} \cdot \frac{363}{365} . Consider the fourth person. That person has 362 out of 365 chances to have a birthday none of the first three have claimed. So the chance that all four have different birthdays is \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} . And so on. The chance that at least two people share a birthday is 1 minus the chance that no two people share a birthday.

As always happens there are some things being assumed here. Whether these probability calculations are right depends on those assumptions. The first assumption being made is independence: that no one person’s birthday affects when another person’s is likely to be. Obvious, you say? What if we have twins in the room? What if we’re talking about the birthday problem at a convention of twins and triplets? Or people who enjoyed the minor renown of being their city’s First Babies of the Year? (If you ever don’t like the result of a probability question, ask about the independence of events. Mathematicians like to assume independence, because it makes a lot of work easier. But assuming isn’t the same thing as having it.)

The second assumption is that birthdates are uniformly distributed. That is, that a person picked from a room is no more likely to be born the 13th of February than they are the 24th of September. And that is not quite so. September births are (in the United States) slightly more likely than other months, for example, which suggests certain activities going on around New Year’s. Across all months (again in the United States) birthdates of the 13th are slightly less likely than other days of the month. I imagine this has to be accounted for by people who are able to select a due date by inducing delivery. (Again if you need to attack a probability question you don’t like, ask about the uniformity of whatever random thing is in place. Mathematicians like to assume uniform randomness, because it akes a lot of work easier. But assuming it isn’t the same as proving it.)

Do these differences mess up the birthday problem results? Probably not that much. We are talking about slight variations from uniform distribution. But I’ll be watching Ripley’s to see if it says anything about births being more common in September, or less common on 13ths.


And now the comics I didn’t find worth discussing. They’re all reruns, it happens. Morrie Turner’s Wee Pals rerun for the 20th just mentions mathematics class. That could be any class that has tests coming up, though. Percy Crosby’s Skippy for the 21st is not quite the anthropomorphic numerals jokes for the week. It’s getting around that territory, though, as Skippy claims to have the manifestation of a zero. Bill Rechin’s Crock for the 22nd is a “pick any number” joke. I discussed as much as I could think of about this when it last appeared, in May of 2018. Also I’m surprised that Crock is rerunning strips that quickly now. It has, in principle, decades of strips to draw from.


And that finishes my mathematical comics review for last week. I’ll start posting essays about next week’s comics here, most likely on Sunday, when I’m ready.

Reading the Comics, January 30, 2019: Interlude Edition


I think there are just barely enough comic strips from the past week to make three essays this time around. But one of them has to be a short group, only three comics. That’ll be for the next essay when I can group together all the strips that ran in February. One strip that I considered but decided not to write at length about was Ed Allison’s dadaist Unstrange Phenomena for the 28th. It mentions Roman Numerals and the idea of sneaking message in through them. But that’s not really mathematics. I usually enjoy the particular flavor of nonsense which Unstrange Phenomena uses; you might, too.

John McPherson’s Close to Home for the 29th uses an arithmetic problem as shorthand for an accomplished education. The problem is solvable. Of course, you say. It’s an equation with quadratic polynomial; it can hardly not be solved. Yes, fine. But McPherson could easily have thrown together numbers that implied x was complex-valued, or had radicals or some other strange condition. This is one that someone could do in their heads, at least once they practiced in mental arithmetic.

Cars lined up at a toll booth. The sign reads: 'Welcome to New York State! To enter the state, please solve the following problem: (2x^2 + 7)/3 = 13, solve for x'. Attendant telling a driver: 'It's part of the state's new emphasis on improving education. I'm afraid you'll have to turn around, Mr Strob.'
John McPherson’s Close to Home for the 29th of January, 2019. Essays inspired by Close To Home should appear at this link.

I feel reasonably confident McPherson was just having a giggle at the idea of putting knowledge tests into inappropriate venues. So I’ll save the full rant. But there is a long history of racist and eugenicist ideology that tried to prove certain peoples to be mentally incompetent. Making an arithmetic quiz prerequisite to something unrelated echoes that. I’d have asked McPherson to rework the joke to avoid that.

(I’d also want to rework the composition, since the booth, the swinging arm, and the skirted attendant with the clipboard don’t look like any tollbooth I know. But I don’t have an idea how to redo the layout so it’s more realistic. And it’s not as if that sort of realism would heighten the joke.)

Lecturer: 'Since Babylonian days mathematicians have wondered if it were possible to 'square the circle' using only a compass and straightedge. Mathematicians *supposedly* proved you couldn't back in 1882. They were wrong. Imagine your compass and straightedge. First, put a pencil on one end of the compass and an eraser on the other. Second, designate any number of tiny boxes on your straightedge. Using the compass, you can draw or erase symbols on the straightedge. And what's *that* called? A Turing machine. So now we can rephrase the problem: using only a *computer*, can you construct a square with the same area as a given circle? Using this general method we can unlock *all* 'compass and straightedge' problems! Attendee: 'Are you missing the point accidentally or strategically?' Lecturer: 'I'm mostly trying to make the philosophy students sad.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 29th of January, 2019. Every Reading the Comics essay has a bit of Saturday Morning Breakfast Cereal in it. The essays with a particularly high Breakfast Cereal concentration appear at this link, though.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 29th riffs on the problem of squaring the circle. This is one of three classical problems of geometry. The lecturer describes it just fine: is it possible to make a square that’s got the same area as a given circle, using only straightedge and compass? There are shapes it’s easy to do this for, such as rectangles, parallelograms, triangles, and (why not?) this odd crescent-moon shaped figure called the lune. Circles defied all attempts. In the 19th century mathematicians found ways to represent the operations of classical geometry with algebra, and could use the tools of algebra to show squaring the circle was impossible. The squaring would be equivalent to finding a polynomial, with integer coefficients, that has \sqrt{\pi} as a root. And we know from the way algebra works that this can’t be done. So squaring the circle can’t be done.

