Reading the Comics, June 3, 2020: Subjective Opinions Edition


Thanks for being here for the last week before my All-2020 Mathematics A to Z starts. By the time this posts I should have decided on the A-topic, but I’m still up for B or C topics, if you’d be so kind as to suggest things.

Bob Weber Jr’s Slylock Fox for the 1st of June sees Reeky Rat busted for speeding on the grounds of his average speed. It does make the case that Reeky Rat must have travelled faster than 20 miles per hour at some point. There’s no information about when he did it, just the proof that there must have been some time when he drove faster than the speed limit. One can find loopholes in the reasoning, but, it’s a daily comic strip panel for kids. It would be unfair to demand things like proof there’s no shorter route from the diner and that the speed limit was 20 miles per hour the whole way.

Ted Shearer’s Quincy for the 1st originally ran the 7th of April, 1981. Quincy and his friend ponder this being the computer age, and whether they can let computers handle mathematics.

Jef Mallett’s Frazz for the 2nd has the characters talk about how mathematics offers answers that are just right or wrong. Something without “subjective grading”. It enjoys that reputation. But it’s not so, and that’s obvious when you imagine grading. How would you grade an answer that has the right approach, but makes a small careless error? Or how would you grade an approach that doesn’t work, but that plausibly could?

Kid: 'I hate essay assignments. They're so open to subjective grading. It would be a lot simpler if answers would just be right or wrong.' Frazz: 'You're in luck. I understand there's a math test coming up.' Kid: 'What's the lucky part?'
Jef Mallett’s Frazz for the 2nd of June, 2020. Other essays featuring something discussed in Frazz appear at this link.

And how do you know that the approach wouldn’t work? Even in non-graded mathematics, we have subjectivity. Much of mathematics is a search for convincing arguments about some question. What we hope to be convinced of is that there is a sound logical argument making the same conclusions. Whether the argument is convincing is necessarily subjective.

Yes, in principle, we could create a full deductive argument. It will take forever to justify every step from some axiom or definition or rule of inference. And even then, how do we know a particular step is justified? It’s because we think we understand what the step does, and how it conforms to one (or more) rule. That’s again a judgement call.

(The grading of essays is also less subjective than you might think if you haven’t been a grader. The difference between an essay worth 83 points and one worth 85 points may be trivial, yes. But you will rarely see an essay that reads as an A-grade one day and a C-grade the next. This is not to say that essay grading is not subject to biases. Some of these are innocent, such as the way the grader’s mood will affect the grade. Or how the first several papers, or the last couple, will be less consistently graded than the ones done in the middle of the project. Some are pernicious, such as under-rating the work done by ethnic minority students. But these biases affect the way one would grade, say, the partial credit for an imperfectly done algebra problem too.)

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. I could also swear that I’ve featured it here before. I can’t find it, if I have discussed this strip before. I may not have. Wavehead’s observing the difference between zero as an additive identity and its role in multiplication.

On the blackboard are written 7 + 0 = 7, 7 - 0 = 7, and 7 x 0 = 0. Wavehead: 'So the takeaway ehre is, if I'm the number 7, avoid multiplication at all costs.'
Mark Anderson’s Andertoons for the 3rd of June, 2020. When I have an essay that features something mentioned in Andertoons the essay’s put up at this link.

Ryan Pagelow’s Buni for the 3rd fits into the anthropomorphic-numerals category of joke. It’s really more of a representation of the year as the four horsemen of the Apocalypse.

Dan Collins’s Looks Good on Paper for the 3rd has a cook grilling a “Möbius Strip Steak”. It’s a good joke for putting on a mathematics instructor’s door.

Doug Savage’s Savage Chickens for the 3rd has, as part of animal facts, the assertion that “llamas have basic math skills”. I don’t know of any specific research on llama mathematics skills. But animals do have mathematics skills. Often counting. Some amount of reasoning. Social animals often have an understanding of transitivity, as well, especially if the social groups have a pecking order.


And this wraps up half of the past week’s mathematically-themed comic strips. I hope to have the rest in a Reading the Comics post at this link in a few days. Thanks for reading.

Reading the Comics, September 12, 2019: This Threatens To Mess Up My Plan Edition


There were a healthy number of comic strips with at least a bit of mathematical content the past week. Enough that I would maybe be able to split them across three essays in all. This conflicts with my plans to post two A-To-Z essays, and two short pieces bringing archived things back to some attention, when you consider the other thing I need to post this week. Well, I’ll work out something, this week at least. But if Comic Strip Master Command ever sends me a really busy week I’m going to be in trouble.

