## My 2019 Mathematics A To Z: Relatively Prime

I have another subject nominated by goldenoj today. And it even lets me get into number theory, the field of mathematics questions that everybody understands and nobody can prove.

# Relatively Prime.

I was once a young grad student working as a teaching assistant and unaware of the principles of student privacy. Near the end of semesters I would e-mail students their grades. This so they could correct any mistakes and know what they’d have to get on the finals. I was learning Perl, which was an acceptable pastime in the 1990s. So I wrote scripts that would take my spreadsheet of grades and turn it into e-mails that were automatically sent. And then I got all fancy.

It seemed boring to send out completely identical form letters, even if any individual would see it once. Maybe twice if they got me for another class. So I started writing variants of the boilerplate sentences. My goal was that every student would get a mass-produced yet unique e-mail. To best the chances of this I had to make sure of something about all these variant sentences and paragraphs.

So you see the trick. I needed a set of relatively prime numbers. That way, it would be the greatest possible number of students before I had a completely repeated text. We know what prime numbers are. They’re the numbers that, in your field, have exactly two factors. In the counting numbers the primes are numbers like 2, 3, 5, 7 and so on. In the Gaussian integers, these are numbers like 3 and 7 and $3 - 2\imath$. But not 2 or 5. We can look to primes among the polynomials. Among polynomials with rational coefficients, $x^2 + x + 1$ is prime. So is $2x^2 + 14x + 1$. $x^2 - 4$ is not.

The idea of relative primes appears wherever primes appears. We can say without contradiction that 4 and 9 are relative primes, among the whole numbers. Though neither’s prime, in the whole numbers, neither has a prime factor in common. This is an obvious way to look at it. We can use that definition for any field that has a concept of primes. There are others, though. We can say two things are relatively prime if there’s a linear combination of them that adds to the identity element. You get a linear combination by multiplying each of the things by a scalar and adding these together. Multiply 4 by -2 and 9 by 1 and add them and look what you get. Or, if the least common multiple of a set of elements is equal to their product, then the elements are relatively prime. Some make sense only for the whole numbers. Imagine the first quadrant of a plane, marked in Cartesian coordinates. Draw the line segment connecting the point at (0, 0) and the point with coordinates (m, n). If that line segment touches no dots between (0, 0) and (m, n), then the whole numbers m and n are relatively prime.

We start looking at relative primes as pairs of things. We can be interested in larger sets of relative primes, though. My little e-mail generator, for example, wouldn’t work so well if any pair of sentence replacements were not relatively prime. So, like, the set of numbers 2, 6, 9 is relatively prime; all three numbers share no prime factors. But neither the pair 2, 6 and the pair 6, 9 are not relatively prime. 2, 9 is, at least there’s that. I forget how many replaceable sentences were in my form e-mails. I’m sure I did the cowardly thing, coming up with a prime number of alternate ways to phrase as many sentences as possible. As an undergraduate I covered the student government for four years’ worth of meetings. I learned a lot of ways to say the same thing.

Which is all right, but are relative primes important? Relative primes turn up all over the place in number theory, and in corners of group theory. There are some thing that are easier to calculate in modulo arithmetic if we have relatively prime numbers to work with. I know when I see modulo arithmetic I expect encryption schemes to follow close behind. Here I admit I’m ignorant whether these imply things which make encryption schemes easier or harder.

Some of the results are neat, certainly. Suppose that the function f is a polynomial. Then, if its first derivative f’ is relatively prime to f, it turns out f has no repeated roots. And vice-versa: if f has no repeated roots, then it and its first derivative are relatively prime. You remember repeated roots. They’re factors like $(x - 2)^2$, that foiled your attempt to test a couple points and figure roughly where a polynomial crossed the x-axis.

I mentioned that primeness depends on the field. This is true of relative primeness. Polynomials really show this off. (Here I’m using an example explained in a 2007 Ask Dr Math essay.) Is the polynomial $3x + 6$ relatively prime to $3x^2 + 12$?

It is, if we are interested in polynomials with integer coefficients. There’s no linear combination of $3x + 6$ and $3x^2 + 12$ which gets us to 1. Go ahead and try.

It is not, if we are interested in polynomials with rational coefficients. Multiply $3x + 6$ by $\frac{1}{12}\left(1 - \frac{1}{2}x\right)$ and multiply $3x^2 + 12$ by $\frac{1}{24}$. Then add those up.

Tell me what polynomials you want to deal with today and I will tell you which answer is right.

