Reading the Comics, November 11, 2017: Pictured Comics Edition


And now the other half of last week’s comic strips. It was unusually rich in comics that come from Comics Kingdom or Creators.com, which have limited windows of access and therefore make me feel confident I should include the strips so my comments make any sense.

Rick Kirkman and Jerry Scott’s Baby Blues for the 9th mentions mathematics homework as a resolutely rage-inducing topic. It’s mathematics homework, obviously, or else it wouldn’t be mentioned around here. And even more specifically it’s Common Core mathematics homework. So it always is with attempts to teach subjects better. Especially mathematics, given how little confidence people have in their own mastery. I can’t blame parents for supposing any change to be just malice.

Boxing instructor: 'Now focus, Wanda! Think of something that makes you really angry, and take it out on the [punching] bag!' Wanda: 'HARD WATER SPOTS ON THE GLASSWARE!' She punches the bag hard enough to rip it apart. Instructor: 'Okay then ... ' Wanda: 'If I had pictured Common Core math homework, I could've put that sucker through the wall.'
Rick Kirkman and Jerry Scott’s Baby Blues for the 9th of November, 2017. Again I maybe am showing off my lack of domesticity here, but, really, hard water spots? But I admit I’d like to get the tannin stain out of my clear plastic teapot, so I guess we all have our things. I just don’t feel strongly enough to punch about it. I just want something that I can scrub with.

Bill Amend’s FoxTrot Classics for the 9th is about random numbers. As Jason says, it is hard to generate random numbers. Random numbers are a resource. Having a good source of them makes a lot of computation work. But they’re hard to make. It seems to be a contradiction to create random numbers by an algorithm. There’s reasons we accept pseudorandom numbers, or find quasirandom numbers. This strip originally ran the 16th of November, 2006.

A night scene. Lots of stars. Crazy Eddie: 'The number of stars is beyond my comprehension!' Hagar: 'Mine, too! What comes after five?'
Chris Browne’s Hagar the Horrible for the 10th of November, 2017. Before you go getting all smug about Hagar no grasping numbers beyond ‘five’, consider what a dog’s breakfast English has managed historically to make of ‘hundred’. Thank you.

Chris Browne’s Hagar the Horrible for the 10th is about the numerous. There’s different kinds of limits. There’s the greatest number of things we can count in an instant. There’s a limit to how long a string of digits or symbols we can remember. There’s the biggest number of things we can visualize. And “visualize” is a slippery concept. I think I have a pretty good idea what we mean when we say “a thousand” of something. I could calculate how long it took me to do something a thousand times, or to write a thousand of something. I know that it was at about a thousand words that, last A To Z sequence, I got to feeling I should wrap up any particular essay. But did I see any particular difference between word 999 and word 1,000? No; what I really knew was “about enough paragraphs” and maybe “fills just over two screens in my text editor”. So do I know what a thousand is? Anyway, we all have our limits, acknowledge them or not.

Archie: 'Moose, your math answers are all wrong!' Moose: 'I'll try again'. So ... Moose: 'Better?' Archie: 'Sorry, Moose! They're still wrong! And writing 'More or Less' after after each answer doesn't help!'
Henry Scarpelli and Craig Boldman’s Archie rerun for the 17th of November, 2017. It really reminds you how dumb Moose is given that he’s asking Archie for help with his mathematics. C’mon, you know Dilton Doiley. And this strip is surely a rerun from before Dilton would be too busy with his oyPhone or his drones or any other distraction; what’s he have to do except help Moose out?

Henry Scarpelli and Craig Boldman’s Archie rerun for the 17th is about Moose’s struggle with mathematics. Just writing “more or less” doesn’t fix an erroneous answer, true. But error margins, and estimates of where an answer should be, can be good mathematics. (Part of the Common Core that many parents struggle with is making the estimate of an answer the first step, and a refined answer later. Based on what I see crossing social media, this really offends former engineering majors who miss the value in having an expected approximate answer.) It’s part of how we define limits, and derivatives, and integrals, and all of calculus. But it’s in a more precise way than Moose tries to do.

Teacher: 'Quincy, if you put your hand in your pocket and pulled out 65 cents ... and put your hand in the other pocket and pulled out 35 cents ... what would you have?' Quincy: 'Somebody else's pants!'
Ted Shearer’s Quincy for the 18th of September, 1978 and rerun the 11th of November, 2017. I feel like anytime I mention Quincy here I end up doing a caption about Ted Shearer’s art. But, I mean, look at the mathematics teacher in the second panel there. There’s voice in that face.

Ted Shearer’s Quincy for the 18th of September, 1978 is a story-problem joke. Some of these aren’t complicated strips.

Advertisements

Reading the Comics, October 2017: Mathematics Anxiety Edition


Comic Strip Master Command hasn’t had many comics exactly on mathematical points the past week. I’ll make do. There are some that are close enough for me, since I like the comics already. And enough of them circle around people being nervous about doing mathematics that I have a title for this edition.

Tony Cochrane’s Agnes for the 24th talks about math anxiety. It’s not a comic strip that will do anything to resolve anyone’s mathematics anxiety. But it’s funny about its business. Agnes usually is; it’s one of the less-appreciated deeply-bizarre comics out there.

John Atkinson’s Wrong Hands for the 24th might be the anthropomorphic numerals joke for this week. Or it might be the anthropomorphic letters joke. Or something else entirely.

Charles Schulz’s Peanuts for the 24th reruns the comic from the 2nd of November, 1970. It has Sally discovering that multiplication is much easier than she imagined. As it is, she’s not in good shape. But if you accept ‘tooty-two’ as another name for ‘four’ and ‘threety-three’ as another name for ‘nine’, why not? And she might do all right in group theory. In that you can select a bunch of things, called ‘elements’, and describe their multiplication to fit anything you like, provided there’s consistency. There could be a four-forty-four if that seems to answer some question.

Patron of the Halloween Costume Advice booth: 'I want to be a zombie!' Regular character whose name I can't remember and can't find: 'That's a tough one ... we have to find a way to get you into character. Here [ handing a textbook over ] --- sit through one of Miss Barnes's math classes.'
Steve Kelley and Jeff Parker’s Dustin for the 25th of October, 2017. The kid’s premise this week is about advice for maximizing trick-or-treating hauls. So it circles around sabermetrics and the measurement of every possible metric relevant to a situation. It’s a bit baffling to me, since I just do not remember the quality of a costume relating to how much candy I’d gotten. Nor to what I give out, at least once you get past “high school kid not even bothering to dress up”. And even they’ll get a couple pieces although, yeah, if they did anything they’d get the full-size peanut butter cups. (We’re trying to build a reputation here.) What I’m saying is, I don’t see how the amount of candy depends on more than “have a costume” and “spend more time out there”. I mean, are people really withholding the fruit-flavored Tootsie Rolls because some eight-year-old doesn’t have an exciting enough costume? Really?

Steve Kelley and Jeff Parker’s Dustin for the 25th might be tied in to mathematics anxiety. At least it expresses how the thought of mathematics will cause some people to shut down entirely. Shame for them, but I can’t deny it’s so.

Young magician touching the wand to the whiteboard to show 15 divided by 3 is 5. His instructor: 'No relying on the wand --- I want to see how you arrived at the right answer.' (The title panel calls the strip The Tutor, with the tutor saying 'Someday when you're wizened you'll thank me.')
Hilary Price’s Rhymes with Orange for the 26th of October, 2017. The signature also credits Rina Piccolo, late of Six Chix and Tina’s Groove. The latter strip ended in July 2017, and she left the former last year. Maybe she’s picking up some hours part-timing on Rhymes With Orange; her signature’s been on many strips recently. Wikipedia doesn’t have anything relevant to say, and the credit on the web site doesn’t reflect Piccolo’s work, if she is a regular coauthor now.

Hilary Price’s Rhymes with Orange for the 26th is a calculator joke, made explicitly magical. I’m amused but also wonder if those are small wizards or large mushrooms. And it brings up again the question: why do mathematics teachers care about seeing how you got the answer? Who cares, as long as the answer is right? And my answer there is that yeah, sometimes all we care about is the answer. But more often we care about why someone knows the answer is this instead of that. The argument about what makes this answer right — or other answers wrong — should make it possible to tell why. And it often will help inform other problems. Being able to use the work done for one problem to solve others, or better, a whole family of problems, is fantastic. It’s the sort of thing mathematicians naturally try to do.

Jason Poland’s Robbie and Bobby for the 26th is an anthropomorphic geometry joke. And it’s a shape joke I don’t remember seeing, at least not under my Reading the Comics line of jokes. (Maybe I’ve just forgotten). Also, trapezoids: my most popular post of all time ever, even though it’s only got a couple months’ lead on the other perennial favorite, about how many grooves are on a record’s side.

Jeremy pours symbols from his mathematics notebook into a funnel in his head. They pour out his ears. He says 'My study habits are ineffective' to Pierce, who asks, 'Have you tried earplugs?'
Jerry Scott and Jim Borgman’s Zits for the 27th of October, 2017. I understand people who don’t find Zits a particularly strong comic. (My experience is it’s more loved by my parent’s cohort than by mine.) But I will say when Scott and Borgman go for visual metaphor the strip is easily ten times better. I think the cartoonists have some editorial-cartoon experience and they’ll sometimes put it to good use.

Jerry Scott and Jim Borgman’s Zits for the 27th uses mathematics as the emblem of complicated stuff in need of study. It’s a good visual. I have to say Jeremy’s material seems unorganized to start with, though.

Reading the Comics, October 12, 2017: Busy Saturday Soon Edition


The week was looking ready to be one where I have my five paragraphs about how something shows off a word problem and that’s it. And then Comic Strip Master Command turned up the flow of comics for Saturday. So, here’s my five paragraphs about something being word problems and we’ll pick up the other half of them soon.

Bill Whitehead’s Free Range for the 10th is an Albert Einstein joke. That’s usually been enough. That it mentions curved space, the exotic geometries that make general relativity so interesting, gives it a little more grounding as a mathematical comic. It’s a bit curious, surely, that curved space strikes people as so absurd. Nobody serious argues whether we live on a curved space, though, not when we see globes and think about shapes that cover a big part of the surface of the Earth. But there is something different about thinking of three-dimensional space as curved; it’s hard to imagine curved around what.