The lecturer’s hack, modifying the compass and straightedge, lets you in principle do whatever you want. The hack isn’t new either. Modifying the geometric tools changes what you can and can’t do. The Ancient Greeks recognized that adding some specialized tools would make the problem possible. But that falls outside the scope of the problem.

Which feeds to the secondary joke, of making the philosophers sad. Often philosophy problems test one’s intuition about an idea by setting out a problem, often with unpleasant choices. A common problem with students that I’m going ahead and guessing are engineers is then attacking the setup of the question, trying to show that the problem couldn’t actually happen. You know, as though there were ever a time significant numbers of people were being tied to trolley tracks. (By the way, that thing about silent movie villains tying women to railroad tracks? Only happened in comedies spoofing Victorian melodramas. It’s always been a parody.) Attacking the logic of a problem may make for good movie drama. But it makes for a lousy student and a worse class discussion.

Li'l Bo: 'How are you on logic, Quincy?' Quincy: 'Average, I guess. I can usually put two and two together, but sometimes I have a fraction or so left over.'
Ted Shearer’s Quincy for the 30th of January, 2019. It originally ran the 6th of December, 1979. I’m usually happy when I get the chance to talk about this strip. The art’s pretty sweet. When I do discuss Quincy the essays should appear at this link.

Ted Shearer’s Quincy rerun for the 30th uses a bit of mathematics and logic talk. It circles the difference between the feeling one can have about the rational meaning of a situation and how the situation feels to someone. It seems like a jump that Quincy goes from being asked about logic to talking about arithmetic. Possibly Quincy’s understanding of logic doesn’t start from the sort of very abstract concept that makes arithmetic hard to get to, though.


There should be another Reading the Comics post this week. It should be here, when it appears. There should also be one on Sunday, as usual.

My 2018 Mathematics A To Z: Witch of Agnesi


Nobody had a suggested topic starting with ‘W’ for me! So I’ll take that as a free choice, and get lightly autobiogrpahical.

Cartoon of a thinking coati (it's a raccoon-like animal from Latin America); beside him are spelled out on Scrabble titles, 'MATHEMATICS A TO Z', on a starry background. Various arithmetic symbols are constellations in the background.
Art by Thomas K Dye, creator of the web comics Newshounds, Something Happens, and Infinity Refugees. His current project is Projection Edge. And you can get Projection Edge six months ahead of public publication by subscribing to his Patreon. And he’s on Twitter as @Newshoundscomic.

Witch of Agnesi.

I know I encountered the Witch of Agnesi while in middle school. Eighth grade, if I’m not mistaken. It was a footnote in a textbook. I don’t remember much of the textbook. What I mostly remember of the course was how much I did not fit with the teacher. The only relief from boredom that year was the month we had a substitute and the occasional interesting footnote.

It was in a chapter about graphing equations. That is, finding curves whose points have coordinates that satisfy some equation. In a bit of relief from lines and parabolas the footnote offered this:

y = \frac{8a^3}{x^2 + 4a^2}

In a weird tantalizing moment the footnote didn’t offer a picture. Or say what an ‘a’ was doing in there. In retrospect I recognize ‘a’ as a parameter, and that different values of it give different but related shapes. No hint what the ‘8’ or the ‘4’ were doing there. Nor why ‘a’ gets raised to the third power in the numerator or the second in the denominator. I did my best with the tools I had at the time. Picked a nice easy boring ‘a’. Picked out values of ‘x’ and found the corresponding ‘y’ which made the equation true, and tried connecting the dots. The result didn’t look anything like a witch. Nor a witch’s hat.

It was one of a handful of biographical notes in the book. These were a little attempt to add some historical context to mathematics. It wasn’t much. But it was an attempt to show that mathematics came from people. Including, here, from Maria Gaëtana Agnesi. She was, I’m certain, the only woman mentioned in the textbook I’ve otherwise completely forgotten.

We have few names of ancient mathematicians. Those we have are often compilers like Euclid whose fame obliterated the people whose work they explained. Or they’re like Pythagoras, credited with discoveries by people who obliterated their own identities. In later times we have the mathematics done by, mostly, people whose social positions gave them time to write mathematics results. So we see centuries where every mathematician is doing it as their side hustle to being a priest or lawyer or physician or combination of these. Women don’t get the chance to stand out here.

Today of course we can name many women who did, and do, mathematics. We can name Emmy Noether, Ada Lovelace, and Marie-Sophie Germain. Challenged to do a bit more, we can offer Florence Nightingale and Sofia Kovalevskaya. Well, and also Grace Hopper and Margaret Hamilton if we decide computer scientists count. Katherine Johnson looks likely to make that cut. But in any case none of these people are known for work understandable in a pre-algebra textbook. This must be why Agnesi earned a place in this book. She’s among the earliest women we can specifically credit with doing noteworthy mathematics. (Also physics, but that’s off point for me.) Her curve might be a little advanced for that textbook’s intended audience. But it’s not far off, and pondering questions like “why 8a^3 ? Why not a^3 ?” is more pleasant, to a certain personality, than pondering what a directrix might be and why we might use one.

The equation might be a lousy way to visualize the curve described. The curve is one of that group of interesting shapes you get by constructions. That is, following some novel process. Constructions are fun. They’re almost a craft project.

For this we start with a circle. And two parallel tangent lines. Without loss of generality, suppose they’re horizontal, so, there’s lines at the top and the bottom of the curve.

Take one of the two tangent points. Again without loss of generality, let’s say the bottom one. Draw a line from that point over to the other line. Anywhere on the other line. There’s a point where the line you drew intersects the circle. There’s another point where it intersects the other parallel line. We’ll find a new point by combining pieces of these two points. The point is on the same horizontal as wherever your line intersects the circle. It’s on the same vertical as wherever your line intersects the other parallel line. This point is on the Witch of Agnesi curve.

