## Reading the Comics, October 25, 2014: No Images Again Edition

I had assumed it was a freak event last time that there weren’t any Comics Kingdom strips with mathematical topics to discuss, and which comics I include as pictures here because I don’t know that the links made to them will work for everyone arbitrarily far in the future. Apparently they’re just not in a very mathematical mood this month, though. Such happens; I’m sure they’ll reappear soon enough.

John Zakour and Scott Roberts’ Working Daze (October 22, a “best of” rerun) brings up one of my very many peeves-regarding-pedantry, the notion that you “can’t give more than 100 percent”. It depends on what 100 percent means. The metaphor of “giving 110 percent” is based on the one-would-think-obvious point that there is a standard quantity of effort, which is the 100 percent, and to give 110 percent is to give measurably more than the standard effort. The English language has enough illogical phrases in it; we don’t need to attack ones that are only senseless if you go out to pick a fight with them.

Mark Anderson’s Andertoons (October 23) shows a student attacking a problem with appreciable persistence. As the teacher says, though, there’s no way the student’s attempts at making 2 plus 2 equal 5 is ever not going to be wrong, at least unless we have different ideas about what is meant by 2, plus, equals, and 5. It’s easy to get from this point to some pretty heady territory: since it’s true that two plus two can’t equal five (using the ordinary definitions of these words), then this statement is true not just everywhere in this universe but in all possible universes. This — indeed, all — arithmetic would even be true if there were no universe. But if something can be true regardless of what the universe is like, or even if there is no universe, then how can it tell us anything about the specific universe that actually exists? And yet it seems to do so, quite well.

Tim Lachowski’s Get A Life (October 23) is really an accounting joke, or really more a “taxes they so mean” joke, but I thought it worth mentioning that, really, the majority of the mathematics the world has done have got to have been for the purposes of bookkeeping and accounting. I’m sorry that I’m not better-informed about this so as to better appreciate what is, in some ways, the dark matter of mathematical history.

Keith Tutt and Daniel Saunders’s chipper Lard’s World Peace Tips (October 23) recommends “be a genius” as one of the ways to bring about world peace, and uses mathematics as the comic shorthand for “genius activity”, not to mention sudoku as the comic shorthand for “mathematics”. People have tried to gripe that sudoku isn’t really mathematics; while it’s not arithmetic, though — you could replace the numerals with letters or with arbitrary symbols not to be repeated in one line, column, or subsquare and not change the problem at all — it’s certainly logic.

John Graziano’s Ripley’s Believe It or Not (October 23) besides giving me a spot of dizziness with that attribution line makes the claim that “elephants have been found to be better at some numerical tasks than chimps or even humans”. I can believe that, more or less, though I notice it doesn’t say exactly what tasks elephants are so good (or chimps and humans so bad) at. Counting and addition or subtraction seem most likely, though, because those are processes it seems possible to create tests for. At some stages in human and animal development the animals have a clear edge in speed or accuracy. I don’t remember reading evidence of elephant skills before but I can accept that they surely have some.

Zach Weinersmith’s Saturday Morning Breakfast Cereal (October 24) applies the tools of infinite series — adding up infinitely many of a sequence of terms, often to a finite total — to parenting and the problem of one kid hitting another. This is held up as Real Analysis — – the field in which you learn why Calculus works — and it is, yeah, although this is the part of Real Analysis you can do in high school.

John Zakour and Scott Roberts’s Maria’s Day (October 25) picks up on the Math Wiz Monster in Maria’s closet mentioned last time I did one of these roundups. And it includes an attack on the “Common Core” standards, understandably: it’s unreasonable to today’s generation of parents that mathematics should be taught any differently from how it was taught to them, when they didn’t understand the mathematics they were being taught. Innovation in teaching never has a chance.

Dave Whamond’s Reality Check (October 25) reminds us that just because stock framing can be used to turn a subtraction problem into a word problem doesn’t mean that it can’t jump all the way out of mathematics into another field.