Brian Basset’s Red and Rover started some word problems on the 11th, this time with trains travelling in separate directions. The word problem seemed peculiar, since the trains wouldn’t be 246 miles apart at any whole number of hours. But they will be at a reasonable fraction more than a whole number of hours, so I guess Red has gotten to division with fractions.

Red and Rover are back at it the 12th with basically the same problem. This time it’s with airplanes. Also this time it’s a much worse problem. While you can do the problem still, the numbers are uglier. It’ll be just enough over two hours and ten minutes that I wonder if the numbers got rewritten away from some nicer set. For example, if the planes had been flying at 360 and 540 miles per hour, and the question was when they would be 2,100 miles apart, then you’d have a nice two-and-a-third hours.

'Todd, don't be anxious about your fractions homework! I can make it easy to understand! Let's say you have a whole pie!' 'Oooh! Pie!' 'In order to have three-quarters of the pie, how much of the pie will you give to me?' 'NONE! YOU CAN'T HAVE ANY! THE PIE IS MINE! MINE! ALL MINE!' 'The answer is 'don't use pie in your word problems'.'
Patrick Roberts’s Todd the Dinosaur for the 12th of October, 2017. And I for one am totally convinced the first and second panels were independently drawn and weren’t just a copy-pasted panel with some editing on Todd’s mouth and the woman’s arm. Also the last panel isn’t the first two panels copied and slightly edited again.

Patrick Roberts’s Todd the Dinosaur for the 12th is another in the line of jokes about fraction-teaching going wrong by picking a bad example.

John Zakour and Scott Roberts’s Maria’s Day for the 12th uses mathematics as the iconic worst-possible-case for a pop quiz. I suppose spelling might have done too.

Reading the Comics, September 29, 2017: Anthropomorphic Mathematics Edition


The rest of last week had more mathematically-themed comic strips than Sunday alone did. As sometimes happens, I noticed an objectively unimportant detail in one of the comics and got to thinking about it. Whether I could solve the equation as posted, or whether at least part of it made sense as a mathematics problem. Well, you’ll see.

Patrick McDonnell’s Mutts for the 25th of September I include because it’s cute and I like when I can feature some comic in these roundups. Maybe there’s some discussion that could be had about what “equals” means in ordinary English versus what it means in mathematics. But I admit that’s a stretch.

Professor Earl's Math Class. (Earl is the dog.) 'One belly rub equals two pats on the head!'
Patrick McDonnell’s Mutts for the 25th of September, 2017. I should be interested in other people’s research on this. My love’s parents’ dogs are the ones I’ve had the most regular contact with the last few years, and the dogs have all been moderately to extremely alarmed by my doing suspicious things, such as existing or being near them or being away from them or reaching a hand to them or leaving a treat on the floor for them. I know this makes me sound worrisome, but my love’s parents are very good about taking care of dogs others would consider just too much trouble.

Olivia Walch’s Imogen Quest for the 25th uses, and describes, the mathematics of a famous probability problem. This is the surprising result of how few people you need to have a 50 percent chance that some pair of people have a birthday in common. It then goes over to some other probability problems. The examples are silly. But the reasoning is sound. And the approach is useful. To find the chance of something happens it’s often easiest to work out the chance it doesn’t. Which is as good as knowing the chance it does, since a thing can either happen or not happen. At least in probability problems, which define “thing” and “happen” so there’s not ambiguity about whether it happened or not.

Piers Baker’s Ollie and Quentin rerun for the 26th I’m pretty sure I’ve written about before, although back before I included pictures of the Comics Kingdom strips. (The strip moved from Comics Kingdom over to GoComics, which I haven’t caught removing old comics from their pages.) Anyway, it plays on a core piece of probability. It sets out the world as things, “events”, that can have one of multiple outcomes, and which must have one of those outcomes. Coin tossing is taken to mean, by default, an event that has exactly two possible outcomes, each equally likely. And that is near enough true for real-world coin tossing. But there is a little gap between “near enough” and “true”.

Rick Stromoski’s Soup To Nutz for the 27th is your standard sort of Dumb Royboy joke, in this case about him not knowing what percentages are. You could do the same joke about fractions, including with the same breakdown of what part of the mathematics geek population ruins it for the remainder.

Nate Fakes’s Break of Day for the 28th is not quite the anthropomorphic-numerals joke for the week. Anthropomorphic mathematics problems, anyway. The intriguing thing to me is that the difficult, calculus, problem looks almost legitimate to me. On the right-hand-side of the first two lines, for example, the calculation goes from

\int -8 e^{-\frac{ln 3}{14} t}

to
-8 -\frac{14}{ln 3} e^{-\frac{ln 3}{14} t}

This is a little sloppy. The first line ought to end in a ‘dt’, and the second ought to have a constant of integration. If you don’t know what these calculus things are let me explain: they’re calculus things. You need to include them to express the work correctly. But if you’re just doing a quick check of something, the mathematical equivalent of a very rough preliminary sketch, it’s common enough to leave that out.

It doesn’t quite parse or mean anything precisely as it is. But it looks like the sort of thing that some context would make meaningful. That there’s repeated appearances of - \frac{ln 3}{14} , or - \frac{14}{ln 3} , particularly makes me wonder if Frakes used a problem he (or a friend) was doing for some reason.

Mark Anderson’s Andertoons for the 29th is a welcome reassurance that something like normality still exists. Something something student blackboard story problem something.

Anthony Blades’s Bewley rerun for the 29th depicts a parent once again too eager to help with arithmetic homework.

Maria Scrivan’s Half Full for the 29th gives me a proper anthropomorphic numerals panel for the week, and none too soon.

Reading the Comics, September 24, 2017: September 24, 2017 Edition


Comic Strip Master Command sent a nice little flood of comics this week, probably to make sure that I transitioned from the A To Z project to normal activity without feeling too lost. I’m going to cut the strips not quite in half because I’m always delighted when I can make a post that’s just a single day’s mathematically-themed comics. Last Sunday, the 24th of September, was such a busy day. I’m cheating a little on what counts as noteworthy enough to talk about here. But people like comic strips, and good on them for liking them.

Norm Feuti’s Gil for the 24th sees Gil discover and try to apply some higher mathematics. There’s probably a good discussion about what we mean by division to explain why Gil’s experiment didn’t pan out. I would pin it down to eliding the difference between “dividing in half” and “dividing by a half”, which is a hard one. Terms that seem almost alike but mean such different things are probably the hardest part of mathematics.

Gil, eating cookies and doing mathematics. 'Dividing fractions. 1/2 divided by 1/2', which he works out to be 1. 'One half divided in half equals one? Wait a minute. If these calculations are correct, then that means ... ' And he takes a half-cookie and snaps it in half, to his disappointment. 'Humph. what's the point of this advanced math if it only works on paper?'
Norm Feuti’s Gil for the 24th of September, 2017, didn’t appear on Gocomics.com or Comics Kingdom, my usual haunts for these comics. But I started reading the strip when it was on Comics Kingdom, and keep reading its reruns. Feuti has continued the comic strip on his own web site, and posts it on Twitter. So it’s quite easy to pick the strip back up, if you have a Twitter account or can read RSS from it. I assume you can read RSS from it.

Russell Myers’s Broom Hilda looks like my padding. But the last panel of the middle row gets my eye. The squirrels talk about how on the equinox night and day “can never be of identical length, due to the angular size of the sun and atmospheric refraction”. This is true enough for the equinox. While any spot on the Earth might see twelve hours facing the sun and twelve hours facing away, the fact the sun isn’t a point, and that the atmosphere carries light around to the “dark” side of the planet, means daylight lasts a little longer than night.

Ah, but. This gets my mathematical modelling interest going. Because it is true that, at least away from the equator, there’s times of year that day is way shorter than night. And there’s times of year that day is way longer than night. Shouldn’t there be some time in the middle when day is exactly equal to night?

The easy argument for is built on the Intermediate Value Theorem. Let me define a function, with domain each of the days of the year. The range is real numbers. It’s defined to be the length of day minus the length of night. Let me say it’s in minutes, but it doesn’t change things if you argue that it’s seconds, or milliseconds, or hours, if you keep parts of hours in also. So, like, 12.015 hours or something. At the height of winter, this function is definitely negative; night is longer than day. At the height of summer, this function is definitely positive; night is shorter than day. So therefore there must be some time, between the height of winter and the height of summer, when the function is zero. And therefore there must be some day, even if it isn’t the equinox, when night and day are the same length

There’s a flaw here and I leave that to classroom discussions to work out. I’m also surprised to learn that my onetime colleague Dr Helmer Aslaksen’s grand page of mathematical astronomy and calendar essays doesn’t seem to have anything about length of day calculations. But go read that anyway; you’re sure to find something fascinating.

Mike Baldwin’s Cornered features an old-fashioned adding machine being used to drown an audience in calculations. Which makes for a curious pairing with …

Bill Amend’s FoxTrot, and its representation of “math hipsters”. I hate to encourage Jason or Marcus in being deliberately difficult. But there are arguments to make for avoiding digital calculators in favor of old-fashioned — let’s call them analog — calculators. One is that people understand tactile operations better, or at least sooner, than they do digital ones. The slide rule changes multiplication and division into combining or removing lengths of things, and we probably have an instinctive understanding of lengths. So this should train people into anticipating what a result is likely to be. This encourages sanity checks, verifying that an answer could plausibly be right. And since a calculation takes effort, it encourages people to think out how to arrange the calculation to require less work. This should make it less vulnerable to accidents.

I suspect that many of these benefits are what you get in the ideal case, though. Slide rules, and abacuses, are no less vulnerable to accidents than anything else is. And if you are skilled enough with the abacus you have no trouble multiplying 18 by 7, you probably would not find multiplying 17 by 8 any harder, and wouldn’t notice if you mistook one for the other.

Jef Mallett’s Frazz asserts that numbers are cool but the real insight is comparisons. And we can argue that comparisons are more basic than numbers. We can talk about one thing being bigger than another even if we don’t have a precise idea of numbers, or how to measure them. See every mathematics blog introducing the idea of different sizes of infinity.