Now draw another line. Again, starting from the lower tangent point and going up to the other parallel line. Again it intersects the circle somewhere. This gives another point on the Witch of Agnesi curve. Draw another line. Another intersection with the circle, another intersection with the opposite parallel line. Another point on the Witch of Agnesi curve. And so on. Keep doing this. When you’ve drawn all the lines that reach from the tangent point to the other line, you’ll have generated the full Witch of Agnesi curve. This takes more work than writing out y = \frac{8a^3}{x^2 + 4a^2} , yes. But it’s more fun. It makes for neat animations. And I think it prepares us to expect the shape of the curve.

It’s a neat curve. Between it and the lower parallel line is an area four times that of the circle that generated it. The shape is one we would get from looking at the derivative of the arctangent. So there’s some reasons someone working in calculus might find it interesting. And people did. Pierre de Fermat studied it, and found this area. Isaac Newton and Luigi Guido Grandi studied the shape, using this circle-and-parallel-lines construction. Maria Agnesi’s name attached to it after she published a calculus textbook which examined this curve. She showed, according to people who present themselves as having read her book, the curve and how to find it. And she showed its equation and found the vertex and asymptote line and the inflection points. The inflection points, here, are where the curve chances from being cupped upward to cupping downward, or vice-versa.

It’s a neat function. It’s got some uses. It’s a natural smooth-hill shape, for example. So this makes a good generic landscape feature if you’re modeling the flow over a surface. I read that solitary waves can have this curve’s shape, too.

And the curve turns up as a probability distribution. Take a fixed point. Pick lines at random that pass through this point. See where those lines reach a separate, straight line. Some regions are more likely to be intersected than are others. Chart how often any particular line is the new intersection point. That chart will (given some assumptions I ask you to pretend you agree with) be a Witch of Agnesi curve. This might not surprise you. It seems inevitable from the circle-and-intersecting-line construction process. And that’s nice enough. As a distribution it looks like the usual Gaussian bell curve.

It’s different, though. And it’s different in strange ways. Like, for a probability distribution we can find an expected value. That’s … well, what it sounds like. But this is the strange probability distribution for which the law of large numbers does not work. Imagine an experiment that produces real numbers, with the frequency of each number given by this distribution. Run the experiment zillions of times. What’s the mean value of all the zillions of generated numbers? And it … doesn’t … have one. I mean, we know it ought to, it should be the center of that hill. But the calculations for that don’t work right. Taking a bigger sample makes the sample mean jump around more, not less, the way every other distribution should work. It’s a weird idea.

Imagine carving a block of wood in the shape of this curve, with a horizontal lower bound and the Witch of Agnesi curve as the upper bound. Where would it balance? … The normal mathematical tools don’t say, even though the shape has an obvious line of symmetry. And a finite area. You don’t get this kind of weirdness with parabolas.

(Yes, you’ll get a balancing point if you actually carve a real one. This is because you work with finitely-long blocks of wood. Imagine you had a block of wood infinite in length. Then you would see some strange behavior.)

It teaches us more strange things, though. Consider interpolations, that is, taking a couple data points and fitting a curve to them. We usually start out looking for polynomials when we interpolate data points. This is because everything is polynomials. Toss in more data points. We need a higher-order polynomial, but we can usually fit all the given points. But sometimes polynomials won’t work. A problem called Runge’s Phenomenon can happen, where the more data points you have the worse your polynomial interpolation is. The Witch of Agnesi curve is one of those. Carl Runge used points on this curve, and trying to fit polynomials to those points, to discover the problem. More data and higher-order polynomials make for worse interpolations. You get curves that look less and less like the original Witch. Runge is himself famous to mathematicians, known for “Runge-Kutta”. That’s a family of techniques to solve differential equations numerically. I don’t know whether Runge came to the weirdness of the Witch of Agnesi curve from considering how errors build in numerical integration. I can imagine it, though. The topics feel related to me.

I understand how none of this could fit that textbook’s slender footnote. I’m not sure any of the really good parts of the Witch of Agnesi could even fit thematically in that textbook. At least beyond the fact of its interesting name, which any good blog about the curve will explain. That there was no picture, and that the equation was beyond what the textbook had been describing, made it a challenge. Maybe not seeing what the shape was teased the mathematician out of this bored student.


And next is ‘X’. Will I take Mr Wu’s suggestion and use that to describe something “extreme”? Or will I take another topic or suggestion? We’ll see on Friday, barring unpleasant surprises. Thanks for reading.

Reading the Comics, November 24, 2018: Origins Edition


I’m not sure there is a theme to the back half of last week’s mathematically-based comic strips. If there is, it’s about showing some origins of things. I’ll go with that title, then.

Bill Holbrook’s On The Fastrack for the 21st is another in the curious thread of strips about Fi talking about mathematics. She’s presented as doing a good job inspiring kids to appreciate mathematics as a fun, exciting, interesting thing to think about. It’s good work. And I hope this does not sound like I am envious of a more successful, if fictional, mathematics popularizer. But I don’t see much in the strip of her doing this side job well. That is, of making the case that mathematics is worth the time spent on it. That’s a lot to ask given the confines of a syndicated daily newspaper comic strip, yes. What we can expect is some hint of what the actual good argument would look like. But this particular day’s strip rings false to me, for example. I don’t see how “here’s some pizza — but first, here’s a pop quiz” makes mathematics look as something other than a chore.

Dethany, to her boyfriend: 'Fi concludes her math talks with a demonstration of the tangible benefits of numbers. By having pizza delivered. Square pizza.' Fi, to the kids, as the pizza guy arrives: 'First, calculate how much more area you get than with a round one.'
Bill Holbrook’s On The Fastrack for the 21st of November, 2018. Essays mentioning topics raised by On The Fastrack are at this link.