I haven’t included any comics from today — the 26th of October — in my reading yet but really, what are the odds there’s like a half-dozen comics of obvious relevance with nice, juicy topics to discuss?

## Reading the Comics, September 8, 2014: What Is The Problem Edition

Must be the start of school or something. In today’s roundup of mathematically-themed comics there are a couple of strips that I think touch on the question of defining just what the problem is: what are you trying to measure, what are you trying to calculate, what are the rules of this sort of calculation? That’s a lot of what’s really interesting about mathematics, which is how I’m able to say something about a rerun Archie comic. It’s not easy work but that’s why I get that big math-blogger paycheck.

John Hambrock’s The Brilliant Mind of Edison Lee (September 2) talks about the shape of the universe. Measuring the world, or the universe, is certainly one of the older influences on mathematical thought. From a handful of observations and some careful reasoning, for example, one can understand how large the Earth is, and how far away the Moon and the Sun must be, without going past the kinds of reasoning or calculations that a middle school student would probably be able to follow.

There is something deeper to consider about the shape of space, though: the geometry of the universe affects what things can happen in them, and can even be seen in the kinds of physics that happen. A famous, and astounding, result by the mathematical physicist Emmy Noether shows that symmetries in space correspond to conservation laws. That the universe is, apparently, rotationally symmetric — everything would look the same if the whole universe were picked up and rotated (say) 80 degrees along one axis — means that there is such a thing as the conservation of angular momentum. That the universe is time-symmetric — the universe would look the same if it had got started five hours later (please pretend that’s a statement that can have any coherent meaning) — means that energy is conserved. And so on. It may seem, superficially, like a cosmologist is engaged in some almost ancient-Greek-style abstract reasoning to wonder what shapes the universe could have and what it does, but (putting aside that it gets hard to divide mathematics, physics, and philosophy in this kind of field) we can imagine observable, testable consequences of the answer.

Zach Weinersmith’s Saturday Morning Breakfast Cereal (September 5) tells a joke starting with “two perfectly rational perfectly informed individuals walk into a bar”, along the way to a joke about economists. The idea of “perfectly rational perfectly informed” people is part of the mathematical modeling that’s become a popular strain of economic thought in recent decades. It’s a model, and like many models, is properly speaking wrong, but it allows one to describe interesting behavior — in this case, how people will make decisions — without complications you either can’t handle or aren’t interested in. The joke goes on to the idea that one can assign costs and benefits to continuing in the joke. The idea that one can quantify preferences and pleasures and happiness I think of as being made concrete by Jeremy Bentham and the utilitarian philosophers, although trying to find ways to measure things has been a streak in Western thought for close to a thousand years now, and rather fruitfully so. But I wouldn’t have much to do with protagonists who can’t stay around through the whole joke either.

Marc Anderson’s Andertoons (September 6) was probably composed in the spirit of joking, but it does hit something that I understand baffles kids learning it every year: that subtracting a negative number does the same thing as adding a positive number. To be fair to kids who need a couple months to feel quite confident in what they’re doing, mathematicians needed a couple generations to get the hang of it too. We have now a pretty sound set of rules for how to work with negative numbers, that’s nice and logically tested and very successful at representing things we want to know, but there seems to be a strong intuition that says “subtracting a negative three” and “adding a positive three” might just be different somehow, and we won’t really know negative numbers until that sense of something being awry is resolved.

Andertoons pops up again the next day (September 7) with a completely different drawing of a chalkboard and this time a scientist and a rabbit standing in front of it. The rabbit’s shown to be able to do more than multiply and, indeed, the mathematics is correct. Cosines and sines have a rather famous link to exponentiation and to imaginary- and complex-valued numbers, and it can be useful to change an ordinary cosine or sine into this exponentiation of a complex-valued number. Why? Mostly, because exponentiation tends to be pretty nice, analytically: you can multiply and divide terms pretty easily, you can take derivatives and integrals almost effortlessly, and then if you need a cosine or a sine you can get that out at the end again. It’s a good trick to know how to do.

