Reading the Comics, January 28, 2019: Stock Subjects Edition

There are some subjects that seem to come up all the time in these Reading the Comics posts. Lotteries. Roman numerals. Venn Diagrams. The New Math. Kids not doing arithmetic well, or not understanding when they do it. This is the slate of comics for today’s discussion.

Olivia Jaimes’s Nancy for the 27th is the Roman Numerals joke for the week. I am not certain there is a strong consensus about the origins of Roman numerals. It’s hard to suppose that the first several numerals, though, are all that far from tally marks. Adding serifs just makes the numerals probably easier to read, if harder to write. I’ll go along with Nancy’s excuse of using the weights to represent work with a lesser weight.

Nancy: 'I'm going to get in amazing shape with Aunt Fritzi's exercise equipment.' Sluggo: 'But you never work out! Do you know what all these things are for?' Nancy: 'Of course I do! These are ... ' (She looks at two dumbbells, standing on end and looking like fat-serifed I's.) '... For telling me to do Roman numeral II reps with that dumbbell in the corner.'
Olivia Jaimes’s Nancy for the 27th of January, 2019. When I make an excuse to write about Nancy the results should be at this link.

Joe Martin’s Mr Boffo for the 27th is a lottery joke. And a probability joke, comparing the chances of being struck by lightning to those of winning the lottery. This gives me an excuse to link back to The Wandering Melon joke about the person who suffered both. And that incident in which a person did both win the lottery and get struck by lightning, albeit several years apart.

Man reading the newspaper to his wife: 'This is interesting. The odds of getting hit by lightning and of winning the lottery are exactly the same, one in a million. But the odds of being struck by lightning on the same day you win the lottery ... are even money!'
Joe Martin’s Mr Boffo for the 27th of January, 2019. I can’t find a way to link specifically to a particular day’s strip, but the previous link will bring one to the archives page. This seems to be the first time I’ve written about Mr Boffo since 2017, but all the essays when I did should be here.

Rick DeTorie’s One Big Happy for the 28th has the kid, Joe, impressed by something that he ought to have already expected. Grandpa uses this to take a crack at “that new, new math”, as though there were a time people weren’t amazed by what they should have deduced. Or a level of person who’s not surprised by the implications. One of Richard Feynman’s memoirs recounts him pranking people who have taken calculus by pointing out how whatever way you hold a French curve, the lowest point on it has a horizontal slope. This is true of the drafting instrument; but it’s also true of any curve that hasn’t got a corner or discontinuity.

Joe, holding up toys in the store: 'Grandpa, I got a great deal on these hot cars! They're a dollar each ... and two for TWO dollars!' Grandpa: 'It must be that new, *new* math they're teaching 'em.'
Rick DeTorie’s One Big Happy for the 28th of January, 2019. There are two different strips online daily for One Big Happy and essays mentioning either are here.

There aren’t comments (so far as I’m aware) on, which hosted this strip. So there weren’t any cracks about Common Core. But I am curious whether DeTorie wrote Grandpa as mentioning the New Math because the character would, plausibly, have seen that educational reform movement come and go. Or did DeTorie just riff on the New Math because that’s been a reliable punching bag since the mid-60s?

Caption: 'John Venn was having marital problems.' A household of goods are laid out on the floor, with intersecting circles around them. John Venn, standing in one, holds a dog on the leash. His wife stands in the other circle. Susanna: 'Mr Fluffers is mine and you know it!'
Liniers’s Macanudo for the 28th of January, 2019. This seems to be the first essay I’ve written for this strip. But any mentions of Macanudo from here on should be at this link.

Liniers’s Macanudo for the 28th is the Venn Diagram joke for the week. And it commits to its Venn-ness. This did make me wonder whether John Venn did marry. Well, he’d taught at Cambridge in the 19th century. Sometimes marrying was forbidden. He married Sussanna Carnegie Edmonstone in 1867, and they had one child. I know nothing about whether he ever had a significant marital problem.

This past week was much busier for mathematically-themed comic strips. There’s going to be at least one more essay this week. There might be two. They’ll appear here, along with all the other Reading the Comics posts.


Reading the Comics, October 14, 2018: Possessive Edition

The first two comics for this essay have titles of the form Name’s Thing, so, that’s why this edition title. That’s good enough, isn’t it? And besides this series there was a Perry Bible Fellowship which at least depicted mathematical symbols. It’s a rerun, though, even among those shown on It was rerun recently enough that I featured it around here back in June. It’s a bit risque. But the strip was rerun the 12th. Maybe I also need to drop Perry Bible Fellowship from the roster of comics I read for this.

On to the comics I haven’t dropped.

Tony Buino and Gary Markstein’s Daddy’s Home for the 11th tries using specific examples to teach mathematics. There’s strangeness to arithmetic. It’s about these abstract things like “thirty” and “addition” and such. But these things match very well the behaviors of discrete objects, ones that don’t blend together or shatter by themselves. So we can use the intuition we have for specific things to get comfortable working with the abstract. This doesn’t stop, either. Mathematicians like to work on general, abstract questions; they let us answer big swaths of questions all at once. But working out a specific case is usually easier, both to prove and to understand. I don’t know what’s the most advanced mathematics that could be usefully practiced by thinking about cupcakes. Probably something in group theory, in studying the rotations of objects that are perfectly, or nearly, rotationally symmetric.

Dad: 'It's like this: if mom made 30 cupcakes, and you gave 12 friends two cupcakes each, how many would you have left?' Elliot: 'Cupcakes or friends?' Dad: 'Good question.'
Tony Buino and Gary Markstein’s Daddy’s Home for the 11th of October, 2018. The coloring makes the strip more visually interesting than just the sketchy line art would; I’m curious how it’s rendered in newspapers that print black-and-white comics.

John Zakour and Scott Roberts’s Maria’s Day for the 11th is a follow-up to a strip featured last week. Maria’s been getting help on her mathematics from one of her closet monsters. And includes the usual joke about Common Core being such a horrible thing that it must come from monsters. I don’t know whether in the comic strip’s universe the monster is supposed to be imaginary. (Usually, in a comic strip, the question of whether a character is imaginary-or-real is pointless. I think Richard Thompson’s Cul de Sac is the only one to have done something good with it.) But if the closet monster is in Maria’s imagination, it’s quite in line for her to think that teaching comes from some malevolent and inscrutable force.

Maria: 'OK, you helped me with my homework, and I brought you a whole package of hot dogs. You wouldn't gobble me up after all that, right?' Monster: 'Kid, those were tofu dogs. I promise nothing. 'Course, I do wanna hear how I did on the math. Y'know, monsters invented 'common core'.'
John Zakour and Scott Roberts’s Maria’s Day for the 11th of October, 2018. Yeah, snarking on Common Core is an easy joke, but then so is snarking on tofu dogs. I’ve been happy with Morningstar vegetarian hot dogs for years now, although I will admit we don’t usually have them as hot dogs but instead as ways to bulk up a macaroni and cheese or similar meal.

Olivia Jaimes’s Nancy for the 12th features one of the first interesting mathematics questions you do in physics. This is often done with calculus. Not much, but more than Nancy and Esther could realistically have. It could be worked out experimentally, and that’s likely what the teacher was hoping for. Calculus isn’t really necessary, although it does show skeptical students there’s some value in all this d-dx business they’ve been working through. You can find the same answers by dimensional analysis, which is less intimidating. But you’d still need to know some trigonometry functions. That’s beyond whatever Nancy’s grade level is too. In any case, Nancy is an expert at identifying unstated assumptions, and working out loopholes in them. I’m curious whether the teacher would respect Nancy’s skill here. (The way the writing’s been going, I think she would.)

Teacher: 'Your assignment is to figure out what release angle makes a thrown ball travel the farthest.' Nancy, at the top of a well: 'Straight down seems to work pretty well.'
Olivia Jaimes’s Nancy for the 12th of October, 2018. Nancy and Esther found similarly good results at Bottomless Chasm, on the edge of town.

Francesco Marciuliano and Jim Keefe’s Sally Forth for the 13th is about new-friend Jenny trying to work out her relationship with Hilary-Faye-and-Nona. It’s a good bit of character work, but that is outside my subject here. In the last panel Nona admits she’s been talking, or at least thinking about τ versus π. This references a minor nerd-squabble that’s been going on a couple years. π is an incredibly well-known, useful number. It’s the only transcendental number you can expect a normal person to have ever heard of. Humans noticed it, historically, because the length of the circumference of a circle is π times the length of its diameter. Going between “the distance across” and “the distance around” turns out to be useful.

Jenny: 'You know, actions speak louder than words. And you three talk a *lot*. But ... I'll see where this goes, and if you mean what you say ... so, what were you talking about?' Hilary: 'Oddly enough, it never seems to be about school.' Nona: 'I was thinking about tau versus pi. But that might have just been in my head.'
Francesco Marciuliano and Jim Keefe’s Sally Forth for the 13th of October, 2018. I like the composition in the first panel. It’s the rare cinematic angle that allows all four people who need to be in the panel to be shown without looking like a police lineup. (Which, yeah, the third panel kind of does. But I don’t know how to frame that so you can show all four characters and have the three talking, and have the dialogue balloons read in the logical order.)

