# The Summer 2017 Mathematics A To Z: L-function

I’m brought back to elliptic curves today thanks to another request from Gaurish, of the For The Love Of Mathematics blog. Interested in how that’s going to work out? Me too.

So stop me if you’ve heard this one before. We’re going to make something interesting. You bring to it a complex-valued number. Anything you like. Let me call it ‘s’ for the sake of convenience. I know, it’s weird not to call it ‘z’, but that’s how this field of mathematics developed. I’m going to make a series built on this. A series is the sum of all the terms in a sequence. I know, it seems weird for a ‘series’ to be a single number, but that’s how that field of mathematics developed. The underlying sequence? I’ll make it in three steps. First, I start with all the counting numbers: 1, 2, 3, 4, 5, and so on. Second, I take each one of those terms and raise them to the power of your ‘s’. Third, I take the reciprocal of each of them. That’s the sequence. And when we add —

Yes, that’s right, it’s the Riemann-Zeta Function. The one behind the Riemann Hypothesis. That’s the mathematical conjecture that everybody loves to cite as the biggest unsolved problem in mathematics now that we know someone did something about Fermat’s Last Theorem. The conjecture is about what the zeroes of this function are. What values of ‘s’ make this sum equal to zero? Some boring ones. Zero, negative two, negative four, negative six, and so on. It has a lot of non-boring zeroes. All the ones we know of have an ‘s’ with a real part of ½. So far we know of at least 36 billion values of ‘s’ that make this add up to zero. They’re all ½ plus some imaginary number. We conjecture that this isn’t coincidence and all the non-boring zeroes are like that. We might be wrong. But it’s the way I would bet.

Anyone who’d be reading this far into a pop mathematics blog knows something of why the Riemann Hypothesis is interesting. It carries implications about prime numbers. It tells us things about a host of other theorems that are nice to have. Also they know it’s hard to prove. Really, really hard.

Ancient mathematical lore tells us there are a couple ways to solve a really, really hard problem. One is to narrow its focus. Try to find as simple a case of it as you can solve. Maybe a second simple case you can solve. Maybe a third. This could show you how, roughly, to solve the general problem. Not always. Individual cases of Fermat’s Last Theorem are easy enough to solve. You can show that $a^3 + b^3 = c^3$ doesn’t have any non-boring answers where a, b, and c are all positive whole numbers. Same with $a^5 + b^5 = c^5$, though it takes longer. That doesn’t help you with the general $a^n + b^n = c^n$.

There’s another approach. It sounds like the sort of crazy thing Captain Kirk would get away with. It’s to generalize, to make a bigger, even more abstract problem. Sometimes that makes it easier.

For the Riemann-Zeta Function there’s one compelling generalization. It fits into that sequence I described making. After taking the reciprocals of integers-raised-to-the-s-power, multiply each by some number. Which number? Well, that depends on what you like. It could be the same number every time, if you like. That’s boring, though. That’s just the Riemann-Zeta Function times your number. It’s more interesting if what number you multiply by depends on which integer you started with. (Do not let it depend on ‘s’; that’s more complicated than you want.) When you do that? Then you’ve created an L-Function.

Specifically, you’ve created a Dirichlet L-Function. Dirichlet here is Peter Gustav Lejeune Dirichlet, a 19th century German mathematician who got his name on like everything. He did major work on partial differential equations, on Fourier series, on topology, in algebra, and on number theory, which is what we’d call these L-functions. There are other L-Functions, with identifying names such as Artin and Hecke and Euler, which get more directly into group theory. They look much like the Dirichlet L-Function. In building the sequence I described in the top paragraph, they do something else for the second step.

The L-Function is going to look like this:

$L(s) = \sum_{n \ge 1}^{\infty} a_n \cdot \frac{1}{n^s}$

The sigma there means to evaluate the thing that comes after it for each value of ‘n’ starting at 1 and increasing, by 1, up to … well, something infinitely large. The $a_n$ are the numbers you’ve picked. They’re some value that depend on the index ‘n’, but don’t depend on the power ‘s’. This may look funny but it’s a standard way of writing the terms in a sequence.

An L-Function has to meet some particular criteria that I’m not going to worry about here. Look them up before you get too far into your research. These criteria give us ways to classify different L-Functions, though. We can describe them by degree, much as we describe polynomials. We can describe them by signature, part of those criteria I’m not getting into. We can describe them by properties of the extra numbers, the ones in that fourth step that you multiply the reciprocals by. And so on. LMFDB, an encyclopedia of L-Functions, lists eight or nine properties usable for a taxonomy of these things. (The ambiguity is in what things you consider to depend on what other things.)

What makes this interesting? For one, everything that makes the Riemann Hypothesis interesting. The Riemann-Zeta Function is a slice of the L-Functions. But there’s more. They merge into elliptic curves. Every elliptic curve corresponds to some L-Function. We can use the elliptic curve or the L-Function to prove what we wish to show. Elliptic curves are subject to group theory; so, we can bring group theory into these series.

And then it gets deeper. It always does. Go back to that formula for the L-Function like I put in mathematical symbols. I’m going to define a new function. It’s going to look a lot like a polynomial. Well, that L(s) already looked a lot like a polynomial, but this is going to look even more like one.

Pick a number τ. It’s complex-valued. Any number. All that I care is that its imaginary part be positive. In the trade we say that’s “in the upper half-plane”, because we often draw complex-valued numbers as points on a plane. The real part serves as the horizontal and the imaginary part serves as the vertical axis.

Now go back to your L-Function. Remember those $a_n$ numbers you picked? Good. I’m going to define a new function based on them. It looks like this:

$f(\tau) = \sum_{n \ge 1}^{\infty} a_n \left( e^{2 \pi \imath \tau}\right)^n$

You see what I mean about looking like a polynomial? If τ is a complex-valued number, then $e^{2 \pi \imath \tau}$ is just another complex-valued number. If we gave that a new name like ‘z’, this function would look like the sum of constants times z raised to positive powers. We’d never know it was any kind of weird polynomial.

Anyway. This new function ‘f(τ)’ has some properties. It might be something called a weight-2 Hecke eigenform, a thing I am not going to explain without charging someone by the hour. But see the logic here: every elliptic curve matches with some kind of L-Function. Each L-Function matches with some ‘f(τ)’ kind of function. Those functions might or might not be these weight-2 Hecke eigenforms.

So here’s the thing. There was a big hypothesis formed in the 1950s that every rational elliptic curve matches to one of these ‘f(τ)’ functions that’s one of these eigenforms. It’s true. It took decades to prove. You may have heard of it, as the Taniyama-Shimura Conjecture. In the 1990s Wiles and Taylor proved this was true for a lot of elliptic curves, which is what proved Fermat’s Last Theorem after all that time. The rest of it was proved around 2000.

As I said, sometimes you have to make your problem bigger and harder to get something interesting out of it.

I mentioned this above. LMFDB is a fascinating site worth looking at. It’s got a lot of L-Function and Riemann-Zeta function-related materials.

## Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there. He/him.

## 8 thoughts on “The Summer 2017 Mathematics A To Z: L-function”

This site uses Akismet to reduce spam. Learn how your comment data is processed.