Bill Whitehead’s Free Range features Albert Einstein, universal symbol for really deep thinking about mathematics and physics and stuff. And even a blackboard full of equations for the title panel. I’m not sure whether the joke is a simple absent-minded-professor joke, or whether it’s a relabelled joke about Werner Heisenberg. Absent-minded-professor jokes are not mathematical enough for me, so let me point once again to American Cornball. They’re the first subject in Christopher Miller’s encyclopedia of comic topics. So I’ll carry on as if the Werner Heisenberg joke were the one meant.

Heisenberg is famous, outside World War II history, for the Uncertainty Principle. This is one of the core parts of quantum mechanics, under which there’s a limit to how precisely one can know both the position and momentum of a thing. To identify, with absolutely zero error, where something is requires losing all information about what its momentum might be, and vice-versa. You see the application of this to a traffic cop’s question about knowing how fast someone was going. This makes some neat mathematics because all the information about something is bundled up in a quantity called the Psi function. To make a measurement is to modify the Psi function by having an “operator” work on it. An operator is what we call a function that has domains and ranges of other functions. To measure both position and momentum is equivalent to working on Psi with one operator and then another. But these operators don’t commute. You get different results in measuring momentum and then position than you do measuring position and then momentum. And so we can’t know both of these with infinite precision.

There are pairs of operators that do commute. They’re not necessarily ones we care about, though. Like, the total energy commutes with the square of the angular momentum. So, you know, if you need to measure with infinite precision the energy and the angular momentum of something you can do it. If you had measuring tools that were perfect. You don’t, but you could imagine having them, and in that case, good. Underlying physics wouldn’t spoil your work.

Probably the panel was an absent-minded professor joke.

The Summer 2017 Mathematics A To Z: Zeta Function


Today Gaurish, of For the love of Mathematics, gives me the last subject for my Summer 2017 A To Z sequence. And also my greatest challenge: the Zeta function. The subject comes to all pop mathematics blogs. It comes to all mathematics blogs. It’s not difficult to say something about a particular zeta function. But to say something at all original? Let’s watch.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Zeta Function.

The spring semester of my sophomore year I had Intro to Complex Analysis. Monday Wednesday 7:30; a rare evening class, one of the few times I’d eat dinner and then go to a lecture hall. There I discovered something strange and wonderful. Complex Analysis is a far easier topic than Real Analysis. Both are courses about why calculus works. But why calculus for complex-valued numbers works is a much easier problem than why calculus for real-valued numbers works. It’s dazzling. Part of this is that Complex Analysis, yes, builds on Real Analysis. So Complex can take for granted some things that Real has to prove. I didn’t mind. Given the way I crashed through Intro to Real Analysis I was glad for a subject that was, relatively, a breeze.

As we worked through Complex Variables and Applications so many things, so very many things, got to be easy. The basic unit of complex analysis, at least as we young majors learned it, was in contour integrals. These are integrals whose value depends on the values of a function on a closed loop. The loop is in the complex plane. The complex plane is, well, your ordinary plane. But we say the x-coordinate and the y-coordinate are parts of the same complex-valued number. The x-coordinate is the real-valued part. The y-coordinate is the imaginary-valued part. And we call that summation ‘z’. In complex-valued functions ‘z’ serves the role that ‘x’ does in normal mathematics.

So a closed loop is exactly what you think. Take a rubber band and twist it up and drop it on the table. That’s a closed loop. Suppose you want to integrate a function, ‘f(z)’. If you can always take its derivative on this loop and on the interior of that loop, then its contour integral is … zero. No matter what the function is. As long as it’s “analytic”, as the terminology has it. Yeah, we were all stunned into silence too. (Granted, mathematics classes are usually quiet, since it’s hard to get a good discussion going. Plus many of us were in post-dinner digestive lulls.)

Integrating regular old functions of real-valued numbers is this tedious process. There’s sooooo many rules and possibilities and special cases to consider. There’s sooooo many tricks that get you the integrals of some functions. And then here, with complex-valued integrals for analytic functions, you know the answer before you even look at the function.

As you might imagine, since this is only page 113 of a 341-page book there’s more to it. Most functions that anyone cares about aren’t analytic. At least they’re not analytic everywhere inside regions that might be interesting. There’s usually some points where an interesting function ‘f(z)’ is undefined. We call these “singularities”. Yes, like starships are always running into. Only we rarely get propelled into other universes or other times or turned into ghosts or stuff like that.

So much of the rest of the course turns into ways to avoid singularities. Sometimes you can spackel them over. This is when the function happens not to be defined somewhere, but you can see what it ought to be. Sometimes you have to do something more. This turns into a search for “removable” singularities. And this does something so brilliant it looks illicit. You modify your closed loop, so that it comes up very close, as close as possible, to the singularity, but studiously avoids it. Follow this game of I’m-not-touching-you right and you can turn your integral into two parts. One is the part that’s equal to zero. The other is the part that’s a constant times whatever the function is at the singularity you’re removing. And that ought to be easy to find the value for. (Being able to find a function’s value doesn’t mean you can find its derivative.)

Those tricks were hard to master. Not because they were hard. Because they were easy, in a context where we expected hard. But after that we got into how to move singularities. That is, how to do a change of variables that moved the singularities to where they’re more convenient for some reason. How could this be more convenient? Because of chapter five, series. In regular old calculus we learn how to approximate well-behaved functions with polynomials. In complex-variable calculus, we learn the same thing all over again. They’re polynomials of complex-valued variables, but it’s the same sort of thing. And not just polynomials, but things that look like polynomials except they’re powers of \frac{1}{z} instead. These open up new ways to approximate functions, and to remove singularities from functions.

And then we get into transformations. These are about turning a problem that’s hard into one that’s easy. Or at least different. They’re a change of variable, yes. But they also change what exactly the function is. This reshuffles the problem. Makes for a change in singularities. Could make ones that are easier to work with.

One of the useful, and so common, transforms is called the Laplace-Stieltjes Transform. (“Laplace” is said like you might guess. “Stieltjes” is said, or at least we were taught to say it, like “Stilton cheese” without the “ton”.) And it tends to create functions that look like a series, the sum of a bunch of terms. Infinitely many terms. Each of those terms looks like a number times another number raised to some constant times ‘z’. As the course came to its conclusion, we were all prepared to think about these infinite series. Where singularities might be. Which of them might be removable.

These functions, these results of the Laplace-Stieltjes Transform, we collectively call ‘zeta functions’. There are infinitely many of them. Some of them are relatively tame. Some of them are exotic. One of them is world-famous. Professor Walsh — I don’t mean to name-drop, but I discovered the syllabus for the course tucked in the back of my textbook and I’m delighted to rediscover it — talked about it.

That world-famous one is, of course, the Riemann Zeta function. Yes, that same Riemann who keeps turning up, over and over again. It looks simple enough. Almost tame. Take the counting numbers, 1, 2, 3, and so on. Take your ‘z’. Raise each of the counting numbers to that ‘z’. Take the reciprocals of all those numbers. Add them up. What do you get?

A mass of fascinating results, for one. Functions you wouldn’t expect are concealed in there. There’s strips where the real part is zero. There’s strips where the imaginary part is zero. There’s points where both the real and imaginary parts are zero. We know infinitely many of them. If ‘z’ is -2, for example, the sum is zero. Also if ‘z’ is -4. -6. -8. And so on. These are easy to show, and so are dubbed ‘trivial’ zeroes. To say some are ‘trivial’ is to say that there are others that are not trivial. Where are they?

Professor Walsh explained. We know of many of them. The nontrivial zeroes we know of all share something in common. They have a real part that’s equal to 1/2. There’s a zero that’s at about the number \frac{1}{2} - \imath 14.13 . Also at \frac{1}{2} + \imath 14.13 . There’s one at about \frac{1}{2} - \imath 21.02 . Also about \frac{1}{2} + \imath 21.02 . (There’s a symmetry, you maybe guessed.) Every nontrivial zero we’ve found has a real component that’s got the same real-valued part. But we don’t know that they all do. Nobody does. It is the Riemann Hypothesis, the great unsolved problem of mathematics. Much more important than that Fermat’s Last Theorem, which back then was still merely a conjecture.

What a prospect! What a promise! What a way to set us up for the final exam in a couple of weeks.

I had an inspiration, a kind of scheme of showing that a nontrivial zero couldn’t be within a given circular contour. Make the size of this circle grow. Move its center farther away from the z-coordinate \frac{1}{2} + \imath 0 to match. Show there’s still no nontrivial zeroes inside. And therefore, logically, since I would have shown nontrivial zeroes couldn’t be anywhere but on this special line, and we know nontrivial zeroes exist … I leapt enthusiastically into this project. A little less enthusiastically the next day. Less so the day after. And on. After maybe a week I went a day without working on it. But came back, now and then, prodding at my brilliant would-be proof.

The Riemann Zeta function was not on the final exam, which I’ve discovered was also tucked into the back of my textbook. It asked more things like finding all the singular points and classifying what kinds of singularities they were for functions like e^{-\frac{1}{z}} instead. If the syllabus is accurate, we got as far as page 218. And I’m surprised to see the professor put his e-mail address on the syllabus. It was merely “bwalsh@math”, but understand, the Internet was a smaller place back then.

I finished the course with an A-, but without answering any of the great unsolved problems of mathematics.

Reading the Comics, September 22, 2017: Doughnut-Cutting Edition


The back half of last week’s mathematically themed comic strips aren’t all that deep. They make up for it by being numerous. This is how calculus works, so, good job, Comic Strip Master Command. Here’s what I have for you.

Mark Anderson’s Andertoons for the 20th marks its long-awaited return to these Reading The Comics posts. It’s of the traditional form of the student misunderstanding the teacher’s explanations. Arithmetic edition.

Marty Links’s Emmy Lou for the 20th was a rerun from the 22nd of September, 1976. It’s just a name-drop. It’s not like it matters for the joke which textbook was lost. I just include it because, what the heck, might as well.

Jef Mallett’s Frazz for the 21st uses the form of a story problem. It’s a trick question anyway; there’s really no way the Doppler effect is going to make an ice cream truck’s song unrecognizable, not even at highway speeds. Too distant to hear, that’s a possibility. Also I don’t know how strictly regional this is but the ice cream trucks around here have gone in for interrupting the music every couple seconds with some comical sound effect, like a “boing” or something. I don’t know what this hopes to achieve besides altering the timeline of when the ice cream seller goes mad.