Pizza area offers many ways into mathematical ideas. How the area depends on the size of the pizza, for example. How the area depends on the shape, even independently of the size. How to slice a pizza fairly, especially if it’s not to be between four or six or eight people. What is the strangest shape you could make that would give people equal areas? Just the way slices intersect at angles inspires neat little geometry problems. How you might arrange toppings opens up symmetries and tilings, which are surprisingly big areas of mathematics. Setting problems on a pizza gives them a tangibility that could help capture young minds, surely. But I can’t make myself believe that this is a conversation to have when the pizza is entering the room.

At the lottery ticket booth. Grimm: 'Hey, why do you always but lottery tickets? The odds of you winning are astronomical!' Goose: 'Yeah, but they're astronomically higher if I don't buy a ticket.'
Mike Peters’s Mother Goose and Grimm for the 22nd of November, 2018. Other essays which mention Mother Goose and Grimm should be at this link. I had thought this was a new link, but it turns out there was a strip in early 2017 and another in mid-2015 that got my attention here.

Mike Peters’s Mother Goose and Grimm for the 22nd is a lottery joke. So if we suppose this was written about the last time the Powerball jackpot reached a half-billion dollars we can work out how far ahead of publication Mike Peters is working. One solid argument against ever buying a lottery ticket is, as Grimm notes, that you have zero chance of winning. (I’m open to an argument based on expectation value. And even more, I don’t object to people spending a reasonable bit of disposable income “foolishly”.) Mother Goose argues that her chances are vastly worse if she doesn’t buy a ticket. This is true. Are her chances “astronomically” worse? … That depends. A one in three hundred million chance (to use, roughly, the Powerball odds) is so small that it won’t happen to you. Is that any different than a zero in three hundred million chance [*]? Or than a six in three hundred million chance? In any case it won’t happen to you.

[*] Do you actually have zero chance of winning if you don’t have a ticket? I say no, you don’t. Someone might give you a winning ticket. Maybe you find one as a bookmark in a library book. Maybe you find it on the street and figure, what the heck, I’ll check. Unlikely? Sure. But impossible? Hardly.

Peter: 'If you had three clams and gave one away, then I took two, what would you have?' Curls: 'A worthless reason for being in business.'
Johnny Hart’s Back to BC for the 22nd of November, 2018. It originally appeared the 27th of May, 1961. Essays which discuss topics brought up by B.C., both the current-run and the half-century-old reruns, are at this link.

Johnny Hart’s Back to BC for the 22nd has the form of the world’s oldest story problem. It could also be a joke about the discovery of the concept of zero and the struggle to understand it as a number. Given that clams are used as currency in the BC setting it also shows how finance has driven mathematical development. So the strip actually packs a fair bit of stuff into two panels. … And I’ll admit I’m not quite sure the joke parses, but if you read it quickly it looks like a good enough joke.

Fat Broad, to a dinosaur: 'How much is one and one?' The dinosaur stops a front foot twice. Then gets ready to stomp a third time. Fat Broad whaps the dinosaur senseless. Broad: 'Isn't it amazing how fast animals learn?'
Johnny Hart’s Back to BC for the 24th of November, 2018. It originally appeared the 30th of May, 1961. If this strip has inspired any essays oh wait, I already said where to find them, didn’t I? Well, you know what to look for, then.

Johnny Hart’s Back to BC for the 24th is a more obvious joke. And it’s built on the learning abilities of animals, and the number sense of animals. A large animal stomping a foot evokes, to me at least, Clever Hans. This is a horse presented in the early 20th century as being able to actually do arithmetic. The horse would be given a question and would stop his hoof enough times to get to the right answer. However good the horse’s number sense might be, he had quite good behavioral sense. It turned out — after brilliant and pioneering work in animal cognition — that Hans was observing his trainer’s body language. When Wilhelm von Osten was satisfied that there’d been the right number of stomps, the horse stopped. This is sometimes presented as Hans `merely’ taking subconscious cues from his trainer. But consider how carefully the horse must be observing an animal with a very different body, and how it must have understood cues of satisfaction. I can’t call that `mere’. And the work of tracking down a signal that von Osten himself did not know he was sending (and, apparently, never accepted that he did) is also amazing. It serves as a reminder how hard biologists and zoologists have to work.

Kid: 'How come in old paintings the perspective is really badly drawn?' Dad: 'Perspective didn't exist back then. Sometimes there'd be a whole castle right behind you . Other times you'd sit at a table and the tabletop would face away from you. That's also why portraits were badly drawn. Try holding a brush in a world without three consistent dimensions. Italian architects invented perspective to make it easier to draw buildings. What's why things suddenly look a lot nicer around the 16th century.' Kid: 'Are you sure?' Dad: 'How else do you explain that it took 10,000 years of civilization to invent Cartesian coordinates?' Kid: 'I figured people are just kinda stupid.' Dad: 'How facile.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th of November, 2018. The many essays mentioning topics raised by Saturday Morning Breakfast Cereal are at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th gives a bit of Dad History about perspective. And, particularly, why artists didn’t seem to use it much before the 16th century. It gets more blatantly tied to mathematics by pointing out how it took ten thousand years of civilization to get Cartesian coordinates. We can argue about how many years civilization has been around. But it does seem strange that we went along for certainly the majority of that time without Cartesian coordinates. They seem so obvious it’s almost hard to not think of them. Many good ideas have such a legacy.

It’s easy to say why older pictures didn’t use perspective, though. For the most part, artists didn’t think perspective gave them something they wanted to show. Ancient peoples knew of perspective. It’s not as if ancient peoples were any dumber than we are, or any less able to look at square tiles held at different angles and at different distances. But we can convey information about the importance of things, or the flow of action of things, using position and relative size. That can be more important than showing that yes, an artist is aware that a square building far away looks small.