Jeff Harris’s Shortcuts children’s activity panel (September 9) is a page of stuff about “Geometry”, and it’s got some nice facts (some mathematical, some historical), and a fair bunch of puzzles about the field.

Morrie Turner’s Wee Pals (September 7, perhaps a rerun; Turner died several months ago, though I don’t know how far ahead of publication he was working) features a word problem in terms of jellybeans that underlines the danger of unwarranted assumptions in this sort of problem-phrasing.

Craig Boldman and Henry Scarpelli’s Archie (September 8, rerun) goes back to one of arithmetic’s traditional comic strip applications, that of working out the tip. Poor Moose is driving himself crazy trying to work out 15 percent of \$8.95, probably from a quiz-inspired fear that if he doesn’t get it correct to the penny he’s completely wrong. Being able to do a calculation precisely is useful, certainly, but he’s forgetting that in tis real-world application he gets some flexibility in what has to be calculated. He’d save some effort if he realized the tip for \$8.95 is probably close enough to the tip for \$9.00 that he could afford the difference, most obviously, and (if his budget allows) that he could just as well work out one-sixth the bill instead of fifteen percent, and give up that workload in exchange for sixteen cents.

Mark Parisi’s Off The Mark (September 8) is another entry into the world of anthropomorphized numbers, so you can probably imagine just what π has to say here.

## July 2014 in Mathematics Blogging

We’ve finally reached the kalends of August so I can look back at the mathematics blog statistics for June and see how they changed in July. Mostly it’s a chance to name countries that had anybody come read entries here, which is strangely popular. I don’t know why.

Since I’d had 16,174 page views total at the start of July I figured I wasn’t going to cross the symbolically totally important 17,000 by the start of August and what do you know but I was right, I didn’t. I did have a satisfying 589 page views (for a total of 16,763), which doesn’t quite reach May’s heights but is a step up from June’s 492 views. The number of unique visitors as WordPress figures it was 231, up from June’s 194. That’s not an unusually large or small number of unique visitors for this year, and it keeps the views per visitor just about unchanged, 2.55 as opposed to June’s 2.54.

July’s most popular postings were mostly mathematics comics ones — well, they have the most reader-friendly hook after all, and often include a comic or two — but I’m gratified by what proved to be the month’s most popular since I like it too:

1. To Build A Universe, and my simple toy version of an arbitrarily old universe. This builds on In A Really Old Universe and on What’s Going On In The Old Universe, and is followed by Lewis Carroll And My Playing With Universes, also some popular posts.
2. Reading the Comics, July 3, 2014: Wulff and Morgenthaler Edition, I suppose because WuMo is a really popular comic strip these days.
3. Reading the Comics, July 28, 2014: Homework in an Amusement Park Edition, I suppose because everybody likes amusement parks these days.
4. Reading the Comics, July 24, 2014: Math Is Just Hard Stuff, Right? Edition, I suppose because people like thinking mathematics is hard these days.
5. Some Things About Joseph Nebus, because I guess I had a sudden onset of being interesting?
6. Reading the Comics, July 18, 2014: Summer Doldrums Edition, because summer gets to us all these days.

The countries sending me the most readers this month were the United States (369 views), the United Kingdom (43 views), and the Philippines (24 views). Australia, Austria, Canada, and Singapore turned up well too. Sending just a single viewer this month were Greece, Hong Kong, Italy, Japan, Norway, Puerto Rico, and Spain; Hong Kong and Japan were the only ones who did that in June, and for that matter May also. My Switzerland reader from June had a friend this past month.

Among the search terms that brought people to me this month:

• comics strips for differential calculus
• nebus on starwars
• 82 % what do i need on my finalti get a c
• what 2 monsters on monster legends make dark nebus

• (this seems like an ominous search query somehow)
• the 80s cartoon character who sees mathematics equations
• starwars nebus
(suddenly this Star Wars/Me connection seems ominous)
• origin is the gateway to your entire gaming universe
(I can’t argue with that)

## What’s Going On In The Old Universe

Last time in this infinitely-old universe puzzle, we found that by making a universe of only three kinds of atoms (hydrogen, iron, and uranium) which shifted to one another with fixed chances over the course of time, we’d end up with the same distribution of atoms regardless of what the distribution of hydrogen, iron, and uranium was to start with. That seems like it might require explanation.