Bud Blake’s Tiger rerun for the 7th has Punkinhead ask one of those questions so basic it ends up being good and deep. What is arithmetic, exactly? Other than that it’s the mathematics you learn in elementary school that isn’t geometry? — an answer that’s maybe not satisfying but at least has historical roots. The quadrivium, four of the seven liberal arts of old, were arithmetic, geometry, astronomy, and music. Each of these has a fair claim on being a mathematics study, though I’d agree that music is a small part of mathematics these days. (I first wrote a “minor” piece, and didn’t want people to think I was making a pun, but you’ll notice I’m sharing it anyway.) I can’t say what people who study music learn about mathematics these days. Still, I’m not sure I can give a punchy answer to the question.

Punkinhead: 'Can you answer an arithmetic question for me, Julian?' Julian: 'Sure.' Punkinhead: 'What is it?'
Bud Blake’s Tiger for the 7th of September, 2019. Essays built on something mentioned in Tiger should appear at this link.

Mathworld offers the not-quite-precise definition that arithmetic is the field of mathematics dealing with integers or, more generally, numerical computation. But then it also offers a mnemonic for the spelling of arithmetic, which I wouldn’t have put in the fourth sentence of an article on the subject. I’m also not confident in that limitation to integers. Arithmetic certainly is about things we do on the integers, like addition and subtraction, multiplication and division, powers, roots, and factoring. So, yes, adding five and two is certainly arithmetic. But would we say that adding one-fifth and two is not arithmetic? Most other definitions I find allow that it can be about the rational numbers, or the real numbers. Some even accept the complex-valued numbers. The core is addition and subtraction, multiplication and division.

Arithmetic blends almost seamlessly into more complicated fields. One is number theory, which is the posing of problems that anyone can understand and that nobody can solve. If you ever run across a mathematical conjecture that’s over 200 years old and that nobody’s made much progress on besides checking that it’s true for all the whole numbers below 21,000,000,000 – 1, it’s probably number theory. Another is group theory, in which we think about structures that look like arithmetic without necessarily having all its fancy features like, oh, multiplication or the ability to factor elements. And it weaves into computing. Most computers rely on some kind of floating-point arithmetic, which approximates a wide range of the rational numbers that we’d expect to actually need.

So arithmetic is one of those things so fundamental and universal that it’s hard to take a chunk and say that this is it.

Maria: 'So, Dad, we're doing division in school, OK? When ya divide two, ya get less, right? So now that you got me *an'* Lily, you got to divide your love, right?' Dad: 'Love doesn't work that way, sweetie. The more people you love, the more love you have to give!' Maria, later, to Lily: 'Know what? I don't understand love *or* math.' Lily, thinking: 'Hey, I just go with the flow.'
John Zakour and Scott Roberts’s Maria’s Day for the 8th of September, 2019. Essays with some mention of Maria’s Day should be gathered at this link.

John Zakour and Scott Roberts’s Maria’s Day for the 8th has Maria fretting over what division means for emotions. I was getting ready to worry about Maria having the idea division means getting less of something. Five divided by one-half is not less than either five or one-half. My understanding is this unsettles a great many people learning division. But she does explicitly say, divide two, which I’m reading as “divide by two”. (I mean to be charitable in my reading of comic strips. It’s only fair.)

Still, even division into two things does not necessarily make things less. One of the fascinating and baffling discoveries of the 20th century was the Banach-Tarski Paradox. It’s a paradox only in that it defies intuition. According to it, one ball can be divided into as few as five pieces, and the pieces reassembled to make two whole balls. I would not expect Maria’s Dad to understand this well enough to explain.

Slylock looking over a three-person lineup. 'One of these apes hijacked a truckload of bananas. When questioned, each one made a statement that was the opposite of the truth. Moe said: 'I took it.' Larry said: 'Moe took it.' Curly said: 'It wasn't Moe or Larry'. Help Slylock Fox decide which one is guilty.' Solution: the opposite of each ape's answer is ... moe: 'I didn't take it.' Larry: 'Moe didn't take it.' Curly: 'It was Moe or Larry.' If all three statements are true, only Larry could have hijacked the truck.'
Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th of September, 2019. I would have sworn there were more essays mentioning Slylock Fox than this, but here’s the whole set of tagged pieces. I guess they’re not doing as many logic puzzles and arithmetic games as I would have guessed.

Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th presents a logic puzzle. If you know the laws of Boolean algebra it’s a straightforward puzzle. But it’s light enough to understand just from ordinary English reading, too.