The thing is, many mathematical and physics formulas find it more convenient to write things in terms of the radius of a circle or sphere. And this makes 2π show up in formulas. A lot. Even in things that don’t obviously have circles in them. For example, the Gaussian distribution, which describes how much a sample looks like the population it’s sampled from, has 2π in it. So, the τ argument does, why write out 2π all these places? Why not decide that that’s the useful number to think about, give it the catchy name τ, and use that instead? All the interesting questions about π have exact, obvious parallel questions about τ. Any answers about one give us answers about the other. So why not make this switch and then … pocket the savings in having shorter formulas?

You may sense in me a certain skepticism. I don’t see where changing over gets us anything worth the bother. But there are fashions in mathematics as with everything else. Perhaps τ has some ability to clarify things in ways we’ll come to better appreciate.

This and my other Reading the Comics posts are this link. Essays inspired by Daddy’s Home are at this link. Other essays that mention Maria’s Day discussions should be at this link. Essays with a mention of Nancy, old and new, are at this link. And essays in which Sally Forth gets discussed will be at this link. It’s a new tag today, which does surprise me.

Reading the Comics, July 21, 2018: Infinite Hotels Edition

Ryan North’s Dinosaur Comics for the 18th is based on Hilbert’s Hotel. This is a construct very familiar to eager young mathematicians. It’s an almost unavoidable pop-mathematics introduction to infinitely large sets. It’s a great introduction because the model is so mundane as to be easily imagined. But you can imagine experiments with intuition-challenging results. T-Rex describes one of the classic examples in the third through fifth panels.

The strip made me wonder about the origins of Hilbert’s Hotel. Everyone doing pop mathematics uses the example, but who created it? And the startling result is, David Hilbert, kind of. My reference here is Helge Kragh’s paper The True (?) Story of Hilbert’s Infinite Hotel. Apparently in a 1924-25 lecture series in Göttingen, Hilbert encouraged people to think of a hotel with infinitely many rooms. He apparently did not use it for so many examples as pop mathematicians would. He just used the question of how to accommodate a single new guest after the infinitely many rooms were first filled. And then went to imagine an infinite dance party. I don’t remember ever seeing the dance party in the wild; perhaps it’s a casualty of modern rave culture.

T-Rex: 'David Hilbert was a mathematician and hotelier who was born in 1892. He built an infinite hotel, you guys! THE INFINITE HOTEL: A TRUE STORY. So Hilbert built this infinite hotel that was infinitely big and had infinitely many rooms; I believe this was a matter of some investment. But build it he did, and soon after a bus with infinity people in it showed up, with each of them wanting a room! Lucky for Hilbert he had his infinite hotel, so each guest got a room, and the hotel was filled up to capacity. Nice! But just then another friggin' bus showed up, and it ALSO had infinity people in it!' Utahraptor: 'Nobody builds for TWO infinite buses showing up right after the other!' T-Rex: 'Turns out they do! He just told every guest already there to move into the room that was double their current room number. So the guest in room 3 moved into room 6, and so on! Thus, only the even-numbered rooms were occupied, and everyone on the new bus could have an odd-numbered room!' Utahraptor: 'Amazing!' T-Rex: 'Yep! Anyway! It's my understanding he died an infinitely rich man infinity years later.'
Ryan North’s Dinosaur Comics for the 18th of July, 2018. The strip likely ran sometime before on North’s own web site; I don’t know when.

Hilbert’s Hotel seems to have next seen print in George Gamow’s One, Two Three … Infinity. Gamow summoned the hotel back from the realms of forgotten pop mathematics with a casual, jokey tone that fooled Kragh into thinking he’d invented the model and whimsically credited Hilbert with it. (Gamow was prone to this sort of lighthearted touch.) He came back to it in The Creation Of The Universe, less to make readers consider the modern understanding of infinitely large sets than to argue for a universe having infinitely many things in it.

And then it disappeared again, except for cameo appearances trying to argue that the steady-state universe would be more bizarre than what we actually see. The philosopher Pamela Huby seems to have made Hilbert’s Hotel a thing to talk about again, as part of a debate about whether a universe could be infinite in extent. William Lane Craig furthered using the hotel, as part of the theological debate about whether there could be an infinite temporal regress of events. Rudy Rucker and Eli Maor wrote descriptions of the idea in the 1980s, with vague ideas about whether Hilbert actually had anything to do with the place. And since then it’s stayed, a famous fictional hotel.

David Hilbert was born in 1862; T-Rex misspoke.

Teacher: 'Sluggo --- describe an octagon.' Sluggo: 'A figure with eight sides and eight angles.' Teacher: 'Correct. Now, Nancy --- describe a sphere'. (She blows a bubble-gum bubble.)
Ernie Bushmiller’s Nancy Classics for the 20th of July, 2018. Originally run, it looks to me, like the 18th of October, 1953.

Ernie Bushmiller’s Nancy Classics for the 20th gets me out of my Olivia Jaimes rut. We could probably get a good discussion going about whether giving an example of a sphere is an adequate description of a sphere. Granted that a bubble-gum bubble won’t be perfectly spherical; neither will any example that exists in reality. We always trust that we can generalize to an ideal example of this thing.

I did get to wondering, in Sluggo’s description of the octagon, why the specification of eight sides and eight angles. I suspect it’s meant to avoid calling an octagon something that, say, crosses over itself, thus having more angles than sides. Not sure, though. It might be a phrasing intended to make sure one remembers that there are sides and there are angles and the polygon can be interesting for both sets of component parts.

Literal Figures: a Venn diagram of two circles, their disjoint segments labelled 'Different' and their common area labelled 'Same'. A graph, 'Height of Rectangles', a bar chart with several rectangles. A graph, 'Line Usage': a dashed line labelled Dashed; a jagged line labelled Jagged; a curvy line labelled Curvy. A map: 'Global Dot Concentration', with dots put on a map of the world.
John Atkinson’s Wrong Hands for the 20th of July, 2018. So this spoils a couple good ideas for my humor blog’s Statistics Saturdays now that you know I’ve seen this somewhere.

John Atkinson’s Wrong Hands for the 20th is the Venn Diagram joke for the week. The half-week anyway. Also a bunch of other graph jokes for the week. Nice compilation of things. I love the paradoxical labelling of the sections of the Venn Diagram.

Ziggy: 'I wish I'd paid more attention in math class! I can't even count the number of times I've had trouble with math!'
Tom II Wilson’s Ziggy for the 20th of July, 2018. Tom Wilson’s still credited with the comic strip, though he died in 2011. I don’t know whether this indicates the comic is in reruns or what.

Tom II Wilson’s Ziggy for the 20th is a plaintive cry for help from a despairing soul. Who’s adding up four- and five-digit numbers by hand for some reason. Ziggy’s got his projects, I guess is what’s going on here.

Cop: 'You were travelling at 70 miles per hour. How much later would you have arrived if you were only going 60?' Eno: 'No fair --- I hate word problems!'
Glenn McCoy and Gary McCoy’s The Duplex for the 21st of July, 2018. So the strip is named The Duplex because it’s supposed to be about two families in the same, uh, duplex: this guy with his dog, and a woman with her cat. I was reading the strip for years before I understood that. (The woman doesn’t show up nearly so often, or at least it feels like that.)

Glenn McCoy and Gary McCoy’s The Duplex for the 21st is set up as an I-hate-word-problems joke. The cop does ask something people would generally like to know, though: how much longer would it take, going 60 miles per hour rather than 70? It turns out it’s easy to estimate what a small change in speed does to arrival time. Roughly speaking, reducing the speed one percent increases the travel time one percent. Similarly, increasing speed one percent decreases travel time one percent. Going about five percent slower should make the travel time a little more than five percent longer. Going from 70 to 60 miles per hour reduces the speed about fifteen percent. So travel time is going to be a bit more than 15 percent longer. If it was going to be an hour to get there, now it’ll be an hour and ten minutes. Roughly. The quality of this approximation gets worse the bigger the change is. Cutting the speed 50 percent increases the travel time rather more than 50 percent. But for small changes, we have it easier.

There are a couple ways to look at this. One is as an infinite series. Suppose you’re travelling a distance ‘d’, and had been doing it at the speed ‘v’, but now you have to decelerate by a small amount, ‘s’. Then this is something true about your travel time ‘t’, and I ask you to take my word for it because it has been a very long week and I haven’t the strength to argue the proposition:

t = \frac{d}{v - s} = \frac{d}{v}\left(1 + \left(\frac{s}{v}\right) + \left(\frac{s}{v}\right)^2 + \left(\frac{s}{v}\right)^3 + \left(\frac{s}{v}\right)^4 + \left(\frac{s}{v}\right)^5 + \cdots \right)

‘d’ divided by ‘v’ is how long your travel took at the original speed. And, now, \left(\frac{s}{v}\right) — the fraction of how much you’ve changed your speed — is, by assumption, small. The speed only changed a little bit. So \left(\frac{s}{v}\right)^2 is tiny. And \left(\frac{s}{v}\right)^3 is impossibly tiny. And \left(\frac{s}{v}\right)^4 is ridiculously tiny. You make an error in dropping these \left(\frac{s}{v}\right) squared and cubed and forth-power and higher terms. But you don’t make much of one, not if s is small enough compared to v. And that means your estimate of the new travel time is:

\frac{d}{v} \left(1 + \frac{s}{v}\right)

Or, that is, if you reduce the speed by (say) five percent of what you started with, you increase the travel time by five percent. Varying one important quantity by a small amount we know as “perturbations”. Working out the approximate change in one quantity based on a perturbation is a key part of a lot of calculus, and a lot of mathematical modeling. It can feel illicit; after a lifetime of learning how mathematics is precise and exact, it’s hard to deliberately throw away stuff you know is not zero. It gets you to good places, though, and fast.

