Reading the Comics, April 25, 2020: Off Brand Edition


Comic Strip Master Command decided I should have a week to catch up on things, and maybe force me to write something original. Of all the things I read there were only four strips that had some mathematics content. And three of them are such glancing mentions that I don’t feel it proper to include the strip. So let me take care of this.

Mark Anderson’s Andertoons for the 20th is the Mark Anderson’s Andertoons for the week. Wavehead apparently wants to know whether \frac{3}{4} or \frac{6}{8} is the better of these equivalent forms. I understand the impulse. Rarely in real life do we see two things that are truly equivalent; there’s usually some way in which one is better than the other. There may be two ways to get home for example, both taking about the same time to travel. One might have better scenery, though, or involve fewer difficult turns or less traffic this time of day. This is different, though: \frac{3}{4} or \frac{6}{8} are two ways to describe the same number. Which one is “better”?

Wavehead is at the blackboard; on it are written 3/4 and 6/8. The teacher explains, 'They're just equivalent. Neither one is the off-brand.'
Mark Anderson’s Andertoons for the 20th of April, 2020. Essays featuring some mention of Andertoons are gathered at this link.

The only answer is, better for what? What do you figure to do with this number afterwards? I admit, and suppose most people have, a preference for \frac{3}{4} . But that’s trained into us, in large part, by homework set to reduce fractions to “lowest terms”. There’s honest enough reasons behind that. It seems wasteful to have a factor in the numerator that’s immediately divided out by the denominator.

If this were 25 years ago, I could ask how many of you have written out a check for twenty-two and 3/4 dollars, then, rather than twenty-two and 75/100 dollars? The example is dated but the reason to prefer an equivalent form is not. If I know that I need the number represented by \frac{3}{4} , and will soon be multiplying it by eight, then \frac{6}{8} may save me the trouble of thinking what three times two is. Or if I’ll be adding it to \frac{5}{8} , or something like that. If I’m measuring this for a recipe I need to cut in three, because the original will make three dozen cookies and I could certainly eat three dozen cookies, then \frac{3}{4} may be more convenient than \frac{6}{8} . What is the better depends on what will clarify the thing I want to do.

A significant running thread throughout all mathematics, not just arithmetic, is finding equivalent forms. Ways to write the same concept, but in a way that makes some other work easier. Or more likely to be done correctly. Or, if the equivalent form is more attractive, more likely to be learned or communicated. It’s of value.

Jan Eliot’s Stone Soup Classics rerun for the 20th is a joke about how one can calculate what one is interested in. In this case, going from the number of days left in school to the number of hours and minutes and even seconds left. Personally, I have never had trouble remembering there are 24 hours in the day, nor that there are 86,400 seconds in the day. That there are 1,440 minutes in the day refuses to stick in my mind. Your experiences may vary.

Thaves’s Frank and Ernest for the 22nd is the Roman Numerals joke for the week, shifting the number ten to the representation “X” to the prefix “ex”.

Harry Bliss’s Bliss for the 23rd speaks of “a truck driver with a PhD in mathematical logic”. It’s an example of signifying intelligence through mathematics credentials. (It’s also a bit classicist, treating an intelligent truck driver as an unlikely thing.)


I’m caught up! This coming Sunday I hope to start discussingthis week’s comics in a post at this link. And for this week? I don’t know; maybe I’ll figure something to write. We’ll see. Thanks for reading.

Reading the Comics, April 6, 2020: My Perennials Edition


As much as everything is still happening, and so much, there’s still comic strips. I’m fortunately able here to focus just on the comics that discuss some mathematical theme, so let’s get started in exploring last week’s reading. Worth deeper discussion are the comics that turn up here all the time.

Lincoln Peirce’s Big Nate for the 5th is a casual mention. Nate wants to get out of having to do his mathematics homework. This really could be any subject as long as it fit the word balloon.

John Hambrock’s The Brilliant Mind of Edison Lee for the 6th is a funny-answers-to-story-problems joke. Edison Lee’s answer disregards the actual wording of the question, which supposes the group is travelling at an average 70 miles per hour. The number of stops doesn’t matter in this case.

Mark Anderson’s Andertoons for the 6th is the Mark Anderson’s Andertoons for the week. In it Wavehead gives the “just use a calculator” answer for geometry problems.