I’m less sure what I know about the history of coordinate systems, though, and particularly why it took until René Descartes to describe them. We have a legend of Descartes laying in bed, watching a fly on the tiled ceiling, and realizing he could describe where the fly was by what row and column of tile it was on. (In the past I have written this as though it happened. In writing this essay I went looking for a primary source and found nobody seems to have one. I shall try not to pass it on again without being very clear that it is just a legend.) But there have been tiled floors and walls and ceilings for a very long time. There have been flies even longer. Why didn’t anyone notice this?

One answer may be that they did. We just haven’t heard about it, because it was found by someone who didn’t catch the interest of a mathematical community. There’s likely a lot of such lost mathematics out there. But still, why not? Wouldn’t anyone with a mathematical inclination see that this is plainly a great discovery? And maybe not. What made Cartesian coordinates great was the realization that arithmetic and geometry, previously seen as separate liberal arts, were duals. A problem in one had an expression as a problem in the other. If you don’t make that connection, then Cartesian coordinates don’t solve any problems you have. They’re just a new way to index things you didn’t need indexed. So that would slow down using them any.


All of my regular Reading the Comics posts should all be at this link. Tomorrow should see the posting of my next my Fall 2018 Mathematics A To Z essay. And there’s still time to put in requests for the last half-dozen letters of the alphabet.

Playful Mathematics Education Blog Carnival #121


Greetings one and all! Come, gather round! Wonder and spectate and — above all else — tell your friends of the Playful Mathematics Blog Carnival! Within is a buffet of delights and treats, fortifications for the mind and fire for the imagination.

121 is a special number. When I was a mere tot, growing in the wilds of suburban central New Jersey, it stood there. It held a spot of privilege in the multiplication tables on the inside front cover of composition books. On the forward diagonal, yet insulated from the borders. It anchors the safe interior. A square number, eleventh of that set in the positive numbers.

Cartoon of several circus tents, with numbered flags above them and balloons featuring arithmetic symbols. The text, in a carnival-poster font, is 'PLAYFUL MATH EDUCATION CARNIVAL'.
Art by Thomas K Dye, creator of the web comics Newshounds, Something Happens, and Infinity Refugees. His current project is Projection Edge. And you can get Projection Edge six months ahead of public publication by subscribing to his Patreon. And he’s on Twitter as @Newshoundscomic.

The First Tent

The first wonder to consider is Iva Sallay’s Find the Factors blog. She brings each week a sequence of puzzles, all factoring challenges. The result of each, done right, is a scrambling of the multiplication tables; it’s up to you the patron to find the scramble. She further examines each number in turn, finding its factors and its interesting traits. And furthermore, usually, when beginning a new century of digits opens a horserace, to see which of the numbers have the greatest number of factorizations. She furthermore was the host of this Playful Mathematics Education Carnival for August of 2018.

121 is more than just a square. It is the lone square known to be the sum of the first several powers of a prime number: it is 1 + 3 + 3^2 + 3^3 + 3^4 , a fantastic combination. If there is another square that is such a sum of primes, it is unknown to any human — and must be at least 35 digits long.

We look now for a moment at some astounding animals. From the renowned Dr Nic: Introducing Cat Maths cards, activities, games and lessons — a fine collection of feline companions, such toys as will enterain them. A dozen attributes each; twenty-seven value cards. These cats, and these cards, and these activity puzzles, promise games and delights, to teach counting, subtraction, statistics, and inference!

Next and no less incredible is the wooly Mathstodon. Christian Lawson-Perfect hosts this site, an instance of the open-source Twitter-like service Mastodon. Its focus: a place for people interested in mathematicians to write of what they know. To date over 1,300 users have joined, and have shared nearly 25,000 messages. You need not join to read many of these posts — your host here has yet to — but may sample its wares as you like.


The Second Tent

121 is one of only two perfect squares known to be four less than the cube of a whole number. The great Fermat conjectured that 4 and 121 are the only such numbers; no one has found a counter-example. Nor a proof.

Friends, do you know the secret to popularity? There is an astonishing truth behind it. Elias Worth of the MathSection blog explains the Friendship Paradox. This mind-warping phenomenon tells us your friends have more friends than you do. It will change forever how you look at your followers and following accounts.

And now to thoughts of learning. Stepping forward now is Monica Utsey, @Liveonpurpose47 of Chocolate Covered Boy Joy. Her declaration: “I incorporated Montessori Math materials with my right brain learner because he needed literal representations of the work we were doing. It worked and we still use it.” See now for yourself the representations, counting and comparing and all the joys of several aspects of arithmetic.

Take now a moment for your own fun. Blog Carnival patron and organizer Denise Gaskins wishes us to know: “The fun of mathematical coloring isn’t limited to one day. Enjoy these coloring resources all year ’round!” Happy National Coloring Book Day offers the title, and we may keep the spirit of National Coloring Book Day all the year round.

Confident in that? Then take on a challenge. Can you scroll down faster than Christian Lawson-Perfect’s web site can find factors? Prove your speed, prove your endurance, and see if you can overcome this infinite scroll.


The Third Tent

121 is a star number, the fifth of that select set. 121 identical items can be tiled to form a centered hexagon. You may have seen it in the German game of Chinese Checkers, as the board of that has 121 holes.

We come back again to teaching. “Many homeschoolers struggle with teaching their children math. Here are some tips to make it easier”, offers Denise Gaskins. Step forth and benefit from this FAQ: Struggling with Arithmetic, a collection of tips and thoughts and resources to help make arithmetic the more manageable.