Wellington: 'First our teacher says 25 plus 25 equals 50. Then she says 30 and 20 equals 50. Then she says 10 and 40 equals 50. Finally she says 15 and 35 equals 50. Shouldn't we have a teacher who can make up her mind?'
Morrie Turner’s Wee Pals rerun for the 21st of July, 2018. Originally ran the 22nd of July, 2013.

Morrie Turner’s Wee Pals for the 21st shows Wellington having trouble with partitions. We can divide any counting number up into the sum of other counting numbers in, usually, many ways. I can kind of see his point; there is something strange that we can express a single idea in so many different-looking ways. I’m not sure how to get Wellington where he needs to be. I suspect that some examples with dimes, quarters, and nickels would help.

And this is marginal but the “Soul Circle” personal profile for the 20th of July — rerun from the 20th of July, 2013 — was about Dr Cecil T Draper, a mathematics professor.

You can get to this and more Reading the Comics posts at this link. Other essays mentioning Dinosaur Comics are at this link. Essays that describe Nancy, vintage and modern, are at this link. Wrong Hands gets discussed in essays on this link. Other Ziggy-based essays are at this link. The Duplex will get mentioned in essays at this link if any other examples of the strip get tagged here. And other Wee Pals strips get reviewed at this link.

Reading the Comics, July 17, 2018: These Are Comic Strips Edition

Some of the comics last week don’t leave me much to talk about. Well, there should be another half-dozen comics under review later in the week. You’ll stick around, won’t you please?

Anthony Blades’s Bewley for the 16th is a rerun, and an old friend. It’s appeared the 14th of August, 2016, and in April 2015 and in May 2013. Maybe it’s time I dropped the strip from my reading. The scheme by which the kids got the right answer out of their father is a variation on the Clever Hans trick. Clever Hans was a famous example of animal perception: the horse appeared to be able to do arithmetic, tapping his hoof to signal a number. Brilliant experimental design found what was going on. Not that the horse was clever enough to tell (to make up an example) 18 divided by 3. But that the horse was clever enough to recognize the slight change in his trainer’s expression when he had counted off six. Animals (besides humans) do have some sense of numbers, but not that great a sense.

Father: 'You can do the next question yourselves. I'm not giving you any more help.' Bea: 'Okay, 18 / 3. Well, that's an easy one. Two.' (Father looks disbelieving.) Bea: 'Three.' (Same.) 'Four. Five. Six.' Tonus: 'There! His eye twitched!' Bea: 'Six it is.' Father: 'This can't be what they teach you at school!'
Anthony Blades’s Bewley rerun for the 16th of July, 2018. I don’t know, I’d check with someone who seemed more confident in their work.

Jeff Stahler’s Moderately Confused for the 16th is the old joke told about accountants and lawyers when they encounter mathematics, recast to star the future disgraced former president. The way we normally define ‘two’ and ‘plus’ and ‘two’ and ‘equals’ and ‘four’ there’s not room for quibbling about their relationship. Not without just lying, anyway. Thus this satisfies the rules of joke formation.

Kid writing 2 + 2 = 4 on the board. Trump: 'The correct answer would be many thousands ... many, many. Never settle for just four.'
Jeff Stahler’s Moderately Confused for the 16th of July, 2018. Sorry to throw this at you without adequate warning. I got it that way myself.

Olivia Jaimes’s Nancy for the 16th is, I think, the point that Jaimes’s Nancy has appeared in my essays more than Guy Gilchrist’s ever did. Well, different artists have different interests. This one depicts Nancy getting the motivation she needed to excel in arithmetic. I’m not convinced of the pedagogical soundness of the Nancy comic strip. But it’s not as though people won’t practice things for rewards.

Esther: 'Wow, Nancy, you can multiply really fast.' Nancy: 'It's probably because I'm a beautiful genius. Perhaps the most beautiful genius of all.' [ Every day the prior week ] Aunt Frizz: 'No Wi-fi until you do *some* work today.' (She holds up a paper. New Password: 12124 x 316 = ???'
Olivia Jaimes’s Nancy for the 16th of July, 2018. If Nancy’s phrasing seems needlessly weird in the second and third panels (as it did to me) you might want to know that A Beautiful Genius was the name of a biography of the mathematician/economist John Nash. Yes, the Nash whose life inspired the movie A Beautiful Mind. So now it should seem a little less bizarre. Does it?

Jerry van Amerongen’s Ballard Street for the 17th is somehow a blend of the Moderately Confused and Nancy strips from the day before. All right, then. It’s nice when people share their enthusiasms.

Man standing behind a small table, with pamphlets, and a sign: 'I support 2 x 2 = 4 and more!' Caption: Eric's getting more involved with multiplication.
Jerry van Amerongen’s Ballard Street for the 17th of July, 2018. I do like how eager Eric looks about sharing multiplication with people. I’ve never looked that cheery even while teaching stuff I loved.

John McPherson’s Close to Home for the 17th is the Roman Numerals joke for the week. Enjoy.

Roman types playing golf on hole XXIV, in front of a Colosseum prop. One cries out, 'IV!'.
John McPherson’s Close to Home for the 17th of July, 2018. You might think that’s a pretty shaky Colosseum in the background, but McPherson did have to communicate that this was happening in Ancient Rome faster than the reader could mistake the word balloon for a homonym of “ivy”. How would you do it?

Terri Liebenson’s Pajama Diaries for the 18th is the Venn Diagram joke for the week. Enjoy.

Venn Diagram of my Kids' Volume Levels: Mumble; Shout; the tiny intersection, 'What happens when I'm not around'.
Terri Liebenson’s Pajama Diaries for the 18th of July, 2018. … Yeah, I don’t have further commentary for this. Sorry.

I try to put all my Reading the Comics posts at this link, based on the ‘Comic Strips’ tag. Essays that mention Bewley are at this link. The essays which discuss Moderately Confused should be gathered at this link. The increasing number of essays mentioning Nancy are at this link. The Ballard Street strips discussed should be at this link; it turns out to be a new tag. Huh. Any Close To Home strips reviewed here should be at this link; it, too, is a new tag. And more Pajama Diaries comments should be at this link. Thanks for reading.

Reading the Comics, July 14, 2018: County Fair Edition

The title doesn’t mean anything. My laptop’s random-draw of pictures pulled up one from the county fair last year is all. I’m just working too close to deadline to have a good one. Pet rabbit has surgery scheduled and we are hoping that turns out well for everyone involved.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 12th has the blackboard of mathematical symbols. Familiar old shorthand of conflating mathematics ability with genius, or at least intelligence. The blackboard isn’t particularly full of expressions, possibly because Caulfield and Rouillard’s art might not be able to render too much detail clearly. It’s also got a sort-of appearance of Einstein’s most famous equation. Although with perhaps an extra joke to it. Suppose we’re to take ‘E’ and ‘M’ and ‘C’ to mean what they do in Einstein’s use. Then E - mc^2 has to equal zero. And there are many things you can safely do with zero. Dividing by it, though, isn’t one. I shan’t guess whether Caulfield and Rouillard were being that sly, though.

Blackboard with 'a^2 x 333 / E - MC^2 = 1,333' on it. Nerd: 'Ah! See, I've proved it!' Bully: 'That's nice, now let's step outside and settle this like men.'
Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 12th of July, 2018. Must say that’s some really nice canvas grain and I wonder whether they actually work on media like that for their thrice-a-week comic strip or whether they simply use that texture in their art programs.

Marty Links’s Emmy Lou rerun for the 13th tries to be a paradox. How can one like mathematics without liking figures? But arithmetic is just one part of mathematics. Surely the most-used part, if we go by real-world utility. But not everything. Arithmetic is often useful, yes. But you can do good work in (say) logic or knot theory or geometry with only a slight ability to add or subtract or multiply. There’s not enough emphasis put on that in early education. I suppose it reflects the reasonable feeling that people do need to be competent at arithmetic, which is useful. But it gives one a distorted view of what mathematics can be.

Emmy Lou, looking over her homework, and complaining to her mother: 'Mathematics in itself isn't so hard! It's all these figures ... '
Marty Links’s Emmy Lou rerun for the 13th of July, 2018. Apparently it previously ran the 21st of October, 1971. (I make no claims about even earlier runs of the strip and am just going by what I can make out in the copyright information.)