Mark Litzler’s Joe Vanilla for the 21st I already snuck in here last week, in talking about ‘x’. The variable does seem like a good starting point. And, yeah, hypothesis block is kind of a thing. There’s nothing quite like staring at a problem that should be interesting and having no idea where to start. This happens even beyond grade school and the story problems you do then. What to do about it? There’s never one thing. Study it a good while, read about related problems a while. Maybe work on something that seems less obscure a while. It’s very much like writer’s block.

Ryan North’s Dinosaur Comics rerun for the 22nd straddles the borders between mathematics, economics, and psychology. It’s a problem about making forecasts about other people’s behavior. It’s a mystery of game theory. I don’t know a proper analysis for this game. I expect it depends on how many rounds you get to play: if you have a sense of what people typically do, you can make a good guess of what they will do. If everyone gets a single shot to play, all kinds of crazy things might happen.

Jef Mallet’s Frazz gets in again on the 22nd with some mathematics gibberish-talk, including some tossing around of the commutative property. Among other mistakes Caulfield was making here, going from “less is more to therefore more is less” isn’t commutation. Commutation is about binary operations, where you match a pair of things to a single thing. The operation commutes if it never matters what the order of the pair of things is. It doesn’t commute if it ever matters, even a single time, what the order is. Commutativity gets introduced in arithmetic where there are some good examples of the thing. Addition and multiplication commute. Subtraction and division don’t. From there it gets forgotten until maybe eventually it turns up in matrix multiplication, which doesn’t commute. And then it gets forgotten once more until maybe group theory. There, whether operations commute or not is as important a divide as the one between vertebrates and invertebrates. But I understand kids not getting why they should care about commuting. Early on it seems like a longwinded way to say what’s obvious about addition.

Michael Cavna’s Warped for the 22nd is the Venn Diagram joke for this round of comics.

Hugo: 'There's three of us and I have four doughnuts, it won't divide ... so I'll have to eat the extra one!' Punkinhead: 'Wait, Hugo, I can solve it, I'll go get my brother.'
Bud Blake’s Tiger rerun for the 23rd of September, 2017. Do have to wonder what’s going through Julian’s head. On the one hand, he’s getting one doughnut, come what may. On the other, he’s really not needed for the joke since it would play just as well with three doughnuts to split between Hugo and Punkinhead. I suppose cutting a doughnut in thirds is more unthinkable than cutting a doughnut in half, but neither one’s an easy thing for me to imagine.

Bud Blake’s Tiger rerun for the 23rd starts with a real-world example of your classic story problem. I like the joke in it, and I also like Hugo’s look of betrayal and anger in the second panel. A spot of expressive art will do so good for a joke.

Reading the Comics, September 19, 2017: Visualization Edition


Comic Strip Master Command apparently doesn’t want me talking about the chances of Friday’s Showcase Showdown. They sent me enough of a flood of mathematically-themed strips that I don’t know when I’ll have the time to talk about the probability of that episode. (The three contestants spinning the wheel all tied, each spinning $1.00. And then in the spin-off, two of the three contestants also spun $1.00. And this after what was already a perfect show, in which the contestants won all six of the pricing games.) Well, I’ll do what comic strips I can this time, and carry on the last week of the Summer 2017 A To Z project, and we’ll see if I can say anything timely for Thursday or Saturday or so.

Jim Scancarelli’s Gasoline Alley for the 17th is a joke about the student embarrassing the teacher. It uses mathematics vocabulary for the specifics. And it does depict one of those moments that never stops, as you learn mathematics. There’s always more vocabulary. There’s good reasons to have so much vocabulary. Having names for things seems to make them easier to work with. We can bundle together ideas about what a thing is like, and what it may do, under a name. I suppose the trouble is that we’ve accepted a convention that we should define terms before we use them. It’s nice, like having the dramatis personae listed at the start of the play. But having that list isn’t the same as saying why anyone should care. I don’t know how to balance the need to make clear up front what one means and the need to not bury someone under a heap of similar-sounding names.

Mac King and Bill King’s Magic in a Minute for the 17th is another puzzle drawn from arithmetic. Look at it now if you want to have the fun of working it out, as I can’t think of anything to say about it that doesn’t spoil how the trick is done. The top commenter does have a suggestion about how to do the problem by breaking one of the unstated assumptions in the problem. This is the kind of puzzle created for people who want to motivate talking about parity or equivalence classes. It’s neat when you can say something of substance about a problem using simple information, though.

'How are you and David doing?' 'Better, with counseling.' (As Ben takes his drink bottle.) 'But sometimes he still clings to hope that Ben's autism is 'curable'. Admittedly, I've wondered that myself. Then Ben strips naked and solves a trigonometry problem.' 'Whoa.' (Ben throws his drink bottle in the air and says) 'A = (1/2)(4)(2) sin 45 deg.'
Terri Libenson’s Pajama Diaries for the 18th of September, 2017. When I first read this I assumed that of course the base of the triangle had length 4 and the second leg, at a 45-degree angle to that, had length 2, and I wondered if those numbers could be consistent for a triangle to exist. Of course they could, though. There is a bit of fun to be had working out whether a particular triangle could exist from knowing its side lengths, though.

Terri Libenson’s Pajama Diaries for the 18th uses trigonometry as the marker for deep thinking. It comes complete with a coherent equation, too. It gives the area of a triangle with two legs that meet at a 45 degree angle. I admit I am uncomfortable with promoting the idea that people who are autistic have some super-reasoning powers. (Also with the pop-culture idea that someone who spots things others don’t is probably at least a bit autistic.) I understand wanting to think someone’s troubles have some compensation. But people are who they are; it’s not like they need to observe some “balance”.

Lee Falk and Wilson McCoy’s The Phantom for the 10th of August, 1950 was rerun Monday. It’s a side bit of joking about between stories. And it uses knowledge of mathematics — and an interest in relativity — as signifier of civilization. I can only hope King Hano does better learning tensors on his own than I do.

Guest Woman: 'Did you know the King was having trouble controlling the young hotheads in his own tribe?' Phantom: 'Yes. He's an old friend of mine. He probably looks like an ignorant savage to you. Actually, he speaks seven languages, is an expert mathematician, and plays a fine hand of poker.' Guest Woman: 'What?' Cut to the King, in his hut, reading The Theory Of Relativity. 'Thank goodness that's over ... Now where was I?'
Lee Falk and Wilson McCoy’s The Phantom for the 10th of August, 1950 and rerun the 18th of September, 2017. For my money, just reading a mathematics book doesn’t take. I need to take notes, as if it were in class. I don’t quite copy the book, but it comes close.

Mike Thompson’s Grand Avenue for the 18th goes back to classrooms and stuff for clever answers that subvert the teacher. And I notice, per the title given this edition, that the teacher’s trying to make the abstractness of three minus two tangible, by giving it an example. Which pairs it with …

Will Henry’s Wallace the Brace for the 18th, wherein Wallace asserts that arithmetic is easier if you visualize real things. I agree it seems to help with stuff like basic arithmetic. I wouldn’t want to try taking the cosine of an apple, though. Separating the quantity of a thing from the kind of thing measured is one of those subtle breakthroughs. It’s one of the ways that, for example, modern calculations differ from those of the Ancient Greeks. But it does mean thinking of numbers in, we’d say, a more abstract way than they did, and in a way that seems to tax us more.

Wallace the Brave recently had a book collection published, by the way. I mention because this is one of a handful of comics with a character who likes pinball, and more, who really really loves the Williams game FunHouse. This is an utterly correct choice for favorite pinball game. It’s one of the games that made me a pinball enthusiast.

Ryan North’s Dinosaur Comics rerun for the 19th I mention on loose grounds. In it T-Rex suggests trying out an alternate model for how gravity works. The idea, of what seems to be gravity “really” being the shade cast by massive objects in a particle storm, was explored in the late 17th and early 18th century. It avoids the problem of not being able to quite say what propagates gravitational attraction. But it also doesn’t work, analytically. We would see the planets orbit differently if this were how gravity worked. And there’s the problem about mass and energy absorption, as pointed out in the comic. But it can often be interesting or productive to play with models that don’t work. You might learn something about models that do, or that could.

Reading the Comics, September 8, 2017: First Split Week Edition, Part 1


It was looking like another slow week for something so early in the (United States) school year. Then Comic Strip Master Commend sent a flood of strips in for Friday and Saturday, so I’m splitting the load. It’s not a heavy one, as back-to-school jokes are on people’s minds. But here goes.

Marcus Hamilton and Scott Ketcham’s Dennis the Menace for the 3rd of September, 2017 is a fair strip for this early in the school year. It’s an old joke about making subtraction understandable.

Dennis's Mom: 'How was school today?' Dennis: 'Not great. We just learned how to add and they're expecting us to subtract!' Mom: 'Let me see if I can help. If you have five pieces of candy, and you give Margaret there pieces of candy, what do you have?' Dennis: 'TEMPORARY INSANITY!!'
Marcus Hamilton and Scott Ketcham’s Dennis the Menace for the 3rd of September, 2017. The joke pretty well explains itself, but I would like to point out the great use of color for highlighting here. The different shades are done in a way very consistent with the mid-century stylings of the characters, but are subtler than could have been done when Hank Ketcham started the comic in the 1950s. For that matter, it’s subtler than could have been printed until quite recently in the newspaper industry. It’s worth noticing.

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson installment for this week, so I’m glad to have that. It’s a good old classic cranky-students setup and it reminds me that “unlike fractions” is a thing. I’m not quibbling with the term, especially not after the whole long-division mess a couple weeks back. I just hadn’t thought in a long while about how different denominators do make adding fractions harder.

Jeff Harris’s Shortcuts informational feature for the 3rd I couldn’t remember why I put on the list of mathematically-themed comic strips. The reason’s in there. There’s a Pi Joke. But my interest was more in learning that strawberries are a hybrid created in France from a North American and a Chilean breed. Isn’t that intriguing stuff?

