## Reading the Comics, December 3, 2016: Cute Little Jokes Edition

Comic Strip Master Command apparently wanted me to have a bunch of easy little pieces that don’t inspire rambling essays. Message received!

Mark Litzler’s Joe Vanilla for the 27th is a wordplay joke in which any mathematical content is incidental. It could be anything put in a positive light; numbers are just easy things to arrange so. From the prominent appearance of ‘3’ and ‘4’ I supposed Litzler was using the digits of π, but if he is, it’s from some part of π that I don’t recognize. (That would be any part after the seventeenth digit. I’m not obsessive about π digits.)

Samson’s Dark Side Of The Horse is whatever the equivalent of punning is for Roman Numerals. I like Horace blushing.

John Deering’s Strange Brew for the 28th is a paint-by-numbers joke, and one I don’t see done often. And there is beauty in the appearance of mathematics. It’s not appreciated enough. I think looking at the tables of integral formulas on the inside back cover of a calculus book should prove the point, though. All those rows of integral signs and sprawls of symbols after show this abstract beauty. I’ve surely mentioned the time when the creative-arts editor for my undergraduate leftist weekly paper asked for a page of mathematics or physics work to include as an picture, too. I used the problem that inspired my “Why Stuff Can Orbit” sequence over on my mathematics blog. The editor loved the look of it all, even if he didn’t know what most of it meant.

Niklas Eriksson’s Carpe Diem for the 29th is a joke about life, I suppose. It uses a sprawled blackboard full of symbols to play the part of the proof. It’s gibberish, of course, although I notice how many mathematics cliches get smooshed into it. There’s a 3.1451 — I assume that’s a garbed digits of π — under a square root sign. There’s an “E = mc”, I suppose a garbled bit of Einstein’s Famous Equation in there. There’s a “cos 360”. 360 evokes the number of degrees in a circle, but mathematicians don’t tend to use degrees. There’s analytic reasons why we find it nicer to use radians, for which the equivalent would be “cos 2π”. If we wrote that at all, since the cosine of 2π is one of the few cosines everyone knows. Every mathematician knows. It’s 1. Well, maybe the work just got to that point and it hasn’t been cleaned up.

Eriksson’s Carpe Diem reappears the 30th, with a few blackboards with less mathematics to suggest someone having a creative block. It does happen to us all. My experience is mathematicians don’t tend to say “Eureka” when we do get a good idea, though. It’s more often some vague mutterings and “well what if” while we form the idea. And then giggling or even laughing once we’re sure we’ve got something. This may be just me and my friends. But it is a real rush when we have it.

Dan Collins’s Looks Good On Paper for the 29t tells the Möbius strip joke. It’s a well-rendered one, though; I like that there is a readable strip in there and that it’s distorted to fit the geometry.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 2nd of December tosses off the old gag about not needing mathematics now that we have calculators. It’s not a strip about that, and that’s fine.

Mark Anderson’s Andertoons finally appeared the 2nd. It’s a resistant-student joke. And a bit of wordplay.

Ruben Bolling’s Super-Fun-Pak Comix from the 2nd featured an installment of Tautological But True. One might point out they’re using “average” here to mean “arithmetic mean”. There probably isn’t enough egg salad consumed to let everyone have a median-sized serving. And I wouldn’t make any guesses about the geometric mean serving. But the default meaning of “average” is the arithmetic mean. Anyone using one of the other averages would say so ahead of time or else is trying to pull something.

## Reading the Comics, September 10, 2016: Finishing The First Week Of School Edition

I understand in places in the United States last week wasn’t the first week of school. It was the second or third or even worse. These places are crazy, in that they do things differently from the way my elementary school did it. So, now, here’s the other half of last week’s comics.

Zach Weinersmith’s Saturday Morning Breakfast Cereal presented the 8th is a little freak-out about existence. Mathematicians rely on the word “exists”. We suppose things to exist. We draw conclusions about other things that do exist or do not exist. And these things that exist are not things that exist. It’s a bit heady to realize nobody can point to, or trap in a box, or even draw a line around “3”. We can at best talk about stuff that expresses some property of three-ness. We talk about things like “triangles” and we even draw and use representations of them. But those drawings we make aren’t Triangles, the thing mathematicians mean by the concept. They’re at best cartoons, little training wheels to help us get the idea down. Here I regret that as an undergraudate I didn’t take philosophy courses that challenged me. It seems certain to me mathematicians are using some notion of the Platonic Ideal when we speak of things “existing”. But what does that mean, to a mathematician, to a philosopher, and to the person who needs an attractive tile pattern on the floor?

Cathy Thorne’s Everyday People Cartoons for the 9th is about another bit of the philosophy of mathematics. What are the chances of something that did happen? What does it mean to talk about the chance of something happening? When introducing probability mathematicians like to set it up as “imagine this experiment, which has a bunch of possible outcomes. One of them will happen and the other possibilities will not” and we go on to define a probability from that. That seems reasonable, perhaps because we’re accepting ignorance. We may know (say) that a coin toss is, in principle, perfectly deterministic. If we knew exactly how the coin is made. If we knew exactly how it is tossed. If we knew exactly how the air currents would move during its fall. If we knew exactly what the surface it might bounce off before coming to rest is like. Instead we pretend all this knowable stuff is not, and call the result unpredictability.