On the blackboard: Perimeter, with a quadrilateral drawn, the sides labelled A, B, C, and D, and the formula A + B + C + D on the board. Wavehead asks the teacher, 'Or you could just walk around thet edge and let your fitness tracker tell you the distance.'
Mark Anderson’s Andertoons for the 6th of April, 2020. I haven’t mentioned this strip in two days. Essays featuring Andertoons are at this link, though.

Not much to talk about there. But there is a fascinating thing about perimeters that you learn if you go far enough in Calculus. You have to get into multivariable calculus, something where you integrate a function that has at least two independent variables. When you do this, you can find the integral evaluated over a curve. If it’s a closed curve, something that loops around back to itself, then you can do something magic. Integrating the correct function on the curve around a shape will tell you the enclosed area.

And this is an example of one of the amazing things in multivariable calculus. It tells us that integrals over a boundary can tell us something about the integral within a volume, and vice-versa. It can be worth figuring out whether your integral is better solved by looking at the boundaries or at the interiors.

Heron’s Formula, for the area of a triangle based on the lengths of its sides, is an expression of this calculation. I don’t know of a formula exactly like that for the perimeter of a quadrilateral, but there are similar formulas if you know the lengths of the sides and of the diagonals.

Richard Thompson’s Cul de Sac rerun for the 6th sees Petey working on his mathematics homework. As with the Big Nate strip, it could be any subject.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th depicts, fairly, the sorts of things that excite mathematicians. The number discussed here is about algorithmic complexity. This is the study of how long it takes to do an algorithm. How long always depends on how big a problem you are working on; to sort four items takes less time than sorting four million items. Of interest here is how much the time to do work grows with the size of whatever you’re working on.

Caption: 'Mathematicians are weird.' Mathematician: 'You know that thing that was 2.3728642?' Group of mathematicians: 'Yes?' Mathematician; 'I got it down to 2.3728639.' The mathematicians burst out into thunderous applause.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th of April, 2020. I haven’t mentioned this strip in two days. Essays featuring Saturday Morning Breakfast Cereal are at this link, though.

The mathematician’s particular example, and I thank dtpimentel in the comments for finding this, is about the Coppersmith–Winograd algorithm. This is a scheme for doing matrix multiplication, a particular kind of multiplication and addition of squares of numbers. The squares have some number N rows and N columns. It’s thought that there exists some way to do matrix multiplication in the order of N2 time, that is, if it takes 10 time units to multiply matrices of three rows and three columns together, we should expect it takes 40 time units to multiply matrices of six rows and six columns together. The matrix multiplication you learn in linear algebra takes on the order of N3 time, so, it would take like 80 time units.

We don’t know the way to do that. The Coppersmith–Winograd algorithm was thought, after Virginia Vassilevska Williams’s work in 2011, to take something like N2.3728642 steps. So that six-rows-six-columns multiplication would take slightly over 51.796 844 time units. In 2014, François le Gall found it was no worse than N2.3728639 steps, so this would take slightly over 51.796 833 time units. The improvement doesn’t seem like much, but on tiny problems it never does. On big problems, the improvement’s worth it. And, sometimes, you make a good chunk of progress at once.


I’ll have some more comic strips to discuss in an essay at this link, sometime later this week. Thanks for reading.

Reading the Comics, April 4, 2020: Ruling Things Out Edition


This little essay should let me wrap up the rest of the comic strips from the past week. Most of them were casual mentions. At least I thought they were when I gathered them. But let’s see what happens when I actually write my paragraphs about them.

Darrin Bell and Theron Heir’s Rudy Park rerun for the 1st of April uses arithmetic as emblematic of things which we know with certainty to be true.

Thaves’s Frank and Ernest for the 2nd is a bit of wordplay, having Euclid and Galileo talking about parallel universes. I’m not sure that Galileo is the best fit for this, but I’m also not sure there’s another person connected who could be named. It’d have to be a name familiar to an average reader as having something to do with geometry. Pythagoras would seem obvious, but the joke is stronger if it’s two people who definitely did not live at the same time. Did Euclid and Pythagoras live at the same time? I am a mathematics Ph.D. and have been doing pop mathematics blogging for nearly a decade now, and I have not once considered the question until right now. Let me look it up.