Joe, looking at a fortune cookie: 'WHAT?' Dad: 'What's your fortune cookie say?' Joe: ''A thousand plus two is your lucky number today.' It's not a fortune; it's a stinking math problem!'
Rick Detorie’s One Big Happy for the 12th of September, 2019. Essays mentioning something inspired by One Big Happy are at this link.

Rick Detorie’s One Big Happy for the 12th is a little joke about finding mathematics problems in everyday life. Or it’s about the different ways one can represent numbers.


There were naturally comic strips with too marginal a mention of mathematics to rate paragraphs. Among them the past week were these.

Stephen Bentley’s Herb and Jamaal rerun for the 11th portrays the aftermath of realizing a mathematics problem is easier than it seemed. Realizing this after a lot of work should feel good, as discovering a clever way around tedious work is great. But the lost time can still hurt.

Ernie Bushmiller’s Nancy Classics for the 11th, rerunning a strip from the 6th of December, 1949, has Sluggo trying to cheat in arithmetic.

Eric the Circle for the 13th, by “Naratex”, is the Venn Diagram joke for the week.

Jason Poland’s Robbie and Bobby for the 13th is a joke about randomness, and the old phrase about doing random acts of kindness.


And that’s where I’ll pause a while. Tuesday I hope to publish another in the Fall 2019 A To Z series, and Thursday the piece after that. I plan to have the other Reading the Comics post for the past week published here on Wednesday. The great thing about having plans is that without them, nothing can go wrong.

Reading the Comics, January 14, 2017: Redeye and Reruns Edition


So for all I worried about the Gocomics.com redesign it’s not bad. The biggest change is it’s removed a side panel and given the space over to the comics. And while it does show comics you haven’t been reading, it only shows one per day. One week in it apparently sticks with the same comic unless you choose to dismiss that. So I’ve had it showing me The Comic Strip That Has A Finale Every Day as a strip I’m not “reading”. I’m delighted how thisbreaks the logic about what it means to “not read” an “ongoing comic strip”. (That strip was a Super-Fun-Pak Comix offering, as part of Ruben Bolling’s Tom the Dancing Bug. It was turned into a regular Gocomics.com feature by someone who got the joke.)

Comic Strip Master Command responded to the change by sending out a lot of comic strips. I’m going to have to divide this week’s entry into two pieces. There’s not deep things to say about most of these comics, but I’ll make do, surely.

Julie Larson’s Dinette Set rerun for the 8th is about one of the great uses of combinatorics. That use is working out how the number of possible things compares to the number of things there are. What’s always staggering is that the number of possible things grows so very very fast. Here one of Larson’s characters claims a science-type show made an assertion about the number of possible ideas a brain could hold. I don’t know if that’s inspired by some actual bit of pop science. I can imagine someone trying to estimate the number of possible states a brain might have.

And that has to be larger than the number of atoms in the universe. Consider: there’s something less than a googol of atoms in the universe. But a person can certainly have the idea of the number 1, or the idea of the number 2, or the idea of the number 3, or so on. I admit a certain sameness seems to exist between the ideas of the numbers 2,038,412,562,593,604 and 2,038,412,582,593,604. But there is a difference. We can out-number the atoms in the universe even before we consider ideas like rabbits or liberal democracy or jellybeans or board games. The universe never had a chance.

Or did it? Is it possible for a number to be too big for the human brain to ponder? If there are more digits in the number than there are atoms in the universe we can’t form any discrete representation of it, after all. … Except that we kind of can. For example, “the largest prime number less than one googolplex” is perfectly understandable. We can’t write it out in digits, I think. But you now have thought of that number, and while you may not know what its millionth decimal digit is, you also have no reason to care what that digit is. This is stepping into the troubled waters of algorithmic complexity.

Shady Shrew is selling fancy bubble-making wands. Shady says the crazy-shaped wands cost more than the ordinary ones because of the crazy-shaped bubbles they create. Even though Slylock Fox has enough money to buy an expensive wand, he bought the cheaper one for Max Mouse. Why?
Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th of January, 2017. Not sure why Shady Shrew is selling the circular wands at 50 cents. Sure, I understand wanting a triangle or star or other wand selling at a premium. But then why have the circular wands at such a cheap price? Wouldn’t it be better to put them at like six dollars, so that eight dollars for a fancy wand doesn’t seem that great an extravagance? You have to consider setting an appropriate anchor point for your customer base. But, then, Shady Shrew isn’t supposed to be that smart.

Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th is built on soap bubbles. The link between the wand and the soap bubble vanishes quickly once the bubble breaks loose of the wand. But soap films that keep adhered to the wand or mesh can be quite strangely shaped. Soap films are a practical example of a kind of partial differential equations problem. Partial differential equations often appear when we want to talk about shapes and surfaces and materials that tug or deform the material near them. The shape of a soap bubble will be the one that minimizes the torsion stresses of the bubble’s surface. It’s a challenge to solve analytically. It’s still a good challenge to solve numerically. But you can do that most wonderful of things and solve a differential equation experimentally, if you must. It’s old-fashioned. The computer tools to do this have gotten so common it’s hard to justify going to the engineering lab and getting soapy water all over a mathematician’s fingers. But the option is there.

Gordon Bess’s Redeye rerun from the 28th of August, 1970, is one of a string of confused-student jokes. (The strip had a Generic Comedic Western Indian setting, putting it in the vein of Hagar the Horrible and other comic-anachronism comics.) But I wonder if there are kids baffled by numbers getting made several different ways. Experience with recipes and assembly instructions and the like might train someone to thinking there’s one correct way to make something. That could build a bad intuition about what additions can work.

'I'm never going to learn anything with Redeye as my teacher! Yesterday he told me that four and one make five! Today he said, *two* and *three* make five!'
Gordon Bess’s Redeye rerun from the 28th of August, 1970. Reprinted the 9th of January, 2017. What makes the strip work is how it’s tied to the personalities of these kids and couldn’t be transplanted into every other comic strip with two kids in it.

Corey Pandolph’s Barkeater Lake rerun for the 9th just name-drops algebra. And that as a word that starts with the “alj” sound. So far as I’m aware there’s not a clear etymological link between Algeria and algebra, despite both being modified Arabic words. Algebra comes from “al-jabr”, about reuniting broken things. Algeria comes from Algiers, which Wikipedia says derives from `al-jaza’ir”, “the Islands [of the Mazghanna tribe]”.

Guy Gilchrist’s Nancy for the 9th is another mathematics-cameo strip. But it was also the first strip I ran across this week that mentioned mathematics and wasn’t a rerun. I’ll take it.

Donna A Lewis’s Reply All for the 9th has Lizzie accuse her boyfriend of cheating by using mathematics in Scrabble. He seems to just be counting tiles, though. I think Lizzie suspects something like Blackjack card-counting is going on. Since there are only so many of each letter available knowing just how many tiles remain could maybe offer some guidance how to play? But I don’t see how. In Blackjack a player gets to decide whether to take more cards or not. Counting cards can suggest whether it’s more likely or less likely that another card will make the player or dealer bust. Scrabble doesn’t offer that choice. One has to refill up to seven tiles until the tile bag hasn’t got enough left. Perhaps I’m overlooking something; I haven’t played much Scrabble since I was a kid.

Perhaps we can take the strip as portraying the folk belief that mathematicians get to know secret, barely-explainable advantages on ordinary folks. That itself reflects a folk belief that experts of any kind are endowed with vaguely cheating knowledge. I’ll admit being able to go up to a blackboard and write with confidence a bunch of integrals feels a bit like magic. This doesn’t help with Scrabble.

'Want me to teach you how to add and subtract, Pokey?' 'Sure!' 'Okay ... if you had four cookies and I asked you for two, how many would you have left?' 'I'd still have four!'
Gordon Bess’s Redeye rerun from the 29th of August, 1970. Reprinted the 10th of January, 2017. To be less snarky, I do like the simply-expressed weariness on the girl’s face. It’s hard to communicate feelings with few pen strokes.

Gordon Bess’s Redeye continued the confused-student thread on the 29th of August, 1970. This one’s a much older joke about resisting word problems.

Ryan North’s Dinosaur Comics rerun for the 10th talks about multiverses. If we allow there to be infinitely many possible universes that would suggest infinitely many different Shakespeares writing enormously many variations of everything. It’s an interesting variant on the monkeys-at-typewriters problem. I noticed how T-Rex put Shakespeare at typewriters too. That’ll have many of the same practical problems as monkeys-at-typewriters do, though. There’ll be a lot of variations that are just a few words or a trivial scene different from what we have, for example. Or there’ll be variants that are completely uninteresting, or so different we can barely recognize them as relevant. And that’s if it’s actually possible for there to be an alternate universe with Shakespeare writing his plays differently. That seems like it should be possible, but we lack evidence that it is.