Step now over to the arcade, and to the challenge of Pac-Man. This humble circle-inspired polygon must visit the entirety of a maze, and avoid ghosts as he does. Matthew Scroggs of Chalk Dust Magazine here seeks and shows us Optimal Pac-Man. Graph theory tells us there are thirteen billion different paths to take. Which of them is shortest? Which is fastest? Can it be known, and can it help you through the game?

And now a recreation, one to become useful if winter arrives. Think of the mysteries of the snowball rolling down a hill. How does it grow in size? How does it speed up? When does it stop? Rodolfo A Diaz, Diego L Gonzalez, Francisco Marin, and R Martinez satisfy your curiosity with Comparative kinetics of the snowball respect to other dynamical objects. Be warned! This material is best suited for the college-age student of the mathematical snow sciences.


The Fourth Tent

121 is furthermore the sixth of the centered octagonal numbers. 121 of a thing may be set into six concentric octagons of one, then two, then three, then four, then five, and then six of them on a side.

To teach is to learn! And we have here an example of such learning. James Sheldon writing for the American Mathematical Society Graduate Student blog offers Teaching Lessons from a Summer of Taking Mathematics Courses. What secrets has Sheldon to reveal? Come inside and learn what you may.

And now step over to the games area. The game Entanglement wraps you up in knots, challenging you to find the longest knot possible. David Richeson of Division By Zero sees in this A game for budding knot theorists. What is the greatest score that could be had in this game? Can it ever be found? Only Richeson has your answer.

Step now back to the amazing Mathstodon. Gaze in wonder at the account @dudeney_puzzles. Since the September of 2017 it has brought out challenges from Henry Ernest Dudeney’s Amusements in Mathematics. Puzzles given, yes, with answers that follow along. The impatient may find Dudeney’s 1917 book on Project Gutenberg among other places.


The Fifth Tent

Sum the digits of 121; you will find that you have four. Take its prime factors, 11 and 11, and sum their digits; you will find that this is four again. This makes 121 a Smith number. These marvels of the ages were named by Albert Wilansky, in honor of his brother-in-law, a man known to history as Harold Smith, and whose telephone number of 4,937,775 was one such.

Now let us consider terror. What is it to enter a PhD program? Many have attempted it; some have made it through. Mathieu Besançon gives to you a peek behind academia’s curtain. A year in PhD describes some of this life.

And now to an astounding challenge. Imagine an assassin readies your death. Can you protect yourself? At all? Tai-Danae Bradley invites you to consider: Is the Square a Secure Polygon? This question takes you on a tour of geometries familiar and exotic. Learn how mathematicians consider how to walk between places on a torus — and the lessons this has for a square room. The fate of the universe itself may depend on the methods described herein — the techniques used to study it relate to those that study whether a physical system can return to its original state. And then J2kun turned this into code, Visualizing an Assassin Puzzle, for those who dare to program it.

Have you overcome this challenge? Then step into the world of linear algebra, and this delight from the Mathstodon account of Christian Lawson-Perfect. The puzzle is built on the wonders of eigenvectors, those marvels of matrix multiplication. They emerge from multiplication longer or shorter but unchanged in direction. Lawson-Perfect uses whole numbers, represented by Scrabble tiles, and finds a great matrix with a neat eigenvalue. Can you prove that this is true?


The Sixth Tent

Another wonder of the digits of 121. Take them apart, then put them together again. Contorted into the form 112 they represent the same number. 121 is, in the base ten commonly used in the land, a Friedman Number, second of that line. These marvels, in the Arabic, the Roman, or even the Mayan numerals schemes, are named for Erich Friedman, a figure of mystery from the Stetson University.

We draw closer to the end of this carnival’s attractions! To the left I show a tool for those hoping to write mathematics: Donald E Knuth, Tracy Larrabee, and Paul M Roberts’s Mathematical Writing. It’s a compilation of thoughts about how one may write to be understood, or to avoid being misunderstood. Either would be a marvel for the ages.

To the right please see Gregory Taylor’s web comic Any ~Qs. Taylor — @mathtans on Twitter — brings a world of math-tans, personifications of mathematical concepts, together for adventures and wordplay. And if the strip is not to your tastes, Taylor is working on ε Project, a serialized written story with new installments twice a month.

If you will look above you will see the marvels of curved space. On YouTube, Eigenchris hopes to learn differential geometry, and shares what he has learned. While he has a series under way he suggested Episode 15, ‘Geodesics and Christoffel Symbols as one that new viewers could usefully try. Episode 16, ‘Geodesic Examples on Plane and Sphere, puts this work to good use.

And as we reach the end of the fairgrounds, please take a moment to try Find the Factors Puzzle number 121, a challenge from 2014 that still speaks to us today!

And do always stop and gaze in awe at the fantastic and amazing geometrical constructs of Robert Loves Pi. You shall never see stellations of its like elsewhere!


The Concessions Tent

With no thought of the risk to my life or limb I read the newspaper comics for mathematical topics they may illuminate! You may gape in awe at the results here. And furthermore this week and for the remainder of this calendar year of 2018 I dare to explain one and only one mathematical concept for each letter of our alphabet! I remind the sensitive patron that I have already done not one, not two, not three, but four previous entries all finding mathematical words for the letter “X” — will there be one come December? There is but one way you might ever know.

Denise Gaskins coordinates the Playful Mathematics Education Blog Carnival. Upcoming scheduled carnivals, including the chance to volunteer to host it yourself, or to recommend your site for mention, are listed here. And October’s 122nd Playful Mathematics Education Blog Carnival is scheduled to be hosted by Arithmophobia No More, and may this new host have the best of days!

I’m Still Looking For Fun Mathematics And Words


I’m hoping to get my 2018 Mathematics A To Z started the last week of September, which among other things will let me end it in 2018 if I haven’t been counting wrong. We’ll see. If you’ve got requests for the first several letters in the alphabet, there’s still open slots. I’ll be opening up the next quarter of the alphabet soon, too.