(For people who want to join us late without re-reading: I got to wondering what the universe might look like if it just ran on forever, stars fusing lighter elements into heavier ones, heavier elements fissioning into lighter ones. So I looked at a toy model where there were three kinds of atoms, dubbed hydrogen for the lighter elements, iron for the middle, and uranium for the heaviest, and made up some numbers saying how likely hydrogen was to be turned into heavier atoms over the course of a billion years, how likely iron was to be turned into something heavier or lighter, and how likely uranium was to be turned into lighter atoms. And sure enough, if the rates of change stay constant, then the universe goes from any initial distribution of atoms to a single, unchanging-ever-after mix in surprisingly little time, considering it’s got a literal eternity to putter around.)

The first question, it seems, is whether I happened to pick a freak set of numbers for the change of one kind of atom to another. It’d be a stroke of luck, but, these things happen. In my first model, I gave hydrogen a 25 percent chance of turning to iron, and no chance of turning to helium, in a billion years. Let’s change that so any given atom has a 20 percent chance of turning to iron and a 20 percent chance of turning to uranium. Similarly, instead of iron having no chance of turning to hydrogen and a 40 percent chance of turning to uranium, let’s try giving each iron atom a 25 percent chance of becoming hydrogen and a 25 percent chance of becoming uranium. Uranium, first time around, had a 40 percent chance of becoming hydrogen and a 40 percent chance of becoming iron. Let me change that to a 60 percent chance of becoming hydrogen and a 20 percent chance of becoming iron.

With these chances of changing, a universe that starts out purely hydrogen settles on being about 50 percent hydrogen, a little over 28 percent iron, and a little over 21 percent uranium in about ten billion years. If the universe starts out with equal amounts of hydrogen, iron, and uranium, however, it settles over the course of eight billion years to … 50 percent hydrogen, a little over 28 percent iron, and a little over 21 percent uranium. If it starts out with no hydrogen and the rest of matter evenly split between iron and uranium, then over the course of twelve billion years it gets to … 50 percent hydrogen, a litte over 28 percent iron, and a little over 21 percent uranium.

Perhaps the problem is that I’m picking these numbers, and I’m biased towards things that are pretty nice ones — halves and thirds and two-fifths and the like — and maybe that’s causing this state where the universe settles down very quickly and stops changing any. We should at least try that before supposing there’s necessarily something more than coincidence going on here.

So I set the random number generator to produce some element changes which can’t be susceptible to my bias for simple numbers. Give hydrogen a 44.5385 percent chance of staying hydrogen, a 10.4071 percent chance of becoming iron, and a 45.0544 percent chance of becoming uranium. Give iron a 25.2174 percent chance of becoming hydrogen, a 32.0355 percent chance of staying iron, and a 42.7471 percent chance of becoming uranium. Give uranium a 2.9792 percent chance of becoming hydrogen, a 48.9201 percent chance of becoming iron, and a 48.1007 percent chance of staying uranium. (Clearly, by the way, I’ve given up on picking numbers that might reflect some actual if simple version of nucleosynthesis and I’m just picking numbers for numbers’ sake. That’s all right; the question this essay is, are we stuck getting an unchanging yet infinitely old universe?)

And the same thing happens again: after nine billion years a universe starting from pure hydrogen will be about 18.7 percent hydrogen, about 35.7 percent iron, and about 45.6 percent uranium. Starting from no hydrogen, 50 percent iron, and 50 percent uranium, we get to the same distribution in again about nine billion years. A universe beginning with equal amounts hydrogen, iron, and uranium under these rules gets to the same distribution after only seven billion years.

The conclusion is this settling down doesn’t seem to be caused by picking numbers that are too particularly nice-looking or obviously attractive; and the distributions don’t seem to have an obvious link to what the probabilities of changing are. There seems to be something happening here, though admittedly we haven’t proven that rigorously. To spoil a successor article in this thread: there is something here, and it’s a big thing.