This may all seem cute if, perhaps, petty. A bunch of anonymous theorems dotting the center third of an abstract algebra text will inspire that. The most important relative-primes thing I know of is the abc conjecture, posed in the mid-80s by Joseph Oesterlé and David Masser. Start with three counting numbers, a, b, and c. Require that a + b = c.

There is a product of the unique prime factors of a, b, and c. That is, let’s say a is 36. This is 2 times 2 times 3 times 3. Let’s say b is 5. This is prime. c is 41; it’s prime. Their unique prime factors are 2, 3, 5, and 41; the product of all these is 1,230.

The conjecture deals with this product of unique prime factors for this relatively prime triplet. Almost always, c is going to be smaller than this unique prime factors product. The conjecture says that there will be, for every positive real number $\epsilon$, at most finitely many cases where c is larger than this product raised to the power $1 + \epsilon$. I do not know why raising this product to this power is so important. I assume it rules out some case where this product raised to the first power would be too easy a condition.

Apart from that $1 + \epsilon$ bit, though, this is a classic sort of number theory conjecture. Like, it involves some technical terms, but nothing too involved. You could almost explain it at a party and expect to be understood, and to get some people writing down numbers, testing out specific cases. Nobody will go away solving the problem, but they’ll have some good exercise and that’s worthwhile.

And it has consequences. We do not know whether the abc conjecture is true. We do know that if it is true, then a bunch of other things follow. The one that a non-mathematician would appreciate is that Fermat’s Last Theorem would be provable by an alterante route. The abc conjecture would only prove the cases for Fermat’s Last Theorem for powers greater than 5. But that’s all right. We can separately work out the cases for the third, fourth, and fifth powers, and then cover everything else at once. (That we know Fermat’s Last Theorem is true doesn’t let us conclude the abc conjecture is true, unfortunately.)

There are other implications. Some are about problems that seem like fun to play with. If the abc conjecture is true, then for every integer A, there are finitely many values of n for which $n! + A$ is a perfect square. Some are of specialist interest: Lang’s conjecture, about elliptic curves, would be true. This is a lower bound for the height of non-torsion rational points. I’d stick to the $n! + A$ stuff at a party. A host of conjectures about Diophantine equations — (high school) algebra problems where only integers may be solutions — become theorems. Also coming true: the Fermat-Catalan conjecture. This is a neat problem; it claims that the equation

$a^m + b^n = c^k$

where a, b, and c are relatively prime, and m, n, and k are positive integers satisfying the constraint

$\frac{1}{m} + \frac{1}{n} + \frac{1}{k} < 1$

has only finitely many solutions with distinct triplets $\left(a^m, b^n, c^k\right)$. The inequality about reciprocals of m, n, and k is needed so we don’t have boring solutions like $2^2 + 3^3 = 31^1$ clogging us up. The bit about distinct triplets is so we don’t clog things up with a or b being 1 and then technically every possible m or n giving us a “different” set. To date we know something like ten solutions, one of them having a equal to 1.

Another implication is Pillai’s Conjecture. This one asks whether every positive integer occurs only finitely many times as the difference between perfect powers. Perfect powers are, like 32 (two to the fifth power) or 81 (three to the fourth power) or such.

So as often happens when we stumble into a number theory thing, the idea of relative primes is easy. And there are deep implications to them. But those in turn give us things that seem like fun arithmetic puzzles.

This closes out the A to Z essays for this week. Tomorrow and Saturday I hope to bring some attention to essays from past years. And next week I figure to open for topics for the end of the alphabet, the promising letters U through Z. This and the rest of the 2019 essays should appear at this link, as should the letter S next Tuesday. And all of the A to Z essays ought to be at this link. Thank you for reading.

## The Summer 2017 Mathematics A To Z: Prime Number

Gaurish, host of, For the love of Mathematics, gives me another topic for today’s A To Z entry. I think the subject got away from me. But I also like where it got.

# Prime Number.

Something about ‘5’ that you only notice when you’re a kid first learning about numbers. You know that it’s a prime number because it’s equal to 1 times 5 and nothing else. You also know that once you introduce fractions, it’s equal to all kinds of things. It’s 10 times one-half and it’s 15 times one-third and it’s 2.5 times 2 and many other things. Why, you might ask the teacher, is it a prime number if it’s got a million billion trillion different factors? And when every other whole number has as many factors? If you get to the real numbers it’s even worse yet, although when you’re a kid you probably don’t realize that. If you ask, the teacher probably answers that it’s only the whole numbers that count for saying whether something is prime or not. And, like, 2.5 can’t be considered anything, prime or composite. This satisfies the immediate question. It doesn’t quite get at the underlying one, though. Why do integers have prime numbers while real numbers don’t?