Mark Parisi’s Off The Markfor the 13th is the anthropomorphic numerals joke for the week. And it presents being multiplied by zero as a terrifying fate for other numbers. This seems to reflect the idea that being multiplied by zero is equivalent to being made into nothing. That it’s being killed. Zero enjoys this dual meaning, culturally, representing both a number and the concept of a thing that doesn’t exist and the concept of non-existence. If being turned from one number to another is a numeral murder, then a 2 sneaking in with a + sign would be at least as horrifying. But that joke wouldn’t work, and I know that too.

Numerals, sweating as a suspenseful scene in a numerals movie: a 9 whistling happily, unsuspecting that a 0 is sneaking into the room and carrying a x sign.
Mark Parisi’s Off The Mark for the 13th of July, 2018. In a moment of comic relief the x slips in the 0’s hand, and it temporarily becomes a + and everybody sighs with relief.

Olivia Jaimes’s Nancy for the 14th is another recreational-mathematics puzzle. I know nothing of Jaimes’s background but apparently it involves a keen interest in that kind of play that either makes someone love or hate mathematics. (Myself, I’m only slightly interested in these kinds of puzzles, most of the time.) This one — add one line to ‘fix’ the equation 5 + 5 + 5 + 5 = 555 — I hadn’t encountered before. Took some fuming to work it out. The obvious answer, of course, is to add a slash across the = sign so that it means “does not equal”.

Teacher: 'Here's today's brainteaser. Can you add just one line to this equation to fix it?' [ 5 + 5 + 5 + 5 = 555 ] Nancy: 'Yep.' (She scribbles a line across the whole equation.)
Olivia Jaimes’s Nancy for the 14th of July, 2018. They … do seem to be spending a lot of time in class for it being July.

But that answer’s dull. What mathematicians like are statements that are true and interesting. There are many things that 5 + 5 + 5 + 5 does not equal. Why single out 555 from that set? So negating the equals sign meets the specifications of the problem, slightly better than Nancy does herself. It doesn’t have the surprise of the answer Nancy’s teacher wants.

If you don’t get how to do it, highlight over the paragraph below for a hint.

There are actually three ways to add the stroke to make this equation true. The three ways are equivalent, though. Notice that the symbols on the board comprise strokes and curves and consider that the meaning of the symbol can be changed by altering the composition of those strokes and curves.

Quincy's Grandmother: 'Who has been your favorite teacher this year, Quincy?' Quincy: 'Well, Mrs Glover sure has made arithmetic relevant. Like this problem. If your pants need a new patch every month ... how many patches would you have in a year and a half?!'
Ted Shearer’s Quincy for the 14th of July, 2018. It originally ran the 21st of May, 1979.

Ted Shearer’s Quincy for the 21st of May, 1979, and rerun the 14th is a joke about making mathematics problems relevant. And, yeah, I’ll give Mrs Glover credit for making problems that reflect stuff students know they’re going to have to deal with. Also that they may have already dealt with and so have some feeling for what plausible answers will be. It’s tough to find many problems like that which don’t repeat themselves too much. (“If your pants need a new patch every two months how many would you have in three years?”).

I do many Reading the Comics posts. Others like this one are here. For other essays that mention Mustard and Boloney, look to this link. I admit I’m surprised there’s anything there; I didn’t remember having written about it before For other discussions of Emmy Lou, try this link. For this and other times I’ve written about Off The Mark try this link. For Nancy content, try this link. And for other Quincy essays you can read this link. Thank you.

Reading the Comics, July 7, 2018: Mutt and Jeff Relettering Scandal Edition

I apologize for not having a more robust introduction here. My week’s been chopped up by concern with the health of the older of our rabbits. Today’s proved to be less alarming than we had feared, but it’s still a lot to deal with. I appreciate your kind thoughts. Thank you.

Meanwhile the comics from last week have led me to discover something really weird going on with the Mutt and Jeff reruns.

Charles Schulz’s Peanuts Classics for the 6th has the not-quite-fully-formed Lucy trying to count the vast. She’d spend a while trying to count the stars and it never went well. It does inspire the question of how to count things when doing a simple tally is too complicated. There are many mathematical approaches. Most of them are some kind of sampling. Take a small enough part that you can tally it, and estimate the whole based on what your sample is. This can require ingenuity. For example, when estimating our goldfish population, it was impossible to get a good sample at one time. When tallying the number of visible stars in the sky, we have the problem that the Galaxy has a shape, and there are more stars in some directions than in others. This is why we need statisticians.

Lucy, going out in twilight with a pencil and sheet of paper: 'I'm going to count all the stars even if it kills me! People say I'm crazy, but I know I'm not , and that's what counts! I think I'll just sit here until it gets dark. This way I can take my time counting the stars. I'll mark 'em down as they come out. HA! There's the first one ... dum te ta te dum. There's another one. Two, three, four ... this is a cinch. Five, six, oh oh! SevenEightNineTen ... ElevenTwelveThirteen Oh, MY! They're coming out all over! SLOW DOWN! 21, 22, 23, 24, ... 35, 35, 40! Whew! (Gasp, gasp!) 41, 42 ... ' (Defeated Lucy sitting on the curb, exhausted, beneath the night sky.) 'Rats!'
Charles Schulz’s Peanuts Classics for the 6th of July, 2018. It originally ran the 4th of April, 1954. That is an adorable little adding machine and stool that Lucy has in the title panel there.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th looks initially like it’s meant for a philosophy blog’s Reading the Comics post. It’s often fruitful in the study of ethics to ponder doing something that is initially horrible, but would likely have good consequences. Or something initially good, but that has bad effects. These questions challenge our ideas about what it is to do good or bad things, and whether transient or permanent effects are more important, and whether it is better to be responsible for something (or to allow something) by action or inaction.

It comes to mathematics in the caption, though, and with an assist from the economics department. Utilitarianism seems to offer an answer to many ethical problems. It posits that we need to select a primary good of society, and then act so as to maximize that good. This does have an appeal, I suspect even to people who don’t thrill of the idea of finding the formula that describes society. After all, if we know the primary good of society, why should we settle for anything but the greatest value of that good? It might be difficult in practice, say, to discount the joy a musician would bring over her lifetime with her performances fairly against the misery created by making her practice the flute after school when she’d rather be playing. But we can imagine working with a rough approximation, at least. Then the skilled thinkers point out even worse problems and we see why utilitarianism didn’t settle all the big ethical questions, even in principle.

Professor: 'Suppose you want to kill a baker. But, if you kill him, a bunch of starving people will get access to his bread. Should you do it anyway?' Caption: 'All moral dilemmas can be rephrased as evil-maximization problems.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th of July, 2018. Confess I’m not sure the precise good-maximization reversal of this. I suppose it’s implying that the baker is refusing to give bread to starving people who can’t pay, and the hungry could alleviate the problem a while by eating the rich?

The mathematics, though. As Weinersmith’s caption puts it, we can phrase moral dilemmas as problems of maximizing evil. Typically we pose them as ones of maximizing good. Or at least of minimizing evil. But if we have the mechanism in place to find where evil is maximized, don’t we have the tools to find where good is? If we can find the set of social parameters x, y, and z which make E(x, y, z) as big as possible, can’t we find where -E(x, y, z) is as big, too? And isn’t that then where E(x, y, z) has to be smallest?

And, sure. As long as the maximum exists, or the minimum exists. Maybe we can tell whether or not there is one. But this is why when you look at the mathematics of finding maximums you realize you’re also doing minimums, or vice-versa. Pretty soon you either start referring to what you find as extremums. Or you stop worrying about the difference between a maximum and a minimum, at least unless you need to check just what you have found. Or unless someone who isn’t mathematically expert looks at you wondering if you know the difference between positive and negative numbers.

Jeff: 'You're such a fool, I'll bet you can't solve this simple problem!' Mutt: 'Which problem?' Jeff: 'If five men can eat a ham in five minutes, how long it will take ten men to eat that same ham?' Mutt: 'Well, some people eat slower.' Jeff: 'See? You just can't do it!' Mutt: 'Neither can you! It can't be solved!' Jeff: 'You say it can't be solved? Why?' Mutt: 'Because the first five men have ALREADY eaten the ham!'
Bud Fisher’s Mutt and Jeff for the 7th of July, 2018. So I found a previous iteration of this strip, from the 21st of February, 2015. They had relettered things, changing the wording slightly and making it overall somehow clunkier. The thing is, that 2015 strip looks to me like it might be a computer-lettered typeface too; look at the C’s, and the little loops on top of the letters. On the other hand, there’s some variation in the ? marks there. I understand relettering the more impenetrable old strips, especially if they don’t have the original material and have to go from archived newspaper prints. But the 2015 edition seems quite clear enough; why change that?

Bud Fisher’s Mutt and Jeff for the 7th has run here before. Except that was before they redid the lettering; it was a roast beef in earlier iterations. I was thinking to drop Mutt and Jeff from my Reading the Comics routine before all these mysteries in the lettering turned up. Anyway. The strip’s joke starts with a work-rate problems. Given how long some people take to do a thing, how long does it take a different number of people to do a thing? These are problems that demand paying attention to units, to the dimensions of a thing. That seems to be out of fashion these days, which is probably why these questions get to be baffling. But if eating a ham takes 25 person-minutes to do, and you have ten persons eating, you can see almost right away how long to expect it to take. If the ham’s the same size, anyway.