(Also, no, we’re not stuck with an unchanging universe, and good on you if you can see ways to keep the universe changing without, like, having the probability of one atom changing to another itself vary in time.)

## To Build A Universe

So I kept thinking about what the distribution of elements might be in an infinitely old universe. It’s a tough problem to consider, if you want to do it exactly right, since you have to consider how stars turn lighter atoms in a blistering array of possibilities. Besides the nearly hundred different elements — which represents the count of how many protons are in the nucleus — each element has multiple isotopes — representing how many neutrons are in the nucleus — and I don’t know how many there are to consider but it’s certainly at least several hundred to deal with. There’s probably a major work in the astrophysics literature describing all the ways atoms and their isotopes can get changed over the course of a star’s lifetime, either actually existing or waiting for an indefatigable writer to make it her life’s work.

But I can make a toy model, because I want to do mathematics, and I can see what I might learn from that. This is basically a test vehicle: I want to see whether building a more accurate model is likely to be worthwhile.

For my toy model of the universe I will pretend there are only three kinds of atoms in the universe: hydrogen, iron, and uranium. These represent the lighter elements — which can fuse together to release energy — and Iron-56 — which can’t release energy by fusing into heavier or by fissioning into lighter elements — and the heavier elements — which can fission apart to release energy and lighter elements. I can describe the entire state of the universe with three numbers, saying what fraction of the universe is hydrogen, what fraction is iron, and what fraction is uranium. So these are pretty powerful toys.

Over time the stars in this universe will change some of their hydrogen into iron, and some of their iron into uranium. The uranium will change some of itself into hydrogen and into iron. How much? I’m going to make up some nice simple numbers and say that over the course of a billion years, one-quarter of all the hydrogen in the universe will be changed into iron; three-quarters of the hydrogen will remain hydrogen. Over that same time, let’s say two-fifths of all the iron in the universe will be changed to uranium, while the remaining three-fifths will remain iron. And the uranium? Well, that decays; let’s say that two-fifths of the uranium will become hydrogen, two-fifths will become iron, and the remaining one-fifth will stay uranium. If I had more elements in the universe I could make a more detailed, subtle model, and if I didn’t feel quite so lazy I might look up more researched figures for this, but, again: toy model.

I’m by the way assuming this change of elements is constant for all time and that it doesn’t depend on the current state of the universe. There are sound logical reasons behind this: to have the rate of nucleosynthesis vary in time would require me to do more work. As above: toy model.

So what happens? This depends on what we start with, sure. Let’s imagine the universe starts out made of nothing but hydrogen, so that the composition of the universe is 100% hydrogen, 0% iron, 0% uranium. After the first billion years, some of the hydrogen will be changed to iron, but there wasn’t any iron so there’s no uranium now. The universe’s composition would be 75% hydrogen, 25% iron, 0% uranium. After the next billion years three-quarters of the hydrogen becomes iron and two-fifths of the iron becomes uranium, so we’ll be at 56.25% hydrogen, 33.75% iron, 10% uranium. Another billion years passes, and once again three-quarters of the hydrogen becomes iron, two-fifths of the iron becomes uranium, and two-fifths of the uranium becomes hydrogen and another two-fifths becomes iron. This is a lot of arithmetic but the results are easy enough to find: 46.188% hydrogen, 38.313% iron, 15.5% uranium. After some more time we have 40.841% hydrogen, 40.734% iron, 18.425% uranium. It’s maybe a fair question whether the universe is going to run itself all the way down to have nothing but iron, but, the next couple billions of years show things settling down. Let me put all this in a neat little table.