Mom-type showing a flashcard, '5 x 7 = ?', to two kids. Boy: 'Isn't there an app for this sort of thing?'
Bill Abbott’s Specktickles for the 8th of September, 2017. I confess that I don’t know whether this comic is running in any newspapers. But I could find it easily enough so that’s why I read it and look for panels that touch on mathematics topics.

Bill Abbott’s Specktickles for the 8th uses arithmetic — multiplication flash cards — as emblem of stuff to study. About all I can say for that.

Reading the Comics, September 1, 2017: Getting Ready For School Edition


In the United States at least it’s the start of the school year. With that, Comic Strip Master Command sent orders to do back-to-school jokes. They may be shallow ones, but they’re enough to fill my need for content. For example:

Bill Amend’s FoxTrot for the 27th of August, a new strip, has Jason fitting his writing tools to the class’s theme. So mathematics gets to write “2” in a complicated way. The mention of a clay tablet and cuneiform is oddly timely, given the current (excessive) hype about that Babylonian tablet of trigonometric values, which just shows how even a nearly-retired cartoonist will get lucky sometimes.

Dan Collins’s Looks Good On Paper for the 27th does a collage of school stuff, with mathematics the leading representative of the teacher-giving-a-lecture sort of class.

Olivia Walch’s Imogen Quest for the 28th uses calculus as the emblem of stuff that would be put on the blackboard and be essential for knowing. It’s legitimate formulas, so far as we get to see, the stuff that would in fact be in class. It’s also got an amusing, to me at least, idea for getting students’ attention onto the blackboard.

Tony Carrillo’s F Minus for the 29th is here to amuse me. I could go on to some excuse about how the sextant would be used for the calculations that tell someone where he is. But really I’m including it because I was amused and I like how detailed a sketch of a sextant Carrillo included here.

Jim Meddick’s Monty for the 29th features the rich obscenity Sedgwick Nuttingham III, also getting ready for school. In this case the summer mathematics tutoring includes some not-really-obvious game dubbed Integer Ball. I confess a lot of attempts to make games out of arithmetic look to me like this: fun to do but useful in practicing skills? But I don’t know what the rules are or what kind of game might be made of the integers here. I should at least hear it out.

Michael Cavna’s Warped for the 30th lists a top ten greatest numbers, spoofing on mindless clickbait. Cavna also, I imagine unintentionally, duplicates an ancient David Letterman Top Ten List. But it’s not like you can expect people to resist the idea of making numbered lists of numbers. Some of us have a hard time stopping.

Todd: 'If I'm gonna get a good job someday, I've decided I'm gonna have to buckle down and get serious with my studies!' 'Good for you, Todd!' 'When I get to Junior High and High School, I'm gonna take stuff like trickanometree, calculatorius and alge-brah! Hee hee! Snicker! Snicker!' 'What?' 'I said Bra! Hee! Hee!' 'Better keep buckling down, bub.'
Patrick Roberts’s Todd the Dinosaur for the 1st of September, 2017. So Paul Dirac introduced to quantum mechanics a mathematical construct known as the ‘braket’. It’s written as a pair of terms, like, < A | B > . These can be separated into pieces, with < A | called the ‘bra’ and | B > the ‘ket’. We’re told in the quantum mechanics class that this was a moment of possibly “innocent” overlap between what’s a convenient mathematical name and, as a piece of women’s clothing, unending amusement to male physics students. I do not know whether that’s so. I don’t see the thrill myself except in the suggestion that great physicists might be aware of women’s clothing.

Patrick Roberts’s Todd the Dinosaur for the 1st of September mentions a bunch of mathematics as serious studies. Also, to an extent, non-serious studies. I don’t remember my childhood well enough to say whether we found that vaguely-defined thrill in the word “algebra”. It seems plausible enough.

Reading the Comics, June 17, 2017: Icons Of Mathematics Edition


Comic Strip Master Command just barely missed being busy enough for me to split the week’s edition. Fine for them, I suppose, although it means I’m going to have to scramble together something for the Tuesday or the Thursday posting slot. Ah well. As befits the comics, there’s a fair bit of mathematics as an icon in the past week’s selections. So let’s discuss.

Mark Anderson’s Andertoons for the 11th is our Mark Anderson’s Andertoons for this essay. Kind of a relief to have that in right away. And while the cartoon shows a real disaster of a student at the chalkboard, there is some truth to the caption. Ruling out plausible-looking wrong answers is progress, usually. So is coming up with plausible-looking answers to work out whether they’re right or wrong. The troubling part here, I’d say, is that the kid came up with pretty poor guesses about what the answer might be. He ought to be able to guess that it’s got to be an odd number, and has to be less than 10, and really ought to be less than 7. If you spot that then you can’t make more than two wrong guesses.

Patrick J Marrin’s Francis for the 12th starts with what sounds like a logical paradox, about whether the Pope could make an infallibly true statement that he was not infallible. Really it sounds like a bit of nonsense. But the limits of what we can know about a logical system will often involve questions of this form. We ask whether something can prove whether it is provable, for example, and come up with a rigorous answer. So that’s the mathematical content which justifies my including this strip here.

Border Collis are, as we know, highly intelligent. The dogs are gathered around a chalkboard full of mathematics. 'I've checked my calculations three times. Even if master's firm and calm and behaves like an alpha male, we *should* be able to whip him.'
Niklas Eriksson’s Carpe Diem for the 13th of June, 2017. Yes, yes, it’s easy to get people excited for the Revolution, but it’ll come to a halt when someone asks about how they get the groceries afterwards.

Niklas Eriksson’s Carpe Diem for the 13th is a traditional use of the blackboard full of mathematics as symbolic of intelligence. Of course ‘E = mc2‘ gets in there. I’m surprised that both π and 3.14 do, too, for as little as we see on the board.

Mark Anderson’s Andertoons for the 14th is a nice bit of reassurance. Maybe the cartoonist was worried this would be a split-week edition. The kid seems to be the same one as the 11th, but the teacher looks different. Anyway there’s a lot you can tell about shapes from their perimeter alone. The one which most startles me comes up in calculus: by doing the right calculation about the lengths and directions of the edge of a shape you can tell how much area is inside the shape. There’s a lot of stuff in this field — multivariable calculus — that’s about swapping between “stuff you know about the boundary of a shape” and “stuff you know about the interior of the shape”. And finding area from tracing the boundary is one of them. It’s still glorious.

Samson’s Dark Side Of The Horse for the 14th is a counting-sheep joke and a Pi Day joke. I suspect the digits of π would be horrible for lulling one to sleep, though. They lack the just-enough-order that something needs for a semiconscious mind to drift off. Horace would probably be better off working out Collatz sequences.

Dana Simpson’s Phoebe and her Unicorn for the 14th mentions mathematics as iconic of what you do at school. Book reports also make the cut.

Dr Zarkov: 'Flash, this is Professor Quita, the inventor of the ... ' Prof Quita: 'Caramba! NO! I am a mere mathematician! With numbers, equations, paper, pencil, I work ... it is my good amigo, Dr Zarkov, who takes my theories and builds ... THAT!!' He points to a bigger TV screen.
Dan Barry’s Flash Gordon for the 31st of July, 1962, rerun the 16th of June, 2017. I am impressed that Dr Zarkov can make a TV set capable of viewing alternate universes. I still literally do not know how it is possible that we have sound for our new TV set, and I labelled and connected every single wire in the thing. Oh, wouldn’t it be a kick if Dr Zarkov has the picture from one alternate universe but the sound from a slightly different other one?

Dan Barry’s Flash Gordon for the 31st of July, 1962 and rerun the 16th I’m including just because I love the old-fashioned image of a mathematician in Professor Quita here. At this point in the comic strip’s run it was set in the far-distant future year of 1972, and the action here is on one of the busy multinational giant space stations. Flash himself is just back from Venus where he’d set up some dolphins as assistants to a fish-farming operation helping to feed that world and ours. And for all that early-60s futurism look at that gorgeous old adding machine he’s still got. (Professor Quinta’s discovery is a way to peer into alternate universes, according to the next day’s strip. I’m kind of hoping this means they’re going to spend a week reading Buck Rogers.)

What Do I Need To Get A B This Semester? (May 2017 Edition)


Really, you needed to start worrying about this earlier. Getting a high grade in any course is one of those self-reinforcing cycles. Improve your work a little bit early on and it iterates. Every bit makes every future bit that much easier. This isn’t inspirational-quote talk; this is just how it works. For mathematics courses, where most of the time one subject feeds into the next, this is obvious. It’s also obvious for mathematics-in-disguise courses like physics. But even for courses where one topic doesn’t directly lead to the next it’s so. Every subject has ways of thinking about its topics, the kinds of questions to ask and the typical sorts of answers they draw. The sooner you ask your instructor, your peers, and whatever tutoring centers are available — and they are — the better off you are.

That said, everyone wants numbers. So here’s my posts. This is the original, about how to calculate exactly the score you need on your final to get whatever course grade you want. It allows for different sorts of weighting and extra credit and all that. If you don’t want to worry about extra credit here are some tables for common final-exam weightings with which you can approximate your needed score.

Also: review the syllabus. Read and understand any study guides you have. Review the in-course exams and homework assignments. Eat regularly and sleep as fully as you can the week or so before the exam; you do not have any problems that sleep deprivation will make better.

(Yes, this post is early. The schools I’m loosely affiliated with started early this term.)

Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition


I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

(I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.

Reading the Comics, April 6, 2017: Abbreviated Week Edition


I’m writing this a little bit early because I’m not able to include the Saturday strips in the roundup. There won’t be enough to make a split week edition; I’ll just add the Saturday strips to next week’s report. In the meanwhile:

Mac King and Bill King’s Magic in a Minute for the 2nd is a magic trick, as the name suggests. It figures out a card by way of shuffling a (partial) deck and getting three (honest) answers from the other participant. If I’m not counting wrongly, you could do this trick with up to 27 cards and still get the right card after three answers. I feel like there should be a way to explain this that’s grounded in information theory, but I’m not able to put that together. I leave the suggestion here for people who see the obvious before I get to it.

Bil Keane and Jeff Keane’s Family Circus (probable) rerun for the 6th reassured me that this was not going to be a single-strip week. And a dubiously included single strip at that. I’m not sure that lotteries are the best use of the knowledge of numbers, but they’re a practical use anyway.