Teacher: 'Can you tell me how many triangles are in this diagram?' (It's an equilateral triangle, divided into thirds horizontally, and with the angle up top trisected, so that there are nine discrete figures inside.) Nancy, with a dozen scraps of used paper strewn around: 'Can you tell me how many pages we have to waste trying to solve this accursed puzzle?'
Olivia Jaimes’s Nancy for the 7th of July, 2018. There’s some real Old People Complaining in the comments, by the way, about how dare Nancy go sassing her elders like that. So, if you want to read those comments, judge wisely.

Olivia Jaimes’s Nancy for the 7th is built on a spot of recreational mathematics. Also on the frustration one can have when a problem looks like it’s harmless innocent fun and turns out to take just forever and you’re never sure you have the answers just right. The commenters on have settled on 18. I’m content with that answer.

Care for more of this? You can catch all my Reading the Comics posts at this link. Essays with Saturday Morning Breakfast Cereal content are at this link. Essays with Peanuts are at this link. Those with Mutt and Jeff are at this link. And those with Nancy are here. Thank you.

Reading the Comics, June 19, 2018: Don’t Ask About The Hyperbolic Cosine Edition

Although the hyperbolic cosine is interesting and I could go on about it.

Eric the Circle for the 18th of June is a bit of geometric wordplay for the week. A secant is — well, many things. One of the important things is it’s a line that cuts across a circle. It intersects the circle in two points. This is as opposed to a tangent, which touch it in one. Or missing it altogether, which I think hasn’t got any special name. “Secant” also appears as one of the six common trig functions out there.

Small circle: 'Hey, Eric! There's a line on you!' Medium circle: 'Get it off!' Eric, with a line across his side: 'See? Can't!'
Eric the Circle for the 18th of June, 2018. This one was composed by Griffinetsabine. It originally appeared sometime in 2012.

In value the secant of an angle is just the reciprocal of the cosine of that angle. Where the cosine is never smaller than -1 nor larger than 1, the secant is always either greater than 1 or smaller than -1. It’s a useful function to have by name. We can write “the secant of angle θ” as sec(\theta) . The otherwise sensible-looking \cos^{-1}(\theta) is unavailable, because we use that to mean “the angle whose cosine is θ”. We need to express that idea, the “arc-cosine” or “inverse cosine”, quite a bit too. And \cos(\theta)^{-1} would look like we wanted the cosine of one divided by θ. Ultimately, we have a lot of ideas we’d like to write down, and only so many convenient quick shorthand ways to write them. And by using secant as its own function we can let the arc-cosine have a convenient shorthand symbol. These symbols are a point where you see the messy, human, evolutionary nature of mathematical symbols at work.

We can understand the cosine of an angle θ by imagining a right triangle with hypotenuse of length 1. Set that so the hypotenuse makes angle θ with respect to the x-axis. Then the opposite leg of that right triangle will be the cosine of θ away from the origin. The secant, now, that works differently. Again here imagine a right triangle, but this time one of the legs has length 1. And that leg is at an angle θ with respect to the x-axis. Then the far leg of that right triangle is going to cross the x-axis. And it’ll do that at a point that’s the secant of θ away from the origin.

Debbie: 'In this soap opera, Kimberly is trying to hide her past from Renaldo ... who has hired a detective to find out how many times (x) Kimberly has made love to how many lovers (y). ... Who says algebra has no use outside the classroom?'
Larry Wright’s Motley Classics for the 19th of June, 2018. It originally ran sometime in 1997.

Larry Wright’s Motley Classics for the 19th speaks of algebra as the way to explain any sufficiently complicated thing. Algebra’s probably not the right tool to analyze a soap opera, or any drama really. The interactions of characters are probably more a matter for graph theory. That’s the field that studies groups of things and the links between them. Occasionally you’ll see analyses of, say, which characters on some complicated science fiction show spend time with each other and which ones don’t. I’m not aware of any that were done on soap operas proper. I suspect most mathematics-oriented nerds view the soaps as beneath their study. But most soap operas do produce a lot of show to watch, and to summarize; I can’t blame them for taking a smaller, easier-to-summarize data set to study. (Also I’m not sure any of these graphs reveal anything more enlightening than, “Huh, really thought The Doctor met Winston Churchill more often than that”.)

Teacher: 'You two making progress on the math problem?' Nancy: 'We're making progress on *A* math problem.' (Nancy and Esther's paper: 'number of seconds left in school, 24 x 5 x 60 x 60'.)
Olivia Jaimes’s Nancy for the 19th of June, 2018. This one originally appeared in June of 2018.

Olivia Jaimes’s Nancy for the 19th is a joke on getting students motivated to do mathematics. Set a problem whose interest people see and they can do wonderful things.

Circle in the bar, speaking to another circle: 'You wanna get out of here, come back to my place and create a Venn diagram?' ... Squirrel in the corner, adding commentary: 'It'll never work ... they have nothing in common.'
Dave Whamond’s Reality Check for the 19th of June, 2018. Those seem like small drinks for circles that large.

Dave Whamond’s Reality Check for the 19th is our Venn Diagram strip for the week. I say the real punch line is the squirrel’s, though. Properly, yes, the Venn Diagram with the two having nothing in common should still have them overlap in space. There should be a signifier inside that there’s nothing in common, such as the null symbol or an x’d out intersection. But not overlapping at all is so commonly used that it might as well be standard.

Cardinal: 'Whatever you're thinking, don't say it.' Other bird has a thought balloon full of arithmetic expressions.
Teresa Bullitt’s Frog Applause for the 21st of June, 2018. It’s a Dadaist comic strip; embrace the bizarreness.

Teresa Bullitt’s Frog Applause for the 21st uses a thought balloon full of mathematical symbols as icon for far too much deep thinking to understand. I would like to give my opinion about the meaningfulness of the expressions. But they’re too small for me to make out, and GoComics doesn’t allow for zooming in on their comics anymore. I looks like it’s drawn from some real problem, based on the orderliness of it all. But I have no good reason to believe that.

If you’d like more of these Reading the Comics posts, you can find them in reverse chronological order at this link. If you’re interested in the comics mentioned particularly here, Eric the Circle strips are here. Frog Applause comics are on that link. Motley strips are on that link. Nancy comics are on that page. And And Reality Check strips are here.

Reading the Comics, June 13, 2018: Wild Squirrel Edition

I have another Reading the Comics post with a title that’s got nothing to do with the post. It has got something to do with how I spent my weekend. Not sure if I’ll ever get around to explaining that since there’s not much mathematical content to that weekend. I’m not sure whether the nonsense titles are any better than trying to find a theme in what Comic Strip Master Command has sent the past week. It takes time to pick something when anything would do, after all.

Scott Hilburn’s The Argyle Sweater for the 10th is the anthropomorphic numerals strip for the week. Also arithmetic symbols. The ÷ sign is known as “the division symbol”, although now and then people try to promote it as the “obelus”. They’re not wrong to call it that, although they are being the kind of person who tries to call the # sign the “octothorp”. Sometimes social media pass around the false discovery that the ÷ sign is a representation of a fraction, \frac{a}{b} , with the numbers replaced by dots. It’s a good mnemonic for linking fractions and division. But it’s wrong to say that’s what the symbol means. ÷ started being used for division in Western Europe in the mid-17th century, in competition with many symbols, including / (still in common use), : (used in talking about ratios or odds), – (not used in this context anymore, and just confusing if you do try to use it so). And ÷ was used in northern Europe to mean “subtraction” for several centuries after this.

Numeral 8, speaking to a numeral 4 on a motorcycle by a ramp at the edge of a canyon that has a giant division symbol island within it: 'I'd think twice. Even if you make it to the other side, you'll always be half the man I am.' Caption: 'Crossing the Great Divide.'
Scott Hilburn’s The Argyle Sweater for the 10th of June, 2018. I’m kind of curious how far in the comments one has to go before getting to a ‘jumping the shark’ comment but not so curious as to read the comments.

Tom Toles’s Randolph Itch, 2am for the 11th is a repeat; the too-short-lived strip has run through several cycles since I started doing these summaries. But it is also one of the great pie chart jokes ever and I have no intention of not telling people to enjoy it.

Randolph dreaming about his presentation; it shows a Pie Chart: Landed On Stage, 28%. Back wall, 13%. Glancing blow off torso, 22%. Hit podium, 12%. Direct hit in face, 25%. Several pies have been thrown, hitting the stage, back wall, his torso, the podium, his face. Corner illustration: 'I turn now to the bar graph.'
Tom Toles’s Randolph Itch, 2am for the 11th of June, 2018. I’m not sure when it did first run, past that it was in 2000, but I’ve featured it at least two times before, both of those in 2015, peculiarly. So in short I have no idea how GoComics picks its reruns for this strip.