To maybe have a prime number we need a ring. This is a creature of group theory, or what we call “algebra” once we get to college. A ring consists of a set of elements, and a rule for adding them together, and a rule for multiplying them together. And I want this ring to have a multiplicative identity. That’s some number which works like ‘1’: take something, multiply it by that, and you get that something back again. Also, I want this multiplication rule to commute. That is, the order of multiplication doesn’t affect what the result is. (If the order matters then everything gets too complicated to deal with.) Let me say the things in the set are numbers. It turns out (spoiler!) they don’t have to be. But that’s how we start out.

Whether the numbers in a ring are prime or not depends on the multiplication rule. Let’s take a candidate number that I’ll call ‘a’ to make my writing easier. If the only numbers whose product is ‘a’ are the pair of ‘a’ and the multiplicative identity, then ‘a’ is prime. If there’s some other pair of numbers that give you ‘a’, then ‘a’ is not prime.

The integers — the positive and negative whole numbers, including zero — are a ring. And they have prime numbers just like you’d expect, if we figure out some rule about how to deal with the number ‘-1’. There are many other rings. There’s a whole family of rings, in fact, so commonly used that they have shorthand. Mathematicians write them as “Zn”, where ‘n’ is some whole number. They’re the integers, modulo ‘n’. That is, they’re the whole numbers from ‘0’ up to the number ‘n-1’, whatever that is. Addition and multiplication work as they do with normal arithmetic, except that if the result is less than ‘0’ we add ‘n’ to it. If the result is more than ‘n-1’ we subtract ‘n’ from it. We repeat that until the result is something from ‘0’ to ‘n-1’, inclusive.

(We use the letter ‘Z’ because it’s from the German word for numbers, and a lot of foundational work was done by German-speaking mathematicians. Alternatively, we might write this set as “In”, where “I” stands for integers. If that doesn’t satisfy, we might write this set as “Jn”, where “J” stands for integers. This is because it’s only very recently that we’ve come to see “I” and “J” as different letters rather than different ways to write the same letter.)

These modulo arithmetics are legitimate ones, good reliable rings. They make us realize how strange prime numbers are, though. Consider the set Z4, where the only numbers are 0, 1, 2, and 3. 0 times anything is 0. 1 times anything is whatever you started with. 2 times 1 is 2. Obvious. 2 times 2 is … 0. All right. 2 times 3 is 2 again. 3 times 1 is 3. 3 times 2 is 2. 3 times 3 is 1. … So that’s a little weird. The only product that gives us 3 is 3 times 1. So 3’s a prime number here. 2 isn’t a prime number: 2 times 3 is 2. For that matter even 1 is a composite number, an unsettling consequence.

Or then Z5, where the only numbers are 0, 1, 2, 3, and 4. Here, there are no prime numbers. Each number is the product of at least one pair of other numbers. In Z6 we start to have prime numbers again. But Z7? Z8? I recommend these questions to a night when your mind is too busy to let you fall asleep.

Prime numbers depend on context. In the crowded universe of all the rational numbers, or all the real numbers, nothing is prime. In the more austere world of the Gaussian Integers, familiar friends like ‘3’ are prime again, although ‘5’ no longer is. We recognize that as the product of $2 + \imath$ and $2 - \imath$, themselves now prime numbers.

So given that these things do depend on context. Should we care? Or let me put it another way. Suppose we contact a wholly separate culture, one that we can’t have influenced and one not influenced by us. It’s plausible that they should have a mathematics. Would they notice prime numbers as something worth study? Or would they notice them the way we notice, say, pentagonal numbers, a thing that allows for some pretty patterns and that’s about it?

Well, anything could happen, of course. I’m inclined to think that prime numbers would be noticed, though. They seem to follow naturally from pondering arithmetic. And if one has thought of rings, then prime numbers seem to stand out. The way that Zn behaves changes in important ways if ‘n’ is a prime number. Most notably, if ‘n’ is prime (among the whole numbers), then we can define something that works like division on Zn. If ‘n’ isn’t prime (again), we can’t. This stands out. There are a host of other intriguing results that all seem to depend on whether ‘n’ is a prime number among the whole numbers. It seems hard to believe someone could think of the whole numbers and not notice the prime numbers among them.