Composition of the Toy Universe
Age
(billion years)
Hydrogen Iron Uranium
0 100% 0% 0%
1 75% 25% 0%
2 56.25% 33.75% 10%
3 46.188% 38.313% 15.5%
4 40.841% 40.734% 18.425%
5 38% 42.021% 19.979%
6 36.492% 42.704% 20.804%
7 35.691% 43.067% 21.242%
8 35.265% 43.260% 21.475%
9 35.039% 43.362% 21.599%
10 34.919% 43.417% 21.665%
11 34.855% 43.446% 21.700%
12 34.821% 43.461% 21.718%
13 34.803% 43.469% 21.728%
14 34.793% 43.473% 21.733%
15 34.788% 43.476% 21.736%
16 34.786% 43.477% 21.737%
17 34.784% 43.478% 21.738%
18 34.783% 43.478% 21.739%
19 34.783% 43.478% 21.739%
20 34.783% 43.478% 21.739%

We could carry on but there’s really no point: the numbers aren’t going to change again. Well, probably they’re changing a little bit, four or more places past the decimal point, but this universe has settled down to a point where just as much hydrogen is being lost to fusion as is being created by fission, and just as much uranium is created by fusion as is lost by fission, and just as much iron is being made as is being turned into uranium. There’s a balance in the universe.

At least, that’s the balance if we start out with a universe made of nothing but hydrogen. What if it started out with a different breakdown, for example, a universe that started as one-third hydrogen, one-third iron, and one-third uranium? In that case, as the universe ages, the distribution of elements goes like this:

Composition of the Toy Universe
Age
(billion years)
Hydrogen Iron Uranium
0 33.333% 33.333% 33.333%
1 38.333% 41.667% 20%
2 36.75% 42.583% 20.667%
3 35.829% 43.004% 21.167%
4 35.339% 43.226% 21.435%
5 35.078% 43.345% 21.578%
10 34.795% 43.473% 21.732%
15 34.783% 43.478% 21.739%

We’ve gotten to the same distribution, only a tiny bit faster. (It doesn’t quite get there after fourteen billion years.) I hope it won’t shock you if I say that we’d see the same thing if we started with a universe made of nothing but iron, or of nothing but uranium, or of other distributions. Some take longer to settle down than others, but, they all seem to converge on the same long-term fate for the universe.

Obviously there’s something special about this toy universe, with three kinds of atoms changing into one another at these rates, which causes it to end up at the same distribution of atoms.

## In A Really Old Universe

So, my thinking about an “Olbers Universe” infinitely old and infinitely large in extent brought me to a depressing conclusion that such a universe has to be empty, or at least just about perfectly empty. But we can still ponder variations on the idea and see if that turns up anything. For example, what if we have a universe that’s infinitely old, but not infinite in extent, either because space is limited or because all the matter in the universe is in one neighborhood?

Suppose we have stars. Stars do many things. One of them is they turn elements into other elements, mostly heavier ones. For the lightest of atoms — hydrogen and helium, for example — stars create heavier elements by fusing them together. Making the heavier atoms from these lighter ones, in the net, releases energy, which is why fusion is constantly thought of as a potential power source. And that’s good for making elements up to as heavy as iron. After that point, fusion becomes a net energy drain. But heavier elements still get made as the star dies: when it can’t produce energy by fusion anymore the great mass of the star collapses on itself and that shoves together atom nucleuses regardless of the fact this soaks up more energy. (Warning: the previous description of nucleosynthesis, as it’s called, was very simplified and a little anthropomorphized, and wasn’t seriously cross-checked against developments in the field since I was a physics-and-astronomy undergraduate. Do not use it to attempt to pass your astrophysics qualifier. It’s good enough for everyday use, what with how little responsibility most of us have for stars.)

The important thing to me is that a star begins as a ball of dust, produced by earlier stars (and in our, finite universe, from the Big Bang, which produced a lot of hydrogen and helium and some of the other lightest elements), that condenses into a star, turns many of the elements into it into other elements, and then returns to a cloud of dust that mixes with other dust clouds and forms new stars.

