Reading the Comics, January 28, 2017: Chuckle Brothers Edition


The week started out quite busy and I was expecting I’d have to split my essay again. It didn’t turn out that way; Comic Strip Master Command called a big break on mathematically-themed comics from Tuesday on. And then nobody from Comics Kingdom or from Creators.com needed inclusion either. I just have a bunch of GoComics links and a heap of text here. I bet that changes by next week. Still no new Jumble strips.

Brian Boychuk and Ron Boychuk’s The Chuckle Brothers for the 22nd was their first anthropomorphic numerals joke of the week.

Kevin Fagan’s Drabble for the 22nd uses arithmetic as the sort of problem it’s easy to get clearly right or clearly wrong. It’s a more economical use of space than (say) knowing how many moons Saturn’s known to have. (More than we thought there were as long ago as Thursday.) I do like that there’s a decent moral to this on the way to the punch line.

Bill Amend’s FoxTrot for the 22nd has Jason stand up for “torus” as a better name for doughnuts. You know how nerdy people will like putting a complicated word onto an ordinary thing. But there are always complications. A torus ordinarily describes the shape made by rotating a circle around an axis that’s in the plane of the circle. The result is a surface, though, the shell of a doughnut and none of the interior. If we’re being fussy. I don’t know of a particular name for the torus with its interior and suspect that, if pressed, a mathematician would just say “torus” or maybe “doughnut”.

We can talk about toruses in two dimensions; those look just like circles. The doughnut-shell shape is a torus in three dimensions. There’s torus shapes made by rotating spheres, or hyperspheres, in four or more dimensions. I’m not going to draw them. And we can also talk about toruses by the number of holes that go through them. If a normal torus is the shape of a ring-shaped pool toy, a double torus is the shape of a two-seater pool toy, a triple torus something I don’t imagine exists in the real world. A quadruple torus could look, I imagine, like some pool toys Roller Coaster Tycoon allows in its water parks. I’m saying nothing about whether they’re edible.

Brian Boychuk and Ron Boychuk’s The Chuckle Brothers for the 23rd was their second anthropomorphic numerals joke of the week. I suppose sometimes you just get an idea going.

Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 23rd jokes about mathematics skills versus life. The growth is fine enough; after all, most of us are at, or get to, our best at something while we’re training in it or making regular use of it. So the joke peters out into the usual “I never use mathematics in real life” crack, which, eh. I agree it’s what I feel like my mathematics skills have done ever since I got my degree, at any rate.

Teresa Burritt’s Frog Applause for the 24th describes an extreme condition which hasn’t been a problem for me. I’m not an overindulgey type.

Randy Glasbergen’s Glasbergen Cartoons rerun for the 26th is the pie chart joke for this week.

Michael Fry’s Committed rerun for the 28th just riffs on the escalation of hyperbole, and what sure looks like an exponential growth of hyperbolic numbers. There’s a bit of scientific notation in the last panel. The “1 x” part isn’t necessary. It doesn’t change the value of the expression “1 x 1026”. But it might be convenient to use the “1 x” anyway. Scientific notation is about separating the size of the number from the interesting digits that the number has. Often when you compare numbers you’re interested in the size or else you’re interested in the important digits. Get into that habit and it’s not worth making an exception just because the interesting digits turn out to be boring in this case.

Reading the Comics, February 23, 2016: No Students Resist Word Problems Edition


This week Comic Strip Master Command ordered the mention of some of the more familiar bits of mathematical-premise stock that aren’t students resisting word problems. This happens sometimes.

Rick Stromoski’s Soup to Nutz for the 18th of February finds a fresh joke in the infinite-monkeys problem. Well, it uses a thousand monkeys here, but that hardly matters. If you had one long-enough-lived monkey at the typewriter, in principle, we could expect them to type the works of Shakespeare. It’s how long it takes that changes. In practice, it’s going to be too long to wait for anyway. I wonder if the monkeys will ever get computers to replace their typewriters.