Pie charts, and the also-mentioned bar charts, come to us originally from the economist William Playfair, who in the late 1700s and early 1800s devised nearly all the good ways to visualize data. But we know them thanks to Florence Nightingale. Among her other works, she recognized in these charts good ways to represent her studies about Crimean War medicine and about sanitation in India. Nightingale was in 1859 named the first woman in the Royal Statistical Society, and was named an honorary member of the American Statistical Association in 1874.

Esther: 'The first step of the assignment is to find a partner.' Nancy: 'What's the second step?' [ Worksheet: 'Find a partner. Solve: x^2 + y^2 = 3, 16 x^2 - 4y^2 = 0, for x and y ] Nancy, sitting beside Esther, talking to the teacher: 'Neither of us could find a partner.'
Olivia Jaimes’s Nancy for the 12th of June, 2018. Well, if you still need a partner you can probably find me hiding under the desk hoping I don’t have to talk to anybody, ever. For what that’s worth.

Olivia Jaimes’s Nancy for the 12th uses arithmetic as iconic for classwork nobody wants to do. Algebra, too; I understand the reluctance to start. Simultaneous solutions; the challenge is to find sets of values ‘x’ and ‘y’ that make both equations true together. That second equation is a good break, though. 16 x^2 - 4y^2 = 0 makes it easy to write what ‘y’ has to be in terms of ‘x’. Then you can replace the ‘y’ in the first equation with its expression in terms of ‘x’. In a slightly tedious moment, it’s going to turn out there’s multiple sets of answers. Four sets, if I haven’t missed something. But they’ll be clearly related to each other. Even attractively arranged.

x^2 + y^2 = 3 is an equation that’s true if the numbers ‘x’ and ‘y’ are coordinates of the points on a circle. This is if the coordinates are using the Cartesian coordinate system for the plane, which is such a common thing to do that mathematicians can forget they’re doing that. The circle has radius \sqrt{3} . So you can look at the first equation and draw a circle and write down a note that its radius is \sqrt{3} and you’ve got it. 16x^2 - 4y^2 = 0 looks like an equation that’s true if the numbers ‘x’ and ‘y’ are coordinates of the points on a hyperbola. Again in the Cartesian coordinate system. But I have to feel a little uncomfortable saying this. If the equation were (say) 16x^2 - 4y^2 = 1 then it’d certainly be a hyperbola, which mostly looks like a mirror-symmetric pair of arcs. But equalling zero? That’s called a “degenerate hyperbola”, which makes it sound like the hyperbola is doing something wrong. Unfortunate word, but one we’re stuck with.

The description just reflects that the hyperbola is boring in some way. In this case, it’s boring because the ‘x’ and ‘y’ that make the equation true are just the points on a pair of straight lines that go through the origin, the point with coordinates (0, 0). And they’re going to be mirror-images of each other around the x- and the y-axis. So it seems like a waste to use the form of a hyperbola when we could do just as well using the forms of straight lines to describe the same points. This hyperbola will look like an X, although it might be a pretty squat ‘x’ or a pretty narrow one or something. Depends on the exact equation.

So. The solutions for ‘x’ and ‘y’ are going to be on the points that are on both a circle centered around the origin and on an X centered around the origin. This is a way to see why I would expect four solutions. Also they they would look about the same. There’d be an answer with positive ‘x’ and positive ‘y’, and then three more answers. One answer has ‘x’ with the same size but a minus sign. One answer has ‘y’ with the same size but a minus sign. One has both ‘x’ and ‘y’ with the same values but minus signs.

[ A woman turns a row on a Rubik's cube. She speaks into her phone. ] ' If I move Jen's ortho to Friday, it conflicts with Sam's clarinet. But I can't move that to Monday because Tina has soccer! Ugh, how do I line this thing up?'
Dave Coverly’s Speed Bump for the 12th of June, 2018. This is one of those gimmicks I could see having a niche. Not so much as something someone could use, but as a mildly amusing joke present to give someone you like but don’t really know anything about when for some reason you can’t just give a book instead.

Sorry I wasn’t there to partner with.

Dave Coverly’s Speed Bump for the 12th is a Rubik’s Cube joke. Here it merges the idea with the struggles of scheduling anything anymore. I’m not sure that the group-theory operations of lining up a Rubik’s cube can be reinterpreted as the optimization problems of scheduling stuff. But there are all sorts of astounding and surprising links between mathematical problems. So I wouldn’t rule it out.

Kid: 'Gramma says lotteries are a tax for people who are bad at math.' Dad: 'In a manner of speaking.' Kid: 'What's the tax for people who are bad at reading?' Dad: 'Handicapped-parking fines.'
John Allen’s Nest Heads for the 13th of June, 2018. Not to get too cranky but I can’t figure out what the kid’s name is. I understand some cartoonists want dialogue that’s a bit more natural than someone saying each character’s name at least once per daily strip, but could a cast list please be put on the strip’s ‘About’ page at leaset?

John Allen’s Nest Heads for the 13th is a lotteries joke. I’m less dogmatic than are many mathematicians about the logic of participating in a lottery. At least in the ones as run by states and regional authorities the chance of a major payout are, yes, millions to one against. There can be jackpots large enough that the expectation value of playing becomes positive. In this case the reward for that unlikely outcome is so vast that it covers the hundreds of millions of times you play and lose. But even then, you have the question of whether doing something that just won’t pay out is worth it. My taste is to say that I shall do much more foolish things with my disposable income than buying a couple tickets each year. And while I would like to win the half-billion-dollar jackpot that would resolve all my financial woes and allow me to crush those who had me imprisoned in the Château d’If, I’d also be coming out ahead if I won, like, one of the petty $10,000 prizes.

Reading the Comics, May 12, 2018: New Nancy Artist Edition

And now, closer to deadline than I like, let me wrap up last week’s mathematically-themed comic strips. I had a lot happening, that’s all I can say.

Glenn McCoy and Gary McCoy’s The Flying McCoys for the 10th is another tragic moment in the mathematics department. I’m amused that white lab coats are taken to read as “mathematician”. There are mathematicians who work in laboratories, naturally. Many interesting problems are about real-world things that can be modelled and tested and played with. It’s hardly the mathematics-department uniform, but then, I’m not sure mathematicians have a uniform. We just look like academics is all.

A wall of the Mathematics Department has fallen in. A guy in lab coat says, 'Quick --- someone call the square root of 829,921!!'
Glenn McCoy and Gary McCoy’s The Flying McCoys for the 10th of May, 2018. I suppose the piece of chalk serves as a mathematician’s professional badge, but it would be odd for a person walking in to the room to happen to have a piece. I mean, there’s good reason he might, since there’s never enough chalk in the right places and it has to be stolen from somewhere. But that’s a bit too much backstory for a panel like this.

It also shows off that motif of mathematicians as doing anything with numbers in a more complicated way than necessary. I can’t imagine anyone in an emergency trying to evoke 9-1-1 by solving any kind of puzzle. But comic strip characters are expected to do things at least a bit ridiculously. I suppose.

Mark Litzler’s Joe Vanilla for the 11th is about random numbers. We need random numbers; they do so much good. Getting them is hard. People are pretty lousy at picking random numbers in their head. We can say what “lousy” random numbers look like. They look wrong. There’s digits that don’t get used as much as the others do. There’s strings of digits that don’t get used as much as other strings of the same length do. There are patterns, and they can be subtle ones, that just don’t look right.

Person beside a sign, with the numbers 629510, 787921 and 864370 crossed out and 221473 at the bottom. Caption: 'Performance Art: Random Number Generator'.
Mark Litzler’s Joe Vanilla for the 11th of May, 2018. Bonus: depending on how you want to group a string of six numbers there’s as many as eleven random numbers to select there.

And yet we have a terrible time trying to say what good random numbers look like. Suppose we want to have a string of random zeroes and ones: is 101010 better or worse than 110101? Or 000111? Well, for a string of digits that short there’s no telling. It’s in big batches that we should expect to see no big patterns. … Except that occasionally randomness should produce patterns. How often should we expect patterns, and of what size? This seems to depend on what patterns we’ve found interesting enough to look for. But how can the cultural quirks that make something seem interesting be a substantial mathematical property?

Nancy: 'Don't you hate when you sit down at a computer and can't remember what you were going to do. For the life of me I can't recall what I wanted to do when I sat down.' Teacher: 'Nice try, Nancy, but you still have to take the countywide math test.' (Two other rows of students are on similar computers.)
Olivia Jaimes’s Nancy for the 11th of May, 2018. … Or has the Internet moved on from talking about Nancy already? Bear in mind, I still post to Usenet, so that’s how out of touch I am.

Olivia Jaimes’s Nancy for the 11th uses mathematics-assessment tests for its joke. It’s of marginal relevance, yes, but it does give me a decent pretext to include the new artist’s work here. I don’t know how long the Internet is going to be interested in Nancy. I have to get what attention I can while it lasts.