Dolly holds up pads of paper with numbers on them. 'C'mon, PJ, you hafta learn your numbers or else you'll never win the lottery.'
Bil Keane and Jeff Keane’s Family Circus for the 6th of April, 2017. I’m not familiar enough with the evolution of the Family Circus style to say whether this is a rerun, a newly-drawn strip, or an old strip with a new caption. I suppose there is a certain timelessness to it, at least once we get into the era when states sported lotteries again.

Bill Bettwy’s Take It From The Tinkersons for the 6th is part of the universe of students resisting class. I can understand the motivation problem in caring about numbers of apples that satisfy some condition. In the role of distinct objects whose number can be counted or deduced cards are as good as apples. In the role of things to gamble on, cards open up a lot of probability questions. Counting cards is even about how the probability of future events changes as information about the system changes. There’s a lot worth learning there. I wouldn’t try teaching it to elementary school students.

The teacher: 'How many apples will be left, Tillman?' 'When are we going to start counting things more exciting than fruit?' 'What would you like to count, Tillman?' 'Cards.'
Bill Bettwy’s Take It From The Tinkersons for the 6th of April, 2017. That tree in the third panel is a transplant from a Slylock Fox six-differences panel. They’ve been trying to rebuild the population of trees that are sometimes three triangles and sometimes four triangles tall.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 6th uses mathematics as the stuff know-it-alls know. At least I suppose it is; Doctor Know It All speaks of “the pathagorean principle”. I’m assuming that’s meant to be the Pythagorean theorem, although the talk about “in any right triangle the area … ” skews things. You can get to stuf about areas of triangles from the Pythagorean theorem. One of the shorter proofs of it depends on the areas of the squares of the three sides of a right triangle. But it’s not what people typically think of right away. But he wouldn’t be the first know-it-all to start blathering on the assumption that people aren’t really listening. It’s common enough to suppose someone who speaks confidently and at length must know something.

Dave Whamond’s Reality Check for the 6th is a welcome return to anthropomorphic-numerals humor. Been a while.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th builds on the form of a classic puzzle, about a sequence indexed to the squares of a chessboard. The story being riffed on is a bit of mathematical legend. The King offered the inventor of chess any reward. The inventor asked for one grain of wheat for the first square, two grains for the second square, four grains for the third square, eight grains for the fourth square, and so on, through all 64 squares. An extravagant reward, but surely one within the king’s power to grant, right? And of course not: by the 64th doubling the amount of wheat involved is so enormous it’s impossibly great wealth.

The father’s offer is meant to evoke that. But he phrases it in a deceptive way, “one penny for the first square, two for the second, and so on”. That “and so on” is the key. Listing a sequence and ending “and so on” is incomplete. The sequence can go in absolutely any direction after the given examples and not be inconsistent. There is no way to pick a single extrapolation as the only logical choice.

We do it anyway, though. Even mathematicians say “and so on”. This is because we usually stick to a couple popular extrapolations. We suppose things follow a couple common patterns. They’re polynomials. Or they’re exponentials. Or they’re sine waves. If they’re polynomials, they’re lower-order polynomials. Things like that. Most of the time we’re not trying to trick our fellow mathematicians. Or we know we’re modeling things with some physical base and we have reason to expect some particular type of function.

In this case, the $1.27 total is consistent with getting two cents for every chess square after the first. There are infinitely many other patterns that would work, and the kid would have been wise to ask for what precisely “and so on” meant before choosing.

Berkeley Breathed’s Bloom County 2017 for the 7th is the climax of a little story in which Oliver Wendell Holmes has been annoying people by shoving scientific explanations of things into their otherwise pleasant days. It’s a habit some scientifically-minded folks have, and it’s an annoying one. Many of us outgrow it. Anyway, this strip is about the curious evidence suggesting that the universe is not just expanding, but accelerating its expansion. There are mathematical models which allow this to happen. When developing General Relativity, Albert Einstein included a Cosmological Constant for little reason besides that without it, his model would suggest the universe was of a finite age and had expanded from an infinitesimally small origin. He had grown up without anyone knowing of any evidence that the size of the universe was a thing that could change.

Anyway, the Cosmological Constant is a puzzle. We can find values that seem to match what we observe, but we don’t know of a good reason it should be there. We sciencey types like to have models that match data, but we appreciate more knowing why the models look like that and not anything else. So it’s a good problem some of the cosmologists have been working on. But we’ve been here before. A great deal of physics, especially in the 20th Century, has been driven by looking for reasons behind what look like arbitrary points in a successful model. If Oliver were better-versed in the history of science — something scientifically minded people are often weak on, myself included — he’d be less easily taunted by Opus.

Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 7th thinks that we forgot they ran this same strip back on the 17th of March. I spotted it, though. Nyah.

Reading the Comics, March 27, 2017: Not The March 26 Edition


My guide for how many comics to include in one of these essays is “at least five, if possible”. Occasionally there’s a day when Comic Strip Master Command sends that many strips at once. Last Sunday was almost but not quite such a day. But the business of that day did mean I had enough strips to again divide the past week’s entries. Look for more comics in a few days, if all goes well here. Thank you.

Mark Anderson’s Andertoons for the 26th reminds me of something I had wholly forgot about: decimals inside fractions. And now that this little horror’s brought back I remember my experience with it. Decimals in fractions aren’t, in meaning, any different from division of decimal numbers. And the decimals are easily enough removed. But I get the kid’s horror. Fractions and decimals are both interesting in the way they represent portions of wholes. They spend so much time standing independently of one another it feels disturbing to have them interact. Well, Andertoons kid, maybe this will comfort you: somewhere along the lines decimals in fractions just stop happening. I’m not sure when. I don’t remember when the last one passed my experience.

Hector Cantu and Carlos Castellanos’s Baldo for the 26th is built on a riddle. It’s one that depends on working in shifting addition from “what everybody means by addition” to “what addition means on a clock”. You can argue — I’m sure Gracie would — that “11 plus 3” does not mean “eleven o’clock plus three hours”. But on what grounds? If it’s eleven o’clock and you know something will happen in three hours, “two o’clock” is exactly what you want. Underlying all of mathematics are definitions about what we mean by stuff like “eleven” and “plus” and “equals”. And underlying the definitions is the idea that “here is a thing we should like to know”.

Addition of hours on a clock face — I never see it done with minutes or seconds — is often used as an introduction to modulo arithmetic. This is arithmetic on a subset of the whole numbers. For example, we might use 0, 1, 2, and 3. Addition starts out working the way it does in normal numbers. But then 1 + 3 we define to be 0. 2 + 3 is 1. 3 + 3 is 2. 2 + 2 is 0. 2 + 3 is 1 again. And so on. We get subtraction the same way. This sort of modulo arithmetic has practical uses. Many cryptography schemes rely on it, for example. And it has pedagogical uses; modulo arithmetic turns up all over a mathematics major’s Introduction to Not That Kind Of Algebra Course. You can use it to learn a lot of group theory with something a little less exotic than rotations and symmetries of polygonal shapes or permutations of lists of items. A clock face doesn’t quite do it, though. We have to pretend the ’12’ at the top is a ‘0’. I’ve grown more skeptical about whether appealing to clocks is useful in introducing modulo arithmetic. But it’s been a while since I’ve needed to discuss the matter at all.

Rob Harrell’s Big Top rerun for the 26th mentions sudoku. Remember when sudoku was threatening to take over the world, or at least the comics page? Also, remember comics pages? Good times. It’s not one of my hobbies, but I get the appeal.

Bob Shannon’s Tough Town I’m not sure if I’ve featured here before. It’s one of those high concept comics. The patrons at a bar are just what you see on the label, and there’s a lot of punning involved. Now that I’ve over-explained the joke please enjoy the joke. There are a couple of strips prior to this one featuring the same characters; they just somehow didn’t mention enough mathematics words for me to bring up here.

Overhearing customers: 'Kids today can't even do basic math. If the computer doesn't tell them how much change to give you, they don't know what to do.' Customer asking: 'How much is 50% off of $49.99 ? Does that mean it's free?' Clerk: Sigh.
Norm Feuti’s Retail for the 27th of March, 2017. Of course customers aren’t generally good at arithmetic either. I’m reminded (once more) of when I worked at Walden Books and a customer wanted to know whether the sticker-promised 10 percent discount on the book was applied to the price before or after the 6 percent sales tax was added to it, or whether it was applied afterwards. I could not speak to the cash register’s programming, but I could promise that the process would come to the same number either way, and I told him what it would be. I think the book had a $14.95 cover price — let’s stipulate it was for the sake of my anecdote — so it would come to $14.26 in the end. He judged me suspiciously and then allowed me to ring it up; the register made it out to be $15.22 and he pounced, saying, see?. Yes: he had somehow found the one freaking book in the store where the UPC bar code price, $15.95, was different from the thing listed as the cover price. I told him why it was and showed him where in the UPC to find the encoded price (it’s in the last stanza of digits underneath the bars) but he was having none of it, even when I manually corrected the error.

Norm Feuti’s Retail for the 27th is about the great concern-troll of mathematics education: can our cashiers make change? I’m being snottily dismissive. Shops, banks, accountants, and tax registries are surely the most common users of mathematics — at least arithmetic — out there. And if people are going to do a thing, ordinarily, they ought to be able to do it well. But, of course, the computer does arithmetic extremely well. Far better, or at least more indefatigably, than any cashier is going to be able to do. The computer will also keep track of the prices of everything, and any applicable sales or discounts, more reliably than the mere human will. The whole point of the Industrial Revolution was to divide tasks up and assign them to parties that could do the separate parts better. Why get worked up about whether you imagine the cashier knows what $22.14 minus $16.89 is?

I will say the time the bookstore where I worked lost power all afternoon and we had to do all the transactions manually we ended up with only a one-cent discrepancy in the till, thank you.