Carol Lay’s Lay Lines for the 19th finds a fresh joke in Zeno’s Paradoxes. Lay particularly uses the most famous of Zeno’s Paradoxes. That’s the one about not being able to get anywhere because you have to get halfway there first, and halfway to that, in infinite regression. The other of Zeno’s Paradoxes that anyone who hasn’t just read the Wikipedia article on them can remember is Achilles and the Tortoise. It’s the question of how one can catch up to something. By the time you get to where the thing ahead of you is now, it’s gotten farther ahead still. And it does so again, in infinite regression. The third of the Paradoxes is about motion, depicted here as an arrow trying to fly through the air. Allow that speed is the distance travelled versus the time it takes to travel. But suppose time can be divided into infinitesimally tiny units. Then the distance the arrow travels in that time will also be infinitesimally tiny. So how can its speed have any meaningful definition? And the last is a hard-to-follow thing about three rods moving relative one another. I don’t feel confident describing it because I only intermittently feel like I understand what the paradox is getting at. I believe it’s supposed to be a problem with understanding how speeds can add together.

Anyway, the point of the paradoxes is not something as trite as “silly Ancient Greeks didn’t understand calculus”. They had an awfully good understanding of what makes calculus work. The point is that either space and time are infinitely divisible or else they aren’t. Either possibility has consequences that challenge our intuitions of how space and time should work.

Dave Blazek’s Loose Parts for the 19th uses scientific notation. It’s a popular way to represent large (and small) numbers. It’s built on the idea that there are two interesting parts to a number: about how big it is, and what its leading values are. We use some base, nearly always 10, raised to a power to represent how big the number is. And we use the rest, a number between 1 and whatever the base is, to represent the leading values. Blazek’s channel 3 x 103 is just channel 3000, though. My satellite TV package has channels numbering from 6 up through 9999, although not all of them. Many are empty. Still, it would be a more excessive number of options if he were on channel 3 x 106, or 3,000,000.

Russell Myers’s Broom Hilda for the 22nd shows Nerwin trying to learn addition by using a real-world model. I tend to be willing to let people use whatever tool they find works to learn something. But any learning aid has its limits, and trying to get around them can be challenging, or just creepy.

Dave Whamond’s Reality Check for the 22nd is another version of that rounding-up joke that’s gone around Comic Strip Master Command, and your friends’ Facebook timelines, several times now. Well, I enjoy how suspicious the sheep up front are.

'Hammie, we do NOT call the police for 'Homework Emergencies'!!' 'But Dad, these fractions are killing me!'
Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd of February, 2016. You know, that’s an awfully tiny mirror above the keys. There’s no way Wanda and Darryl can even see their whole faces in it.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd I include mostly because I wanted some pictures to include here. But mathematics is always a reliable choice when one needs scary school work to do. And I grant that fraction are particularly unsettling. There is something exotic in being told 1/2 is much bigger than 1/6, when one knows that 2 is so much smaller than 6. And just when one’s gotten comfortable with that, someone has you subtract one fraction from another.

In the olden days of sailors and shipping, the pay for a ship’s crew would be in shares of the take of the whole venture. The story I have read, but which I am not experienced enough to verify, depends on not understanding fractions. Naive sailors would demand rather than the offered 96th (or whatever) share of the revenues a 100th or 150th or even bigger numbers. Paymasters would pretend to struggle with before assenting to. Perhaps it’s so. Not understanding finance is as old as finance. But it does also feel like a legend designed to answer the question of when will someone need to know mathematics anyway.

Words: SERDS O O O - -; MENOV O - O - -; GENBIN - O - - O O; and LINKUE - O - O - O. The Professor's explanation of infinity seemed like it was OOOOO-OOOOOO.
David L Hoyt and Jeff Knurek’s Jumble for the 24th of February, 2016. The link will likely expire in late March. The third scrambled word reveals to me that ‘nebing’ is totally a word that some science fiction project should be able to use.

David L Hoyt and Jeff Knurek’s Jumble for the 24th is not necessarily a mathematics comic. It could be philosophy or theology or possibly some other fields. Still, I imagine you can have fun working this out even if the final surprise-answer jumped out at me before I looked at the other words.