And also set for the last week of September — boy, I’m glad I am not going to have any doubts or regrets about how I’m scheduling my time for two weeks hence — is the Playful Mathematic Education Carnival. This project, overseen by Denise Gaskins, tries to bring a bundle of fun stuff about mathematics to different blogs. Iva Sallay’s turn, the end of August, is up here. Have you spotted something mathematical that’s made you smile? Please let me know. I’d love to share it with the world.

And What I’ve Been Reading


So here’s some stuff that I’ve been reading.

This one I saw through John Allen Paulos’s twitter feed. He points out that it’s like the Collatz conjecture but is, in fact, proven. If you try this yourself don’t make the mistake of giving up too soon. You might figure, like start with 12. Sum the squares of its digits and you get 5, which is neither 1 nor anything in that 4-16-37-58-89-145-42-20 cycle. Not so! Square 5 and you get 25. Square those digits and add them and you get 29. Square those digits and add them and you get 40. And what comes next?

This is about a proof of Fermat’s Theorem of Sums of Two Squares. According to it, a prime number — let’s reach deep into the alphabet and call it p — can be written as the sum of two squares if and only if p is one more than a whole multiple of four. It’s a proof by using fixed point methods. This is a fun kind of proof, at least to my sense of fun. It’s an approach that’s got a clear physical interpretation. Imagine picking up a (thin) patch of bread dough, stretching it out some and maybe rotating it, and then dropping it back on the board. There’s at least one bit of dough that’s landed in the same spot it was before. Once you see this you will never be able to just roll out dough the same way. So here the proof involves setting up an operation on integers which has a fixed point, and that the fixed point makes the property true.

John D Cook, who runs a half-dozen or so mathematics-fact-of-the-day Twitter feeds, looks into calculating the volume of an egg. It involves calculus, as finding the volume of many interesting shapes does. I am surprised to learn the volume can be written out as a formula that depends on the shape of the egg. I would have bet that it couldn’t be expressed in “closed form”. This is a slightly flexible term. It’s meant to mean the thing can be written using only normal, familiar functions. However, we pretend that the inverse hyperbolic tangent is a “normal, familiar” function.

For example, there’s the surface area of an egg. This can be worked out too, again using calculus. It can’t be written even with the inverse hyperbolic cotangent, so good luck. You have to get into numerical integration if you want an answer humans can understand.

My next mistake will be intentional, just to see how closely you are watching me.
Ashleigh Brilliant’s Pot-Shots rerun for the 15th of April, 2018. I understand people not liking Brilliant’s work but I love the embrace-the-doom attitude the strip presents.

Also, this doesn’t quite fit my Reading the Comics posts. But Ashleigh Brilliant’s Pot-Shots rerun for the 15th of April is something I’m going to use in future. I hope you find some use for it too.

Reading the Comics, February 26, 2018: Possible Reruns Edition


Comic Strip Master Command spent most of February making sure I could barely keep up. It didn’t slow down the final week of the month either. Some of the comics were those that I know are in eternal reruns. I don’t think I’m repeating things I’ve already discussed here, but it is so hard to be sure.

Bill Amend’s FoxTrot for the 24th of February has a mathematics problem with a joke answer. The approach to finding the area’s exactly right. It’s easy to find areas of simple shapes like rectangles and triangles and circles and half-circles. Cutting a complicated shape into known shapes, finding those areas, and adding them together works quite well, most of the time. And that’s intuitive enough. There are other approaches. If you can describe the outline of a shape well, you can use an integral along that outline to get the enclosed area. And that amazes me even now. One of the wonders of calculus is that you can swap information about a boundary for information about the interior, and vice-versa. It’s a bit much for even Jason Fox, though.

Jef Mallett’s Frazz for the 25th is a dispute between Mrs Olsen and Caulfield about whether it’s possible to give more than 100 percent. I come down, now as always, on the side that argues it depends what you figure 100 percent is of. If you mean “100% of the effort it’s humanly possible to expend” then yes, there’s no making more than 100% of an effort. But there is an amount of effort reasonable to expect for, say, an in-class quiz. It’s far below the effort one could possibly humanly give. And one could certainly give 105% of that effort, if desired. This happens in the real world, of course. Famously, in the right circles, the Space Shuttle Main Engines normally reached 104% of full throttle during liftoff. That’s because the original specifications for what full throttle would be turned out to be lower than was ultimately needed. And it was easier to plan around running the engines at greater-than-100%-throttle than it was to change all the earlier design documents.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 25th straddles the line between Pi Day jokes and architecture jokes. I think this is a rerun, but am not sure.

Matt Janz’s Out of the Gene Pool rerun for the 25th tosses off a mention of “New Math”. It’s referenced as a subject that’s both very powerful but also impossible for Pop, as an adult, to understand. It’s an interesting denotation. Usually “New Math”, if it’s mentioned at all, is held up as a pointlessly complicated way of doing simple problems. This is, yes, the niche that “Common Core” has taken. But Janz’s strip might be old enough to predate people blaming everything on Common Core. And it might be character, that the father is old enough to have heard of New Math but not anything in the nearly half-century since. It’s an unusual mention in that “New” Math is credited as being good for things. (I’m aware this strip’s a rerun. I had thought I’d mentioned it in an earlier Reading the Comics post, but can’t find it. I am surprised.)

Mark Anderson’s Andertoons for the 26th is a reassuring island of normal calm in these trying times. It’s a student-at-the-blackboard problem.

Morrie Turner’s Wee Pals rerun for the 26th just mentions arithmetic as the sort of homework someone would need help with. This is another one of those reruns I’d have thought has come up here before, but hasn’t.