And they do stand out, as these reliably peculiar things. Many things about them (in the whole numbers) are easy to prove. That there are infinitely many, for example, you can prove to a child. And there are many things we have no idea how to prove. That there are infinitely many primes which are exactly two more than another prime, for example. Any child can understand the question. The one who can prove it will win what fame mathematicians enjoy. If it can be proved.

They turn up in strange, surprising places. Just in the whole numbers we find some patches where there are many prime numbers in a row (Forty percent of the numbers 1 through 10!). We can find deserts; we know of a stretch of 1,113,106 numbers in a row without a single prime among them. We know it’s possible to find prime deserts as vast as we want. Say you want a gap between primes of at least size N. Then look at the numbers (N+1)! + 2, (N+1)! + 3, (N+1)! + 4, and so on, up to (N+1)! + N+1. None of those can be prime numbers. You must have a gap at least the size N. It may be larger; how we know that (N+1)! + 1 is a prime number?

No telling. Well, we can check. See if any prime number divides into (N+1)! + 1. This takes a long time to do if N is all that big. There’s no formulas we know that will make this easy or quick.

We don’t call it a “prime number” if it’s in a ring that isn’t enough like the numbers. Fair enough. We shift the name to “prime element”. “Element” is a good generic name for a thing whose identity we don’t mean to pin down too closely. I’ve talked about the Gaussian Primes already, in an earlier essay and earlier in this essay. We can make a ring out of the polynomials whose coefficients are all integers. In that, $x^2 + 1$ is a prime. So is $x^2 - 2$. If this hasn’t given you some ideas what other polynomials might be primes, then you have something else to ponder while trying to sleep. Thinking of all the prime polynomials is likely harder than you can do, though.

Prime numbers seem to stand out, obvious and important. Humans have known about prime numbers for as long as we’ve known about multiplication. And yet there is something obscure about them. If there are cultures completely independent of our own, do they have insights which make prime numbers not such occult figures? How different would the world be if we knew all the things we now wonder about primes?

## The Summer 2017 Mathematics A To Z: Gaussian Primes

Once more do I have Gaurish to thank for the day’s topic. (There’ll be two more chances this week, providing I keep my writing just enough ahead of deadline.) This one doesn’t touch category theory or topology.

# Gaussian Primes.

I keep touching on group theory here. It’s a field that’s about what kinds of things can work like arithmetic does. A group is a set of things that you can add together. At least, you can do something that works like adding regular numbers together does. A ring is a set of things that you can add and multiply together.

There are many interesting rings. Here’s one. It’s called the Gaussian Integers. They’re made of numbers we can write as $a + b\imath$, where ‘a’ and ‘b’ are some integers. $\imath$ is what you figure, that number that multiplied by itself is -1. These aren’t the complex-valued numbers, you notice, because ‘a’ and ‘b’ are always integers. But you add them together the way you add complex-valued numbers together. That is, $a + b\imath$ plus $c + d\imath$ is the number $(a + c) + (b + d)\imath$. And you multiply them the way you multiply complex-valued numbers together. That is, $a + b\imath$ times $c + d\imath$ is the number $(a\cdot c - b\cdot d) + (a\cdot d + b\cdot c)\imath$.

We created something that has addition and multiplication. It picks up subtraction for free. It doesn’t have division. We can create rings that do, but this one won’t, any more than regular old integers have division. But we can ask what other normal-arithmetic-like stuff these Gaussian integers do have. For instance, can we factor numbers?

This isn’t an obvious one. No, we can’t expect to be able to divide one Gaussian integer by another. But we can’t expect to divide a regular old integer by another, not and get an integer out of it. That doesn’t mean we can’t factor them. It means we divide the regular old integers into a couple classes. There’s prime numbers. There’s composites. There’s the unit, the number 1. There’s zero. We know prime numbers; they’re 2, 3, 5, 7, and so on. Composite numbers are the ones you get by multiplying prime numbers together: 4, 6, 8, 9, 10, and so on. 1 and 0 are off on their own. Leave them there. We can’t divide any old integer by any old integer. But we can say an integer is equal to this string of prime numbers multiplied together. This gives us a handle by which we can prove a lot of interesting results.

We can do the same with Gaussian integers. We can divide them up into Gaussian primes, Gaussian composites, units, and zero. The words mean what they mean for regular old integers. A Gaussian composite can be factored into the multiples of Gaussian primes. Gaussian primes can’t be factored any further.