Now. Over time, over the generations of stars, we tend to get heavier elements out of the mix. That’s pretty near straightforward mathematics: if you have nothing but hydrogen and helium — atoms that have one or two protons in the nucleus — it’s quite a trick to fuse them together into something with more than two, three, or four protons in the nucleus. If you have hydrogen, helium, lithium, and beryllium to work with — one, two, three, and four protons in the nucleus — it’s easier to get products of from two up to eight protons in the nucleus. And so on. The tendency is for each generation of stars to have relatively less hydrogen and helium and relatively more of the heavier atoms in its makeup.

So what happens if you have infinitely many generations? The first guess would be, well, stars will keep gathering together and fusing together as long as there are any elements lighter than iron, so that eventually there’d be a time when there were no (or at least no significant) amounts of elements lighter than iron, at which point the stars cease to shine. There’s nothing more to fuse together to release energy and we have a universe of iron- and heavier-metal ex-stars. I’m not sure if this is an even more depressing infinite universe than the infinitely large, infinitely old one which couldn’t have anything at all in it.

Except that this isn’t the whole story. Heavier elements than iron can release energy by fission, splitting into two or more lighter elements. Uranium and radium and a couple other elements are famous for them, but I believe every element has at least some radioactive isotopes. Popular forms of fission will produce alpha particles, which is what they named this particular type of radioactive product before they realized it was just the nucleus of a helium atom. Other types of radioactive decay will produce neutrons, which, if they’re not in the nucleus of an atom, will last an average of about fifteen minutes before decaying into a proton — a hydrogen nucleus — and some other stuff. Some more exotic forms of radioactive decay can produce protons by themselves, too. I haven’t checked the entire set of possible fission byproducts but I wouldn’t be surprised if most of the lighter elements can be formed by something’s breaking down.

In short, even if we fused the entire contents of the universe into atoms heavier than iron, we would still get out a certain amount of hydrogen and of helium, and also of other lighter elements. In short, stars turn hydrogen and helium, eventually, into very heavy elements; but the very heavy elements turn at least part of themselves back into hydrogen and helium.

So, it seems plausible, at least qualitatively, that given enough time to work there’d be a stable condition: hydrogen and helium being turned into heavier atoms at the same rate that heavier atoms are producing hydrogen and helium in their radioactive decay. And an infinitely old universe has enough time for anything.

And that’s, to me, anyway, an interesting question: what would the distribution of elements look like in an infinitely old universe?

(I should point out here that I don’t know. I would be surprised if someone in the astrophysics community has worked it out, at least in a rough form, for an as-authentic-as-possible set of assumptions about how nucleosynthesis works. But I am so ignorant of the literature I’m not sure how to even find the answer they’ve posed. I can think of it as a mathematical puzzle at least, though.)

## In A Really Big Universe

I’d got to thinking idly about Olbers’ Paradox, the classic question of why the night sky is dark. It’s named for Heinrich Wilhelm Olbers, 1758-1840, who of course was not the first person to pose the problem nor to give a convincing answer to it, but, that’s the way naming rights go.

It doesn’t sound like much of a question at first, after all, it’s night. But if we suppose the universe is infinitely large and is infinitely old, then, along the path of any direction you look in the sky, day or night, there’ll be a star. The star may be very far away, so that it’s very faint; but it takes up much less of the sky from being so far away. The result is that the star’s intensity, as a function of how much of the sky it takes up, is no smaller. And there’ll be stars shining just as intensely in directions that are near to that first star. The sky in an infinitely large, infinitely old universe should be a wall of stars.

Oh, some stars will be dimmer than average, and some brighter, but that doesn’t matter much. We can suppose the average star is of average brightness and average size for reasons that are right there in the name of the thing; it makes the reasoning a little simpler and doesn’t change the result.

The reason there is darkness is that our universe is neither infinitely large nor infinitely old. There aren’t enough stars to fill the sky and there’s not enough time for the light from all of them to get to us.

But we can still imagine standing on a planet in such an Olbers Universe (to save myself writing “infinitely large and infinitely old” too many times), with enough vastness and enough time to have a night sky that looks like a shell of starlight, and that’s what I was pondering. What might we see if you looked at the sky, in these conditions?