Reading the Comics, March 18, 2017: Pi Day Edition


No surprise what the recurring theme for this set of mathematics-mentioning comic strips is. Look at the date range. But here goes.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 13th uses algebra as the thing that will stun a class into silence. I know the silence. As a grad student you get whole minutes of instructions on how to teach a course before being sent out as recitation section leader for some professor. And what you do get told is the importance of asking students their thoughts and their ideas. This maybe works in courses that are obviously friendly to opinions or partially formed ideas. But in Freshman Calculus? It’s just deadly. Even if you can draw someone into offering an idea how we might start calculating a limit (say), they’re either going to be exactly right or they’re going to need a lot of help coaxing the idea into something usable. I’d like to have more chatty classes, but some subjects are just hard to chat about.

Mr Weatherby walks past a silent class. 'What a well-behaved class! ... Flutesnoot, how do you get them to be so quiet and still?' 'I just asked for a volunteer to solve an algebra problem!'
Henry Scarpelli and Craig Boldman’s Archie rerun for the 13th of March, 2017. I didn’t know the mathematics teacher’s name and suppose that “Flutesnoot” is as plausible as anything. Anyway, I admire his ability to stand in front of a dead-silent class. The stage fright the scenario produces is powerful. At least when I was taught how to teach we got nothing about stage presence or how to remain confident during awkward pauses. What I know I learned from a half-year Drama course in high school.

Steve Skelton’s 2 Cows And A Chicken for the 13th includes some casual talk about probability. As normally happens, they figure the chances are about 50-50. I think that’s a default estimate of the probability of something. If you have no evidence to suppose one outcome is more likely than the other, then that is a reason to suppose the chance of something is 50 percent. This is the Bayesian approach to probability, in which we rate things as more or less likely based on what information we have about how often they turn out. It’s a practical way of saying what we mean by the probability of something. It’s terrible if we don’t have much reliable information, though. We need to fall back on reasoning about what is likely and what is not to save us in that case.

Scott Hilburn’s The Argyle Sweater lead off the Pi Day jokes with an anthropomorphic numerals panel. This is because I read most of the daily comics in alphabetical order by title. It is also because The Argyle Sweater is The Argyle Sweater. Among π’s famous traits is that it goes on forever, in decimal representations, yes. That’s not by itself extraordinary; dull numbers like one-third do that too. (Arguably, even a number like ‘2’ does, if you write all the zeroes in past the decimal point.) π gets to be interesting because it goes on forever without repeating, and without having a pattern easily describable. Also because it’s probably a normal number but we don’t actually know that for sure yet.

Mark Parisi’s Off The Mark panel for the 14th is another anthropomorphic numerals joke and nearly the same joke as above. The answer, dear numeral, is “chained tweets”. I do not know that there’s a Twitter bot posting the digits of π in an enormous chained Twitter feed. But there’s a Twitter bot posting the digits of π in an enormous chained Twitter feed. If there isn’t, there is now.

John Zakour and Scott Roberts’s Working Daze for the 14th is your basic Pi Day Wordplay panel. I think there were a few more along these lines but I didn’t record all of them. This strip will serve for them all, since it’s drawn from an appealing camera angle to give the joke life.

Dave Blazek’s Loose Parts for the 14th is a mathematics wordplay panel but it hasn’t got anything to do with π. I suspect he lost track of what days he was working on, back six or so weeks when his deadline arrived.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 15th is some sort of joke about the probability of the world being like what it seems to be. I’m not sure precisely what anyone is hoping to express here or how it ties in to world peace. But the world does seem to be extremely well described by techniques that suppose it to be random and unpredictable in detail. It is extremely well predictable in the main, which shows something weird about the workings of the world. It seems to be doing all right for itself.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 15th is built on the staggering idea that the Earth might be the only place with life in the universe. The cosmos is a good stand-in for infinitely large things. It might be better as a way to understand the infinitely large than actual infinity would be. Somehow thinking of the number of stars (or whatnot) in the universe and writing out a representable number inspires an understanding for bigness that the word “infinity” or the symbols we have for it somehow don’t seem to, at least to me.

Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 17th gives us valuable information about how long ahead of time the comic strips are working. Arithmetic is probably the easiest thing to use if one needs an example of a fact. But even “2 + 2 = 4” is a fact only if we accept certain ideas about what we mean by “2” and “+” and “=” and “4”. That we use those definitions instead of others is a reflection of what we find interesting or useful or attractive. There is cultural artifice behind the labelling of this equation as a fact.

Jimmy Johnson’s Arlo and Janis for the 18th capped off a week of trying to explain some point about the compression and dilution of time in comic strips. Comic strips use space and time to suggest more complete stories than they actually tell. They’re much like every other medium in this way. So, to symbolize deep thinking on a subject we get once again a panel full of mathematics. Yes, I noticed the misquoting of “E = mc2” there. I am not sure what Arlo means by “Remember the boat?” although thinking on it I think he did have a running daydream about living on a boat. Arlo and Janis isn’t a strongly story-driven comic strip, but Johnson is comfortable letting the setting evolve. Perhaps all this is forewarning that we’re going to jump ahead to a time in Arlo’s life when he has, or has had, a boat. I don’t know.

Reading the Comics, February 23, 2017: The Week At Once Edition


For the first time in ages there aren’t enough mathematically-themed comic strips to justify my cutting the week’s roundup in two. No, I have no idea what I’m going to write about for Thursday. Let’s find out together.

Jenny Campbell’s Flo and Friends for the 19th faintly irritates me. Flo wants to make sure her granddaughter understands that just because it takes people on average 14 minutes to fall asleep doesn’t mean that anyone actually does, by listing all sorts of reasons that a person might need more than fourteen minutes to sleep. It makes me think of a behavior John Allen Paulos notes in Innumeracy, wherein the statistically wise points out that someone has, say, a one-in-a-hundred-million chance of being killed by a terrorist (or whatever) and is answered, “ah, but what if you’re that one?” That is, it’s a response that has the form of wisdom without the substance. I notice Flo doesn’t mention the many reasons someone might fall asleep in less than fourteen minutes.

But there is something wise in there nevertheless. For most stuff, the average is the most common value. By “the average” I mean the arithmetic mean, because that is what anyone means by “the average” unless they’re being difficult. (Mathematicians acknowledge the existence of an average called the mode, which is the most common value (or values), and that’s most common by definition.) But just because something is the most common result does not mean that it must be common. Toss a coin fairly a hundred times and it’s most likely to come up tails 50 times. But you shouldn’t be surprised if it actually turns up tails 51 or 49 or 45 times. This doesn’t make 50 a poor estimate for the average number of times something will happen. It just means that it’s not a guarantee.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th shows off an unusually dynamic camera angle. It’s in service for a class of problem you get in freshman calculus: find the longest pole that can fit around a corner. Oh, a box-spring mattress up a stairwell is a little different, what with box-spring mattresses being three-dimensional objects. It’s the same kind of problem. I want to say the most astounding furniture-moving event I’ve ever seen was when I moved a fold-out couch down one and a half flights of stairs single-handed. But that overlooks the caged mouse we had one winter, who moved a Chinese finger-trap full of crinkle paper up the tight curved plastic to his nest by sheer determination. The trap was far longer than could possibly be curved around the tube. We have no idea how he managed it.

J R Faulkner’s Promises, Promises for the 20th jokes that one could use Roman numerals to obscure calculations. So you could. Roman numerals are terrible things for doing arithmetic, at least past addition and subtraction. This is why accountants and mathematicians abandoned them pretty soon after learning there were alternatives.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. Probably anything would do for the blackboard problem, but something geometry reads very well.

Jef Mallett’s Frazz for the 21st makes some comedy out of the sort of arithmetic error we all make. It’s so easy to pair up, like, 7 and 3 make 10 and 8 and 2 make 10. It takes a moment, or experience, to realize 78 and 32 will not make 100. Forgive casual mistakes.

Bud Fisher’s Mutt and Jeff rerun for the 22nd is a similar-in-tone joke built on arithmetic errors. It’s got the form of vaudeville-style sketch compressed way down, which is probably why the third panel could be made into a satisfying final panel too.

'How did you do on the math test?' 'Terrible.' 'Will your mom be mad?' 'Maybe. But at least she'll know I didn't cheat!'
Bud Blake’s Tiger for the 23rd of February, 2017. I want to blame the colorists for making Hugo’s baby tooth look so weird in the second and third panels, but the coloring is such a faint thing at that point I can’t. I’m sorry to bring it to your attention if you didn’t notice and weren’t bothered by it before.

Bud Blake’s Tiger rerun for the 23rd just name-drops mathematics; it could be any subject. But I need some kind of picture around here, don’t I?

Mike Baldwin’s Cornered for the 23rd is the anthropomorphic numerals joke for the week.

Reading the Comics, January 21, 2017: Homework Edition


Now to close out what Comic Strip Master Command sent my way through last Saturday. And I’m glad I’ve shifted to a regular schedule for these. They ordered a mass of comics with mathematical themes for Sunday and Monday this current week.

Karen Montague-Reyes’s Clear Blue Water rerun for the 17th describes trick-or-treating as “logarithmic”. The intention is to say that the difficulty in wrangling kids from house to house grows incredibly fast as the number of kids increases. Fair enough, but should it be “logarithmic” or “exponential”? Because the logarithm grows slowly as the number you take the logarithm of grows. It grows all the slower the bigger the number gets. The exponential of a number, though, that grows faster and faster still as the number underlying it grows. So is this mistaken?

I say no. It depends what the logarithm is, and is of. If the number of kids is the logarithm of the difficulty of hauling them around, then the intent and the mathematics are in perfect alignment. Five kids are (let’s say) ten times harder to deal with than four kids. Sensible and, from what I can tell of packs of kids, correct.

'Anne has six nickels. Sue has 41 pennies. Who has more money?' 'That's not going to be easy to figure out. It all depends on how they're dressed!'
Rick Detorie’s One Big Happy for the 17th of January, 2017. The section was about how the appearance and trappings of wealth matter for more than the actual substance of wealth so everyone’s really up to speed in the course.

Rick Detorie’s One Big Happy for the 17th is a resisting-the-word-problem joke. There’s probably some warning that could be drawn about this in how to write story problems. It’s hard to foresee all the reasonable confounding factors that might get a student to the wrong answer, or to see a problem that isn’t meant to be there.