Scott Hilburn’s The Argyle Sweater for the 12th is the anthropomorphic-geometry joke for the week. Unless there was one I already did Sunday that I already forgot. Oh, no, that was anthropomorphic-numerals. It’s easy to see why a circle might be labelled irrational: either its radius or its area has to be. Both can be. The triangle, though …

Marriage Counsellor: 'She says you're very close-minded.' Triangle: 'It's called 'rational'. But she's all 'pi this' and 'pi that'. Circle: 'It's a constant struggle, doctor.'
Scott Hilburn’s The Argyle Sweater for the 12th of May, 2018. Will admit that I hadn’t heard of Heronian Triangles before I started poking around this, and I started to speculate whether it was even possible for all three legs of a triangle to be rational and the area also be rational. So you can imagine what I felt like when I did some searching and found the 5-12-13 right triangle, since that’s just the other Pythagorean Triplet you learn after the 3-4-5 one. Oh, I guess also the 3-4-5 one.

Well, that’s got me thinking. Obviously all the sides of a triangle can be rational, and so its perimeter can be too. But … the area of an equilateral triangle is \frac{1}{2}\sqrt{3} times the square of the length of any side. It can have a rational side and an irrational area, or vice-versa. Just as the circle has. If it’s not an equilateral triangle?

Can you have a triangle that has three rational sides and a rational area? And yes, you can. Take the right triangle that has sides of length 5, 12, and 13. Or any scaling of that, larger or smaller. There is indeed a whole family of triangles, the Heronian Triangles. All their sides are integers, and their areas are integers too. (Sides and areas rational are just as good as sides and areas integers. If you don’t see why, now you see why.) So there’s that at least. The name derives from Heron/Hero, the ancient Greek mathematician whom we credit with that snappy formula that tells us, based on the lengths of the three sides, what the area of the triangle is. Not the Pythagorean formula, although you can get the Pythagorean formula from it.

Still, I’m going to bet that there’s some key measure of even a Heronian Triangle that ends up being irrational. Interior angles, most likely. And there are many ways to measure triangles; they can’t all end up being rational at once. There are over two thousand ways to define a “center” of a triangle, for example. The odds of hitting a rational number on all of them at once? (Granted, most of these triangle centers are unknown except to the center’s discoverer/definer and that discoverer’s proud but baffled parents.)

Paul: 'Claire, this online business program looks good.' Claire: 'Yeah, I saw that one. But I think it's too intense. I mean, look at this. They make you take two courses in statistics and probability. What are the odds I'd ever need that? ... Oh, wait ... '
Carla Ventresca and Henry Beckett’s On A Claire Day rerun for the 12th of May, 2018. If I make it out right this originally ran the 14th of May, 2010. I forget whether I’ve featured this here already. Likely will drop it from repeats given how hard it is to write much about it. Shame, too, as I’ve just now added that tag to the roster here.

Carla Ventresca and Henry Beckett’s On A Claire Day for the 12th mentions taking classes in probability and statistics. They’re the classes nobody doubts are useful in the real world. It’s easy to figure probability is more likely to be needed than functional analysis on some ordinary day outside the university. I can’t even compose that last sentence without the language of probability.

I’d kind of agree with calling the courses intense, though. Well, “intense” might not be the right word. But challenging. Not that you’re asked to prove anything deep. The opposite, really. An introductory course in either provides a lot of tools. Many of them require no harder arithmetic work than multiplication, division, and the occasional square root. But you do need to learn which tool to use in which scenario. And there’s often not the sorts of proofs that make it easy to understand which tool does what. Doing the proofs would require too much fussing around. Many of them demand settling finicky little technical points that take you far from the original questions. But that leaves the course as this archipelago of small subjects, each easy in themselves. But the connections between them are obscured. Is that better or worse? It must depend on the person hoping to learn.

Reading the Comics, November 4, 2017: Slow, Small Week Edition

It was a slow week for mathematically-themed comic strips. What I have are meager examples. Small topics to discuss. The end of the week didn’t have anything even under loose standards of being on-topic. Which is fine, since I lost an afternoon of prep time to thunderstorms that rolled through town and knocked out power for hours. Who saw that coming? … If I had, I’d have written more the day before.

Mac King and Bill King’s Magic in a Minute for the 29th of October looks like a word problem. Well, it is a word problem. It looks like a problem about extrapolating a thing (price) from another thing (quantity). Well, it is an extrapolation problem. The fun is in figuring out what quantities are relevant. Now I’ve spoiled the puzzle by explaining it all so.

Olivia Walch’s Imogen Quest for the 30th doesn’t say it’s about a mathematics textbook. But it’s got to be. What other kind of textbook will have at least 28 questions in a section and only give answers to the odd-numbered problems in back? You never see that in your social studies text.

Eric the Circle for the 30th, this one by Dennill, tests how slow a week this was. I guess there’s a geometry joke in Jane Austen? I’ll trust my literate readers to tell me. My doing the world’s most casual search suggests there’s no mention of triangles in Pride and Prejudice. The previous might be the most ridiculously mathematics-nerdy thing I have written in a long while.

Tony Murphy’s It’s All About You for the 31st does some advanced-mathematics name-dropping. In so doing, it’s earned a spot taped to the door of two people in any mathematics department with more than 24 professors across the country. Or will, when they hear there was a gap unification theory joke in the comics. I’m not sure whether Murphy was thinking of anything particular in naming the subject “gap unification theory”. It sounds like a field of mathematical study. But as far as I can tell there’s just one (1) paper written that even says “gap unification theory”. It’s in partition theory. Partition theory is a rich and developed field, which seems surprising considering it’s about breaking up sets of the counting numbers into smaller sets. It seems like a time-waster game. But the game sneaks into everything, so the field turns out to be important. Gap unification, in the paper I can find, is about studying the gaps between these smaller sets.

There’s also a “band-gap unification” problem. I could accept this name being shortened to “gap unification” by people who have to say its name a lot. It’s about the physics of semiconductors, or the chemistry of semiconductors, as you like. The physics or chemistry of them is governed by the energies that electrons can have. Some of these energies are precise levels. Some of these energies are bands, continuums of possible values. When will bands converge? When will they not? Ask a materials science person. Going to say that’s not mathematics? Don’t go looking at the papers.

Whether partition theory or materials since it seems like a weird topic. Maybe Murphy just put together words that sounded mathematical. Maybe he has a friend in the field.

Bill Amend’s FoxTrot Classics for the 1st of November is aiming to be taped up to the high school teacher’s door. It’s easy to show how the square root of two is irrational. Takes a bit longer to show the square root of three is. Turns out all the counting numbers are either perfect squares — 1, 4, 9, 16, and so on — or else have irrational square roots. There’s no whole number with a square root of, like, something-and-three-quarters or something-and-85-117ths. You can show that, easily if tediously, for any particular whole number. What’s it look like to show for all the whole numbers that aren’t perfect squares already? (This strip originally ran the 8th of November, 2006.)

Guy Gilchrist’s Nancy for the 1st does an alphabet soup joke, so like I said, it’s been a slow week around here.

John Zakour and Scott Roberts’s Maria’s Day for the 2nd is really just mathematics being declared hated, so like I said, it’s been a slow week around here.

Reading the Comics, September 9, 2017: First Split Week Edition, Part 2

I don’t actually like it when a split week has so many more comics one day than the next, but I also don’t like splitting across a day if I can avoid it. This week, I had to do a little of both since there were so many comic strips that were relevant enough on the 8th. But they were dominated by the idea of going back to school, yet.

Randy Glasbergen’s Glasbergen Cartoons rerun for the 8th is another back-to-school gag. And it uses arithmetic as the mathematics at its most basic. Arithmetic might not be the most fundamental mathematics, but it does seem to be one of the parts we understand first. It’s probably last to be forgotten even on a long summer break.

Mark Pett’s Mr Lowe rerun for the 8th is built on the familiar old question of why learn arithmetic when there’s computers. Quentin is unconvinced of this as motive for learning long division. I’ll grant the case could be made better. I admit I’m not sure how, though. I think long division is good as a way to teach, especially, the process of estimating and improving estimates of a calculation. There’s a lot of real mathematics in doing that.

Guy Gilchrist’s Nancy for the 8th is another back-to-school strip. Nancy’s faced with “this much math” so close to summer. Her given problem’s a bit of a mess to me. But it’s mostly teaching whether the student’s got the hang of the order of operations. And the instructor clearly hasn’t got the sense right. People can ask whether we should parse “12 divided by 3 times 4” as “(12 divided by 3) times 4” or as “12 divided by (3 times 4)”, and that does make a major difference. Multiplication commutes; you can do it in any order. Division doesn’t. Leaving ambiguous phrasing is the sort of thing you learn, instinctively, to avoid. Nancy would be justified in refusing to do the problem on the grounds that there is no unambiguous way to evaluate it, and that the instructor surely did not mean for her to evaluate it all four different plausible ways.