If we know what the prime numbers are for regular old integers we can tell whether something’s a Gaussian prime. Admittedly, knowing all the prime numbers is a challenge. But a Gaussian integer $a + b\imath$ will be prime whenever a couple simple-to-test conditions are true. First is if ‘a’ and ‘b’ are both not zero, but $a^2 + b^2$ is a prime number. So, for example, $5 + 4\imath$ is a Gaussian prime.

You might ask, hey, would $-5 - 4\imath$ also be a Gaussian prime? That’s also got components that are integers, and the squares of them add up to a prime number (41). Well-spotted. Gaussian primes appear in quartets. If $a + b\imath$ is a Gaussian prime, so is $-a -b\imath$. And so are $-b + a\imath$ and $b - a\imath$.

There’s another group of Gaussian primes. These are the numbers $a + b\imath$ where either ‘a’ or ‘b’ is zero. Then the other one is, if positive, three more than a whole multiple of four. If it’s negative, then it’s three less than a whole multiple of four. So ‘3’ is a Gaussian prime, as is -3, and as is $3\imath$ and so is $-3\imath$.

This has strange effects. Like, ‘3’ is a prime number in the regular old scheme of things. It’s also a Gaussian prime. But familiar other prime numbers like ‘2’ and ‘5’? Not anymore. Two is equal to $(1 + \imath) \cdot (1 - \imath)$; both of those terms are Gaussian primes. Five is equal to $(2 + \imath) \cdot (2 - \imath)$. There are similar shocking results for 13. But, roughly, the world of composites and prime numbers translates into Gaussian composites and Gaussian primes. In this slightly exotic structure we have everything familiar about factoring numbers.

You might have some nagging thoughts. Like, sure, two is equal to $(1 + \imath) \cdot (1 - \imath)$. But isn’t it also equal to $(1 + \imath) \cdot (1 - \imath) \cdot \imath \cdot (-\imath)$? One of the important things about prime numbers is that every composite number is the product of a unique string of prime numbers. Do we have to give that up for Gaussian integers?

Good nag. But no; the doubt is coming about because you’ve forgotten the difference between “the positive integers” and “all the integers”. If we stick to positive whole numbers then, yeah, (say) ten is equal to two times five and no other combination of prime numbers. But suppose we have all the integers, positive and negative. Then ten is equal to either two times five or it’s equal to negative two times negative five. Or, better, it’s equal to negative one times two times negative one times five. Or suffix times any even number of negative ones.

Remember that bit about separating ‘one’ out from the world of primes and composites? That’s because the number one screws up these unique factorizations. You can always toss in extra factors of one, to taste, without changing the product of something. If we have positive and negative integers to use, then negative one does almost the same trick. We can toss in any even number of extra negative ones without changing the product. This is why we separate “units” out of the numbers. They’re not part of the prime factorization of any numbers.

For the Gaussian integers there are four units. 1 and -1, $\imath$ and $-\imath$. They are neither primes nor composites, and we don’t worry about how they would otherwise multiply the number of factorizations we get.

But let me close with a neat, easy-to-understand puzzle. It’s called the moat-crossing problem. In the regular old integers it’s this: imagine that the prime numbers are islands in a dangerous sea. You start on the number ‘2’. Imagine you have a board that can be set down and safely crossed, then picked up to be put down again. Could you get from the start and go off to safety, which is infinitely far away? If your board is some, fixed, finite length?

No, you can’t. The problem amounts to how big the gap between one prime number and the next largest prime number can be. It turns out there’s no limit to that. That is, you give me a number, as small or as large as you like. I can find some prime number that’s more than your number less than its successor. There are infinitely large gaps between prime numbers.

Gaussian primes, though? Since a Gaussian prime might have nearest neighbors in any direction? Nobody knows. We know there are arbitrarily large gaps. Pick a moat size; we can (eventually) find a Gaussian prime that’s at least that far away from its nearest neighbors. But this does not say whether it’s impossible to get from the smallest Gaussian primes — $1 + \imath$ and its companions $-1 + \imath$ and on — infinitely far away. We know there’s a moat of width 6 separating the origin of things from infinity. We don’t know that there’s bigger ones.

You’re not going to solve this problem. Unless I have more brilliant readers than I know about; if I have ones who can solve this problem then I might be too intimidated to write anything more. But there is surely a pleasant pastime, maybe a charming game, to be made from this. Try finding the biggest possible moats around some set of Gaussian prime island.

Ellen Gethner, Stan Wagon, and Brian Wick’s A Stroll Through the Gaussian Primes describes this moat problem. It also sports some fine pictures of where the Gaussian primes are and what kinds of moats you can find. If you don’t follow the reasoning, you can still enjoy the illustrations.