Bill Holbrook’s On The Fastrack for the 19th continues Fi’s story of considering leaving Fastrack Inc, and finding a non-competition clause that’s of appropriate comical absurdity. As an auditor there’s not even a chance Fi could do without numbers. Were she a pure mathematician … yeah, no. There’s fields of mathematics in which numbers aren’t all that important. But we never do without them entirely. Even if we exclude cases where a number is just used as an index, for which Roman numerals would be almost as good as regular numerals. If nothing else numbers would keep sneaking in by way of polynomials.

'Uh, Fi? Have you looked at the non-compete clause in your contract?' 'I wouldn't go to one of Fastrack's competitors.' 'No, but, um ... you'd better read this.' 'I COULDN'T USE NUMBERS FOR TWO YEARS???' 'Roman numerals would be okay.'
Bill Holbrook’s On The Fastrack for the 19th of January, 2017. I feel like someone could write a convoluted story that lets someone do mathematics while avoiding any actual use of any numbers, and that it would probably be Greg Egan who did it.

Dave Whamond’s Reality Check for the 19th breaks our long dry spell without pie chart jokes.

Mort Walker and Dik Browne’s Vintage Hi and Lois for the 27th of July, 1959 uses calculus as stand-in for what college is all about. Lois’s particular example is about a second derivative. Suppose we have a function named ‘y’ and that depends on a variable named ‘x’. Probably it’s a function with domain and range both real numbers. If complex numbers were involved then the variable would more likely be called ‘z’. The first derivative of a function is about how fast its values change with small changes in the variable. The second derivative is about how fast the values of the first derivative change with small changes in the variable.

'I hope our kids are smart enough to win scholarships for college.' 'We can't count on that. We'll just have to save the money!' 'Do you know it costs about $10,000 to send one child through college?!' 'That's $40,000 we'd have to save!' Lois reads to the kids: (d^2/dx^2)y = 6x - 2.
Mort Walker and Dik Browne’s Vintage Hi and Lois for the 27th of July, 1959. Fortunately Lois discovered the other way to avoid college costs: simply freeze the ages of your children where they are now, so they never face student loans. It’s an appealing plan until you imagine being Trixie.

The ‘d’ in this equation is more of an instruction than it is a number, which is why it’s a mistake to just divide those out. Instead of writing it as \frac{d^2 y}{dx^2} it’s permitted, and common, to write it as \frac{d^2}{dx^2} y . This means the same thing. I like that because, to me at least, it more clearly suggests “do this thing (take the second derivative) to the function we call ‘y’.” That’s a matter of style and what the author thinks needs emphasis.

There are infinitely many possible functions y that would make the equation \frac{d^2 y}{dx^2} = 6x - 2 true. They all belong to one family, though. They all look like y(x) = \frac{1}{6} 6 x^3 - \frac{1}{2} 2 x^2 + C x + D , where ‘C’ and ‘D’ are some fixed numbers. There’s no way to know, from what Lois has given, what those numbers should be. It might be that the context of the problem gives information to use to say what those numbers should be. It might be that the problem doesn’t care what those numbers should be. Impossible to say without the context.

Reading the Comics, December 17, 2016: Sleepy Week Edition


Comic Strip Master Command sent me a slow week in mathematical comics. I suppose they knew I was on somehow a busier schedule than usual and couldn’t spend all the time I wanted just writing. I appreciate that but don’t want to see another of those weeks when nothing qualifies. Just a warning there.

'Dadburnit! I ain't never gonna git geometry!' 'Bah! Don't fret, Jughaid --- I never understood it neither! But I still manage to work all th' angles!'
John Rose’s Barney Google and Snuffy Smith for the 12th of December, 2016. I appreciate the desire to pay attention to continuity that makes Rose draw in the coffee cup both panels, but Snuffy Smith has to swap it from one hand to the other to keep it in view there. Not implausible, just kind of busy. Also I can’t fault Jughaid for looking at two pages full of unillustrated text and feeling lost. That’s some Bourbaki-grade geometry going on there.

John Rose’s Barney Google and Snuffy Smith for the 12th is a bit of mathematical wordplay. It does use geometry as the “hard mathematics we don’t know how to do”. That’s a change from the usual algebra. And that’s odd considering the joke depends on an idiom that is actually used by real people.

Patrick Roberts’s Todd the Dinosaur for the 12th uses mathematics as the classic impossibly hard subject a seven-year-old can’t be expected to understand. The worry about fractions seems age-appropriate. I don’t know whether it’s fashionable to give elementary school students experience thinking of ‘x’ and ‘y’ as numbers. I remember that as a time when we’d get a square or circle and try to figure what number fits in the gap. It wasn’t a 0 or a square often enough.

'Teacher! Todd just passed out! But he's waring one of those medic alert bracelets! ... Do not expose the wearer of this bracelet to anything mathematical, especially x's and y's, fractions, or anything that he should remember for a test!' 'Amazing how much writing they were able to fit on a little ol' T-Rex wrist!'
Patrick Roberts’s Todd the Dinosaur for the 12th of December, 2016. Granting that Todd’s a kid dinosaur and that T-Rexes are not renowned for the hugeness of their arms, wouldn’t that still be enough space for a lot of text to fit around? I would have thought so anyway. I feel like I’m pluralizing ‘T-Rex’ wrong, but what would possibly be right? ‘Ts-rex’? Don’t make me try to spell tyrannosaurus.

Jef Mallett’s Frazz for the 12th uses one of those great questions I think every child has. And it uses it to question how we can learn things from statistical study. This is circling around the “Bayesian” interpretation of probability, of what odds mean. It’s a big idea and I’m not sure I’m competent to explain it. It amounts to asking what explanations would be plausibly consistent with observations. As we get more data we may be able to rule some cases in or out. It can be unsettling. It demands we accept right up front that we may be wrong. But it lets us find reasonably clean conclusions out of the confusing and muddy world of actual data.

Sam Hepburn’s Questionable Quotebook for the 14th illustrates an old observation about the hypnotic power of decimal points. I think Hepburn’s gone overboard in this, though: six digits past the decimal in this percentage is too many. It draws attention to the fakeness of the number. One, two, maybe three digits past the decimal would have a more authentic ring to them. I had thought the John Allen Paulos tweet above was about this comic, but it’s mere coincidence. Funny how that happens.

Reading the Comics, December 10, 2016: E = mc^2 Edition


And now I can finish off last week’s mathematically-themed comic strips. There’s a strong theme to them, for a refreshing change. It would almost be what we’d call a Comics Synchronicity, on Usenet group rec.arts.comics.strips, had they all appeared the same day. Some folks claiming to be open-minded would allow a Synchronicity for strips appearing on subsequent days or close enough in publication, but I won’t have any of that unless it suits my needs at the time.

Ernie Bushmiller’s for the 6th would fit thematically better as a Cameo Edition comic. It mentions arithmetic but only because it’s the sort of thing a student might need a cheat sheet on. I can’t fault Sluggo needing help on adding eight or multiplying by six; they’re hard. Not remembering 4 x 2 is unusual. But everybody has their own hangups. The strip originally ran the 6th of December, 1949.

People contorted to look like a 4, a 2, and a 7 bounce past Dethany's desk. She ponders: 'Performance review time ... when the company reduces people to numbers.' Wendy, previous star of the strip, tells Dethany 'You're next.' Wendy's hair is curled into an 8.
Bill holbrook’s On The Fastrack for the 7th of December, 2016. Don’t worry about the people in the first three panels; they’re just temps, and weren’t going to appear in the comic again.

Bill holbrook’s On The Fastrack for the 7th seems like it should be the anthropomorphic numerals joke for this essay. It doesn’t seem to quite fit the definition, but, what the heck.

Brian Boychuk and Ron Boychuk’s The Chuckle Brothers on the 7th starts off the run of E = mc2 jokes for this essay. This one reminds me of Gary Larson’s Far Side classic with the cleaning woman giving Einstein just that little last bit of inspiration about squaring things away. It shouldn’t surprise anyone that E equalling m times c squared isn’t a matter of what makes an attractive-looking formula. There’s good reasons when one thinks what energy and mass are to realize they’re connected like that. Einstein’s famous, deservedly, for recognizing that link and making it clear.

Mark Pett’s Lucky Cow rerun for the 7th has Claire try to use Einstein’s famous quote to look like a genius. The mathematical content is accidental. It could be anything profound yet easy to express, and it’s hard to beat the economy of “E = mc2” for both. I’d agree that it suggests Claire doesn’t know statistics well to suppose she could get a MacArthur “Genius” Grant by being overheard by a grant nominator. On the other hand, does anybody have a better idea how to get their attention?

Harley Schwadron’s 9 to 5 for the 8th completes the “E = mc2” triptych. Calling a tie with the equation on it a power tie elevates the gag for me. I don’t think of “E = mc2” as something that uses powers, even though it literally does. I suppose what gets me is that “c” is a constant number. It’s the speed of light in a vacuum. So “c2” is also a constant number. In form the equation isn’t different from “E = m times seven”, and nobody thinks of seven as a power.

Morrie Turner’s Wee Pals rerun for the 8th is a bit of mathematics wordplay. It’s also got that weird Morrie Turner thing going on where it feels unquestionably earnest and well-intentioned but prejudiced in that way smart 60s comedies would be.

Sarge demands to know who left this algebra book on his desk; Zero says not him. Sarge ignores him and asks 'Who's been figuring all over my desk pad?' Zero also unnecessarily denies it. 'Come on, whose is it?!' Zero reflects, 'Gee, he *never* picks on *me*!'
Mort Walker’s vintage Beetle Bailey for the 18th of May, 1960. Rerun the 9th of December, 2016. For me the really fascinating thing about ancient Beetle Bailey strips is that they could run today with almost no changes and yet they feel like they’re from almost a different cartoon universe from the contemporary comic. I don’t know how that is, or why it is.

Mort Walker’s Beetle Bailey for the 18th of May, 1960 was reprinted on the 9th. It mentions mathematics — algebra specifically — as the sort of thing intelligent people do. I’m going to take a leap and suppose it’s the sort of algebra done in high school about finding values of ‘x’ rather than the mathematics-major sort of algebra, done with groups and rings and fields. I wonder when holding a mop became the signifier of not just low intelligence but low ambition. It’s subverted in Jef Mallet’s Frazz, the title character of which works as a janitor to support his exercise and music habits. But it is a standard prop to signal something.