Well, light, obviously; we can imagine the sky looking as bright as the sun, but in all directions above the horizon. The sun takes up a very tiny piece of the sky — it’s about as wide across as your thumb, held at arm’s length, and try it if you don’t believe me (better, try it with the Moon, which is about the same size as the Sun and easier to look at) — so, multiply that brightness by the difference between your thumb and the sky and imagine the investment in sunglasses this requires.

It’s worse than that, though. Yes, in any direction you look there’ll be a star, but if you imagine going on in that direction there’ll be another star, eventually. And another one past that, and another past that yet. And the light — the energy — of those stars shining doesn’t disappear because there’s a star between it and the viewer. The heat will just go into warming up the stars in its path and get radiated through.

This is why interstellar dust, or planets, or other non-radiating bodies doesn’t answer why the sky could be dark in a vast enough universe. Anything that gets enough heat put into it will start to glow and start to shine from that light. The stars will slow down the waves of heat from the stars behind them, but given enough time, it will get through, and in an infinitely old universe, there is enough time.

The conclusion, then, is that our planet in an Olbers Universe would get an infinite amount of heat pouring onto it, at all times. It’s hard to see how life could possibly exist in the circumstance; water would boil away — rock would boil away — and the planet just would evaporate into dust.

Things get worse, though: it’s not just our planet that would get boiled away like this, but as far as I can tell, the stars too. Each star would be getting an infinite amount of heat pouring into it. It seems to me this requires the matter making up the stars to get so hot it would boil away, just as the atmosphere and water and surface of the imagined planet would, until the star — until all stars — disintegrate. At this point I have to think of the great super-science space-opera writers of the early 20th century, listening to the description of a wave of heat that boils away a star, and sniffing, “Amateurs. Come back when you can boil a galaxy instead”. Well, the galaxy would boil too, for the same reasons.

Even once the stars have managed to destroy themselves, though, the remaining atoms would still have a temperature, and would still radiate faint light. And that faint light, multiplied by the infinitely many atoms and all the time they have, would still accumulate to an infinitely great heat. I don’t know how hot you have to get to boil a proton into nothingness — or a quark — but if there is any temperature that does it, it’d be able to.

So the result, I had to conclude, is that an infinitely large, infinitely old universe could exist only if it didn’t have anything in it, or at least if it had nothing that wasn’t at absolute zero in it. This seems like a pretty dismal result and left me looking pretty moody for a while, even I was sure that EE “Doc” Smith would smile at me for working out the heat-death of quarks.

Of course, there’s no reason that a universe has to, or even should, be pleasing to imagine. And there is a little thread of hope for life, or at least existence, in a Olbers Universe.

All the destruction-of-everything comes about from the infinitely large number of stars, or other radiating bodies, in the universe. If there’s only finitely much matter in the universe, then, their total energy doesn’t have to add up to the point of self-destruction. This means giving up an assumption that was slipped into my Olbers Universe without anyone noticing: the idea that it’s about uniformly distributed. If you compare any two volumes of equal size, from any time, they have about the same number of stars in them. This is known in cosmology as “isotropy”.

Our universe seems to have this isotropy. Oh, there are spots where you can find many stars (like the center of a galaxy) and spots where there are few (like, the space in-between galaxies), but the galaxies themselves seem to be pretty uniformly distributed.

But an imagined universe doesn’t have to have this property. If we suppose an Olbers Universe without then we can have stars and planets and maybe even life. It could even have many times the mass, the number of stars and everything, that our universe has, spread across something much bigger than our universe. But it does mean that this infinitely large, infinitely old universe will have all its matter clumped together into some section, and nearly all the space — in a universe with an incredible amount of space — will be empty.

I suppose that’s better than a universe with nothing at all, but somehow only a little better. Even though it could be a universe with more stars and more space occupied than our universe has, that infinitely vast emptiness still haunts me.

(I’d like to note, by the way, that all this universe-building and reasoning hasn’t required any equations or anything like that. One could argue this has diverted from mathematics and cosmology into philosophy, and I wouldn’t dispute that, but can imagine philosophers might.)