But about events in the past? We can imagine them coming out differently. But the imagination crashes hard when we try to say why they would. If we gave the exact same coin the exact same toss in the exact same circumstances how could it land on anything but the exact same face? In which case how can there have been any outcome other than what did happen? Yes, I know, someone wants to rush in and say “Quantum!” Say back to that person, “waveform collapse” and wait for a clear explanation of what exactly that is. There are things we understand poorly about the transition between the future and the past. The language of probability is a reminder of this.

Hilary Price’s Rhymes With Orange for the 10th uses the classic story-problem setup of a train leaving the station. It does make me wonder how far back this story setup goes, and what they did before trains were common. Horse-drawn carriages leaving stations, I suppose, or maybe ships at sea. I quite like the teaser joke in the first panel more.

Dan Collins’s Looks Good on Paper for the 10th is the first Möbius Strip joke we’ve had in a while. I’m amused and I do like how much incidental stuff there is. The joke would read just fine without the opossum family crossing the road, but it’s a better strip for having it. Somebody in the comments complained that as drawn it isn’t a Möbius Strip proper; there should be (from our perspective) another half-twist in the road. I’m willing to grant it’s there and just obscured by the crossing-over where the car is, because — as Collins points out — it’s really hard to draw a M&oum;bius Strip recognizably. You try it, and then try making it read cleanly while there’s, at minimum, a road and a car on the strip. That said, I can’t see that the road sign in the lower-left, by the opossums, is facing the right direction. Maybe for as narrow as the road is it’s still on a two-lane road.

Tom Toles’s Randolph Itch, 2 am rerun for the 10th is an Einstein The Genius comic. It felt familiar to me, but I don’t seem to have included it in previous Reading The Comics posts. Perhaps I noticed it some week that I figured a mere appearance of Einstein didn’t rate inclusion. Randolph certainly fell asleep while reading about mathematics, though.

It’s popular to tell tales of Einstein not being a very good student, and of not being that good in mathematics. It’s easy to see why. We’d all like to feel a little more like a superlative mind such as that. And Einstein worked hard to develop an image of being accessible and personable. It fits with the charming absent-minded professor image everybody but forgetful professors loves. It feels dramatically right that Einstein should struggle with arithmetic like so many of us do. It’s nonsense, though. When Einstein struggled with mathematics, it was on the edge of known mathematics. He needed advice and consultations for the non-Euclidean geometries core to general relativity? Who doesn’t? I can barely make my way through the basic notation.

Anyway, it’s pleasant to see Toles holding up Einstein for his amazing mathematical prowess. It was a true thing.

## Reading The Comics, September 24, 2014: Explained In Class Edition

I’m a fan of early 20th century humorist Robert Benchley. You might not be yourself, but it’s rather likely that among the humorists you do like are a good number of people who are fans of his. He’s one of the people who shaped the modern American written-humor voice, and as such his writing hasn’t dated, the way that, for example, a 1920s comic strip will often seem to come from a completely different theory of what humor might be. Among Benchley’s better-remembered quotes, and one of those striking insights into humanity, not to mention the best productivity tip I’ve ever encountered, was something he dubbed the Benchley Principle: “Anyone can do any amount of work, provided it isn’t the work he is supposed to be doing at the moment.” One of the comics in today’s roundup of mathematics-themed comics brought the Benchley Principle to mind, and I mean to get to how it did and why.

Eric The Circle (by ‘Griffinetsabine’ this time) (September 18) steps again into the concerns of anthropomorphized shapes. It’s also got a charming-to-me mention of the trapezium, the geometric shape that’s going to give my mathematics blog whatever immortality it shall have.

Bill Watterson’s Calvin and Hobbes (September 20, rerun) dodged on me: I thought after the strip from the 19th that there’d be a fresh round of explanations of arithmetic, this time including imaginary numbers like “eleventeen” and “thirty-twelve” and the like. Not so. After some explanation of addition by Calvin’s Dad,
Spaceman Spiff would take up the task on the 22nd of smashing together Mysterio planets 6 and 5, which takes a little time to really get started, and finally sees the successful collision of the worlds. Let this serve as a reminder: translating a problem to a real-world application can be a fine way to understand what is wanted, but you have to make sure that in the translation you preserve the result you wanted from the calculation.

It’s Rick DeTorie’s One Big Happy (September 21) which brought the Benchley Principle to my mind. Here, Joe is shown to know extremely well the odds of poker hands, but to have no chance at having learned the multiplication table. It seems like something akin to Benchley’s Principle is at work here: Joe memorizing the times tables might be socially approved, but it isn’t what he wants to do, and that’s that. But inspiring the desire to know something is probably the one great challenge facing everyone who means to teach, isn’t it?

Jonathan Lemon’s Rabbits Against Magic (September 21) features a Möbius strip joke that I imagine was a good deal of fun to draw. The Möbius strip is one of those concepts that really catches the imagination, since it seems to defy intuition that something should have only the one side. I’m a little surprise that topology isn’t better-popularized, as it seems like it should be fairly accessible — you don’t need equations to get some surprising results, and you can draw pictures — but maybe I just don’t understand the field well enough to understand what’s difficult about bringing it to a mass audience.

Hector D. Cantu and Carlos Castellanos’s Baldo (September 23) tells a joke about percentages and students’ self-confidence about how good they are with “numbers”. In strict logic, yes, the number of people who say they are and who say they aren’t good at numbers should add up to something under 100 percent. But people don’t tend to be logically perfect, and are quite vulnerable to the way questions are framed, so the scenario is probably more plausible in the real world than the writer intended.

Steve Moore’s In The Bleachers (September 23) falls back on the most famous of all equations as representative of “something it takes a lot of intelligence to understand”.