What You Need To Pass This Class. Also: It’s Algebra, Uncle Fletcher


The end of the (US) semester snuck up on me but, in my defense, I’m not teaching this semester. If you know someone who needs me to teach, please leave me a note. But as a service for people who are just trying to figure out exactly how much studying they need to do for their finals, knock it off. You’re not playing a video game. It’s not like you can figure out how much effort it takes to get an 83.5 on the final and then put the rest of your energy into your major’s classes.

But it’s a question people ask, and keep asking, so here’s my answers. This essay describes exactly how to figure out what you need, given whatever grade you have and whatever extra credit you have and whatever the weighting of the final exam is and all that. That might be more mechanism than you need. If you’re content with an approximate answer, here’s some tables for common finals weightings, and a selection of pre-final grades.

For those not interested in grade-grubbing, here’s some old-time radio. Vic and Sade was a longrunning 15-minute morning radio program written with exquisite care by Paul Rhymer. It’s not going to be to everyone’s taste. But if it is yours, it’s going to be really yours: a tiny cast of people talking not quite past one another while respecting the classic Greek unities. Part of the Overnightscape Underground is the Vic and Sadecast, which curates episodes of the show, particularly trying to explain the context of things gone by since 1940. This episode, from October 1941, is aptly titled “It’s Algebra, Uncle Fletcher”. Neither Vic nor Sade are in the episode, but their son Rush and Uncle Fletcher are. And they try to work through high school algebra problems. I’m tickled to hear Uncle Fletcher explaining mathematics homework. I hope you are too.

Reading the Comics, November 25, 2017: Shapes and Probability Edition


This week was another average-grade week of mathematically-themed comic strips. I wonder if I should track them and see what spurious correlations between events and strips turn up. That seems like too much work and there’s better things I could do with my time, so it’s probably just a few weeks before I start doing that.

Ruben Bolling’s Super-Fun-Pax Comics for the 19th is an installment of A Voice From Another Dimension. It’s in that long line of mathematics jokes that are riffs on Flatland, and how we might try to imagine spaces other than ours. They’re taxing things. We can understand some of the rules of them perfectly well. Does that mean we can visualize them? Understand them? I’m not sure, and I don’t know a way to prove whether someone does or does not. This wasn’t one of the strips I was thinking of when I tossed “shapes” into the edition title, but you know what? It’s close enough to matching.

Olivia Walch’s Imogen Quest for the 20th — and I haven’t looked, but it feels to me like I’m always featuring Imogen Quest lately — riffs on the Monty Hall Problem. The problem is based on a game never actually played on Monty Hall’s Let’s Make A Deal, but very like ones they do. There’s many kinds of games there, but most of them amount to the contestant making a choice, and then being asked to second-guess the choice. In this case, pick a door and then second-guess whether to switch to another door. The Monty Hall Problem is a great one for Internet commenters to argue about while the rest of us do something productive. The trouble — well, one trouble — is that whether switching improves your chance to win the car is that whether it does depends on the rules of the game. It’s not stated, for example, whether the host must open a door showing a goat behind it. It’s not stated that the host certainly knows which doors have goats and so chooses one of those. It’s not certain the contestant even wants a car when, hey, goats. What assumptions you make about these issues affects the outcome.

If you take the assumptions that I would, given the problem — the host knows which door the car’s behind, and always offers the choice to switch, and the contestant would rather have a car, and such — then Walch’s analysis is spot on.

Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 20th features a pretend virtual reality arithmetic game. The strip is of incredibly low mathematical value, but it’s one of those comics I like that I never hear anyone talking about, so, here.

Richard Thompson’s Cul de Sac rerun for the 20th talks about shapes. And the names for shapes. It does seem like mathematicians have a lot of names for slightly different quadrilaterals. In our defense, if you’re talking about these a lot, it helps to have more specific names than just “quadrilateral”. Rhomboids are those parallelograms which have all four sides the same length. A parallelogram has to have two pairs of equal-sized legs, but the two pairs’ sizes can be different. Not so a rhombus. Mathworld says a rhombus with a narrow angle that’s 45 degrees is sometimes called a lozenge, but I say they’re fibbing. They make even more preposterous claims on the “lozenge” page.

Todd Clark’s Lola for the 20th does the old “when do I need to know algebra” question and I admit getting grumpy like this when people ask. Do French teachers have to put up with this stuff?

Brian Fies’s Mom’s Cancer rerun for the 23rd is from one of the delicate moments in her story. Fies’s mother just learned the average survival rate for her cancer treatment is about five percent and, after months of things getting haltingly better, is shaken. But as with most real-world probability questions context matters. The five-percent chance is, as described, the chance someone who’d just been diagnosed in the state she’d been diagnosed in would survive. The information that she’s already survived months of radiation and chemical treatment and physical therapy means they’re now looking at a different question. What is the chance she will survive, given that she has survived this far with this care?

Mark Anderson’s Andertoons for the 24th is the Mark Anderson’s Andertoons for the week. It’s a protesting-student kind of joke. For the student’s question, I’m not sure how many sides a polygon has before we can stop memorizing them. I’d say probably eight. Maybe ten. Of the shapes whose names people actually care about, mm. Circle, triangle, a bunch of quadrilaterals, pentagons, hexagons, octagons, maybe decagon and dodecagon. No, I’ve never met anyone who cared about nonagons. I think we could drop heptagons without anyone noticing either. Among quadrilaterals, ugh, let’s see. Square, rectangle, rhombus, parallelogram, trapezoid (or trapezium), and I guess diamond although I’m not sure what that gets you that rhombus doesn’t already. Toss in circles, ellipses, and ovals, and I think that’s all the shapes whose names you use.

Stephan Pastis’s Pearls Before Swine for the 25th does the rounding-up joke that’s been going around this year. It’s got a new context, though.