Reading the Comics, June 25, 2015: Not Making A Habit Of This Edition


I admit I did this recently, and am doing it again. But I don’t mean to make it a habit. I ran across a few comic strips that I can’t, even with a stretch, call mathematically-themed, but I liked them too much to ignore them either. So they’re at the end of this post. I really don’t intend to make this a regular thing in Reading the Comics posts.

Justin Boyd’s engagingly silly Invisible Bread (June 22) names the tuning “two steps below A”. He dubs this “negative C#”. This is probably an even funnier joke if you know music theory. The repetition of the notes in a musical scale could be used as an example of cyclic or modular arithmetic. Really, that the note above G is A of the next higher octave, and the note below A is G of the next lower octave, probably explains the idea already.

If we felt like, we could match the notes of a scale to the counting numbers. Match A to 0, B to 1, C to 2 and so on. Work out sharps and flats as you like. Then we could think of transposing a note from one key to another as adding or subtracting numbers. (Warning: do not try to pass your music theory class using this information! Transposition of keys is a much more subtle process than I am describing.) If the number gets above some maximum, it wraps back around to 0; if the number would go below zero, it wraps back around to that maximum. Relabeling the things in a group might make them easier or harder to understand. But it doesn’t change the way the things relate to one another. And that’s why we might call something F or negative C#, as we like and as we hope to be understood.

After a blackboard full of work the mathematician must conclude 'the solution is not in this piece of chalk'.
Hilary Price’s Rhymes With Orange for the 23rd of June, 2015.

Hilary Price’s Rhymes With Orange (June 23) reminds us how important it is to pick the correct piece of chalk. The mathematical symbols on the board don’t mean anything. A couple of the odder bits of notation might be meant as shorthand. Often in the rush of working out a problem some of the details will get written as borderline nonsense. The mathematician is probably more interested in getting the insight down. She’ll leave the details for later reflection.

Jason Poland’s Robbie and Bobby (June 23) uses “calculating obscure digits of pi” as computer fun. Calculating digits of pi is hard, at least in decimals, which is all anyone cares about. If you wish to know the 5,673,299,925th decimal digit of pi, you need to work out all 5,673,299,924 digits that go before it. There are formulas to work out a binary (or hexadecimal) digit of pi without working out all the digits that go before. This saves quite some time if you need to explore the nether-realms of pi’s digits.

The comic strip also uses Stephen Hawking as the icon for most-incredibly-smart-person. It’s the role that Albert Einstein used to have, and still shares. I am curious whether Hawking is going to permanently displace Einstein as the go-to reference for incredible brilliance. His pop culture celebrity might be a transient thing. I suspect it’s going to last, though. Hawking’s life has a tortured-genius edge to it that gives it Romantic appeal, likely to stay popular.

Paul Trap’s Thatababy (June 23) presents confusing brand-new letters and numbers. Letters are obviously human inventions though. They’ve been added to and removed from alphabets for thousands of years. It’s only a few centuries since “i” and “j” became (in English) understood as separate letters. They had been seen as different ways of writing the same letter, or the vowel and consonant forms of the same letter. If enough people found a proposed letter useful it would work its way into the alphabet. Occasionally the ampersand & has come near being a letter. (The ampersand has a fascinating history. Honestly.) And conversely, if we collectively found cause to toss one aside we could remove it from the alphabet. English hasn’t lost any letters since yogh (the Old English letter that looks like a 3 written half a line off) was dropped in favor of “gh”, about five centuries ago, but there’s no reason that it couldn’t shed another.

Numbers are less obviously human inventions. But the numbers we use are, or at least work like they are. Arabic numerals are barely eight centuries old in Western European use. Their introduction was controversial. People feared shopkeepers and moneylenders could easily cheat people unfamiliar with these crazy new symbols. Decimals, instead of fractions, were similarly suspect. Negative numbers took centuries to understand and to accept as numbers. Irrational numbers too. Imaginary numbers also. Indeed, look at the connotations of those names: negative numbers. Irrational numbers. Imaginary numbers. We can add complex numbers to that roster. Each name at least sounds suspicious of the innovation.

There are more kinds of numbers. In the 19th century William Rowan Hamilton developed quaternions. These are 4-tuples of numbers that work kind of like complex numbers. They’re strange creatures, admittedly, not very popular these days. Their greatest strength is in representing rotations in three-dimensional space well. There are also octonions, 8-tuples of numbers. They’re more exotic than quaternions and have fewer good uses. We might find more, in time.

Beside an Escher-esque house a woman says, 'The extra dimensions are wonderful, but oy, the property taxes.'
Rina Piccolo’s entry in Six Chix for the 24th of June, 2015.

Rina Piccolo’s entry in Six Chix this week (June 24) draws a house with extra dimensions. An extra dimension is a great way to add volume, or hypervolume, to a place. A cube that’s 20 feet on a side has a volume of 203 or 8,000 cubic feet, after all. A four-dimensional hypercube 20 feet on each side has a hypervolume of 160,000 hybercubic feet. This seems like it should be enough for people who don’t collect books.

Morrie Turner’s Wee Pals (June 24, rerun) is just a bit of wordplay. It’s built on the idea kids might not understand the difference between the words “ratio” and “racial”.

Tom Toles’s Randolph Itch, 2 am (June 25, rerun) inspires me to wonder if anybody’s ever sold novelty 4-D glasses. Probably they have, sometime.


Now for the comics that I just can’t really make mathematics but that I like anyway:

Phil Dunlap’s Ink Pen (June 23, rerun) is aimed at the folks still lingering in grad school. Please be advised that most doctoral theses do not, in fact, end in supervillainy.

Darby Conley’s Get Fuzzy (June 25, rerun) tickles me. But Albert Einstein did after all say many things in his life, and not everything was as punchy as that line about God and dice.

Advertisements

Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there.

5 thoughts on “Reading the Comics, June 25, 2015: Not Making A Habit Of This Edition”

    1. I suspect it’s more that we can build models of anything we’re interested in that will have numbers. And since we have many tools for manipulating numbers, we can understand things about so very many models. If our models are good, this gives us insight into the thing we’re interested in. That’s a little different from saying that numbers are in everything, although it’s pretty close for many applications.

      Like

Please Write Something Good

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s