By the way, I’ve seen going around Normal Person Twitter this week a comment about how they just discovered the division symbol ÷, the obelus, is “just” the fraction bar with dots above and below where the unknown numbers go. I agree this is a great mnemonic for understanding what is being asked for with the symbol. But I see no evidence that this is where the symbol, historically, comes from. We first see ÷ used for division in the writings of Johann Henrich Rahn, in 1659, and the symbol gained popularity particularly when John Pell picked it up nine years later. But it’s not like Rahn invented the symbol out of nowhere; it had been used for subtraction for over 125 years at that point. There were also a good number of writers using : or / or \ for division. There were some people using a center dot before and after a / mark for this, like the % sign fell on its side. That ÷ gained popularity in English and American writing seems to be a quirk of fate, possibly augmented by it being relatively easy to produce on a standard typewriter. (Florian Cajori notes that the National Committee on Mathematical Requirements recommended dropping ÷ altogether in favor of a symbol that actually has use in non-mathematical life, the / mark. The Committee recommended this in 1923, so you see how well the form agenda is doing.)

Dave Whamond’s Reality Check for the 8th is the anthropomorphic-numerals joke for this week. A week without one is always a bit … peculiar.

Mark Leiknes’s Cow and Boy rerun for the 9th only mentions mathematics, and that as a course that Billy would rather be skipping. But I like the comic strip and want to promote its memory as much as possible. It’s a deeply weird thing, because it has something like 400 running jokes, and it’s hard to get into because the first couple times you see a pastoral conversation interrupted by an orca firing a bazooka at a cat-helicopter while a panda brags of blowing up the moon it seems like pure gibberish. If you can get through that, you realize why this is funny.

Dave Blazek’s Loose Parts for the 9th uses chalkboards full of stuff as the sign of a professor doing serious thinking. Mathematics is will-suited for chalkboards, at least in comic strips. It conveys a lot of thought and doesn’t need much preplanning. Although a joke about the difficulties in planning out blackboard use does take that planning. Yes, there is a particular pain that comes from having more stuff to write down in the quick yet easily collaborative medium of the chalkboard than there is board space to write.

Brian Basset’s Red and Rover for the 9th also really only casually mentions mathematics. But it’s another comic strip I like a good deal so would like to talk up. Anyway, it does show Red discovering he doesn’t mind doing mathematics when he sees the use.

Reading the Comics, January 14, 2017: Redeye and Reruns Edition

So for all I worried about the redesign it’s not bad. The biggest change is it’s removed a side panel and given the space over to the comics. And while it does show comics you haven’t been reading, it only shows one per day. One week in it apparently sticks with the same comic unless you choose to dismiss that. So I’ve had it showing me The Comic Strip That Has A Finale Every Day as a strip I’m not “reading”. I’m delighted how thisbreaks the logic about what it means to “not read” an “ongoing comic strip”. (That strip was a Super-Fun-Pak Comix offering, as part of Ruben Bolling’s Tom the Dancing Bug. It was turned into a regular feature by someone who got the joke.)

Comic Strip Master Command responded to the change by sending out a lot of comic strips. I’m going to have to divide this week’s entry into two pieces. There’s not deep things to say about most of these comics, but I’ll make do, surely.

Julie Larson’s Dinette Set rerun for the 8th is about one of the great uses of combinatorics. That use is working out how the number of possible things compares to the number of things there are. What’s always staggering is that the number of possible things grows so very very fast. Here one of Larson’s characters claims a science-type show made an assertion about the number of possible ideas a brain could hold. I don’t know if that’s inspired by some actual bit of pop science. I can imagine someone trying to estimate the number of possible states a brain might have.

And that has to be larger than the number of atoms in the universe. Consider: there’s something less than a googol of atoms in the universe. But a person can certainly have the idea of the number 1, or the idea of the number 2, or the idea of the number 3, or so on. I admit a certain sameness seems to exist between the ideas of the numbers 2,038,412,562,593,604 and 2,038,412,582,593,604. But there is a difference. We can out-number the atoms in the universe even before we consider ideas like rabbits or liberal democracy or jellybeans or board games. The universe never had a chance.

Or did it? Is it possible for a number to be too big for the human brain to ponder? If there are more digits in the number than there are atoms in the universe we can’t form any discrete representation of it, after all. … Except that we kind of can. For example, “the largest prime number less than one googolplex” is perfectly understandable. We can’t write it out in digits, I think. But you now have thought of that number, and while you may not know what its millionth decimal digit is, you also have no reason to care what that digit is. This is stepping into the troubled waters of algorithmic complexity.

Shady Shrew is selling fancy bubble-making wands. Shady says the crazy-shaped wands cost more than the ordinary ones because of the crazy-shaped bubbles they create. Even though Slylock Fox has enough money to buy an expensive wand, he bought the cheaper one for Max Mouse. Why?
Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th of January, 2017. Not sure why Shady Shrew is selling the circular wands at 50 cents. Sure, I understand wanting a triangle or star or other wand selling at a premium. But then why have the circular wands at such a cheap price? Wouldn’t it be better to put them at like six dollars, so that eight dollars for a fancy wand doesn’t seem that great an extravagance? You have to consider setting an appropriate anchor point for your customer base. But, then, Shady Shrew isn’t supposed to be that smart.

Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th is built on soap bubbles. The link between the wand and the soap bubble vanishes quickly once the bubble breaks loose of the wand. But soap films that keep adhered to the wand or mesh can be quite strangely shaped. Soap films are a practical example of a kind of partial differential equations problem. Partial differential equations often appear when we want to talk about shapes and surfaces and materials that tug or deform the material near them. The shape of a soap bubble will be the one that minimizes the torsion stresses of the bubble’s surface. It’s a challenge to solve analytically. It’s still a good challenge to solve numerically. But you can do that most wonderful of things and solve a differential equation experimentally, if you must. It’s old-fashioned. The computer tools to do this have gotten so common it’s hard to justify going to the engineering lab and getting soapy water all over a mathematician’s fingers. But the option is there.

Gordon Bess’s Redeye rerun from the 28th of August, 1970, is one of a string of confused-student jokes. (The strip had a Generic Comedic Western Indian setting, putting it in the vein of Hagar the Horrible and other comic-anachronism comics.) But I wonder if there are kids baffled by numbers getting made several different ways. Experience with recipes and assembly instructions and the like might train someone to thinking there’s one correct way to make something. That could build a bad intuition about what additions can work.

'I'm never going to learn anything with Redeye as my teacher! Yesterday he told me that four and one make five! Today he said, *two* and *three* make five!'
Gordon Bess’s Redeye rerun from the 28th of August, 1970. Reprinted the 9th of January, 2017. What makes the strip work is how it’s tied to the personalities of these kids and couldn’t be transplanted into every other comic strip with two kids in it.

Corey Pandolph’s Barkeater Lake rerun for the 9th just name-drops algebra. And that as a word that starts with the “alj” sound. So far as I’m aware there’s not a clear etymological link between Algeria and algebra, despite both being modified Arabic words. Algebra comes from “al-jabr”, about reuniting broken things. Algeria comes from Algiers, which Wikipedia says derives from `al-jaza’ir”, “the Islands [of the Mazghanna tribe]”.

Guy Gilchrist’s Nancy for the 9th is another mathematics-cameo strip. But it was also the first strip I ran across this week that mentioned mathematics and wasn’t a rerun. I’ll take it.

Donna A Lewis’s Reply All for the 9th has Lizzie accuse her boyfriend of cheating by using mathematics in Scrabble. He seems to just be counting tiles, though. I think Lizzie suspects something like Blackjack card-counting is going on. Since there are only so many of each letter available knowing just how many tiles remain could maybe offer some guidance how to play? But I don’t see how. In Blackjack a player gets to decide whether to take more cards or not. Counting cards can suggest whether it’s more likely or less likely that another card will make the player or dealer bust. Scrabble doesn’t offer that choice. One has to refill up to seven tiles until the tile bag hasn’t got enough left. Perhaps I’m overlooking something; I haven’t played much Scrabble since I was a kid.

Perhaps we can take the strip as portraying the folk belief that mathematicians get to know secret, barely-explainable advantages on ordinary folks. That itself reflects a folk belief that experts of any kind are endowed with vaguely cheating knowledge. I’ll admit being able to go up to a blackboard and write with confidence a bunch of integrals feels a bit like magic. This doesn’t help with Scrabble.

'Want me to teach you how to add and subtract, Pokey?' 'Sure!' 'Okay ... if you had four cookies and I asked you for two, how many would you have left?' 'I'd still have four!'
Gordon Bess’s Redeye rerun from the 29th of August, 1970. Reprinted the 10th of January, 2017. To be less snarky, I do like the simply-expressed weariness on the girl’s face. It’s hard to communicate feelings with few pen strokes.

Gordon Bess’s Redeye continued the confused-student thread on the 29th of August, 1970. This one’s a much older joke about resisting word problems.

Ryan North’s Dinosaur Comics rerun for the 10th talks about multiverses. If we allow there to be infinitely many possible universes that would suggest infinitely many different Shakespeares writing enormously many variations of everything. It’s an interesting variant on the monkeys-at-typewriters problem. I noticed how T-Rex put Shakespeare at typewriters too. That’ll have many of the same practical problems as monkeys-at-typewriters do, though. There’ll be a lot of variations that are just a few words or a trivial scene different from what we have, for example. Or there’ll be variants that are completely uninteresting, or so different we can barely recognize them as relevant. And that’s if it’s actually possible for there to be an alternate universe with Shakespeare writing his plays differently. That seems like it should be possible, but we lack evidence that it is.