It doesn’t make any difference. The comic strip has to read quickly. It might be better grounded to post Euclid meeting Gauss or Lobachevsky or Euler (although the similarity in names would be confusing) but being understood is better than being precise.

Stephan Pastis’s Pearls Before Swine for the 2nd is a strip about the foolhardiness of playing the lottery. And it is foolish to think that even a $100 purchase of lottery tickets will get one a win. But it is possible to buy enough lottery tickets as to assure a win, even if it is maybe shared with someone else. It’s neat that an action can be foolish if done in a small quantity, but sensible if done in enough bulk.

Chalkboard problem 10 - 7, with answers given and crossed out of 0, 5, 7, 4, 17, 9, 1, 2, and 70. Wavehead, to teacher: 'OK, the good news is we've ruled these out.'
Mark Anderson’s Andertoons for the 3rd of April, 2020. This is actually the first time I’ve mentioned this strip in two months. But any time I discuss a topic raised by Andertoons should appear at this link.

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. Wavehead has made a bunch of failed attempts at subtracting seven from ten, but claims it’s at least progress that some thing have been ruled out. I’ll go along with him that there is some good in ruling out wrong answers. The tricky part is in how you rule them out. For example, obvious to my eye is that the correct answer can’t be more than ten; the problem is 10 minus a positive number. And it can’t be less than zero; it’s ten minus a number less than ten. It’s got to be a whole number. If I’m feeling confident about five and five making ten, then I’d rule out any answer that isn’t between 1 and 4 right away. I’ve got the answer down to four guesses and all I’ve really needed to know is that 7 is greater than five but less than ten. That it’s an even number minus an odd means the result has to be odd; so, it’s either one or three. Knowing that the next whole number higher than 7 is an 8 says that we can rule out 1 as the answer. So there’s the answer, done wholly by thinking of what we can rule out. Of course, knowing what to rule out takes some experience.

Mark Parisi’s Off The Mark for the 4th is roughly the anthropomorphic numerals joke for the week. It’s a dumb one, but, that’s what sketchbooks are for.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th is the Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th for the week. It shows in joking but not wrong fashion a mathematical physicist’s encounters with orbital mechanics. Orbital mechanics are a great first physics problem. It’s obvious what they’re about, and why they might be interesting. And the mathematics of it is challenging in ways that masses on springs or balls shot from cannons aren’t.

How To Learn Orbital Mechanics. Step 1: Gauge Difficulty. Person reading a text: 'It's Newtonian! Piece of cake. Just a bunch of circles and dots.' Step 2: Correction. 'OK, *ellipses* and dots.' Step 3: Concern. 'Oh, Christ, sometimes there are more than two dots.' Step 4: Pick an easier subject. 'I'm gonna go study quantum computing.' The textbook is in the trash.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th of April, 2020. This is actually the first time I’ve mentioned this strip ina week. But any time I discuss a topic raised in Saturday Morning Breakfast Cereal should appear at this link.

A few problems are very easy, like, one thing in circular orbit of another. A few problems are not bad, like, one thing in an elliptical or hyperbolic orbit of another. All our good luck runs out once we suppose the universe has three things in it. You’re left with problems that are doable if you suppose that one of the things moving is so tiny that it barely exists. This is near enough true for, for example, a satellite orbiting a planet. Or by supposing that we have a series of two-thing problems. Which is again near enough true for, for example, a satellite travelling from one planet to another. But these is all work that finds approximate solutions, often after considerable hard work. It feels like much more labor to smaller reward than we get for masses on springs or balls shot from cannons. Walking off to a presumably easier field is understandable. Unfortunately, none of the other fields is actually easier.

Pythagoras died somewhere around 495 BC. Euclid was born sometime around 325 BC. That’s 170 years apart. So Pythagoras was as far in Euclid’s past as, oh, Maria Gaetana Agnesi is to mine.

I did a little series looking into orbital mechanics, not necessarily ones that look like planetary orbits, a couple years ago. You might enjoy that. And I figure to have more mathematically-themed comic strips in the near future. Thanks for reading.

Reading the Comics, February 3, 2020: Fake Venn Diagrams and Real Reruns Edition


Besides kids doing homework there were a good ten or so comic strips with enough mathematical content for me to discuss. So let me split that over a couple of days; I don’t have the time to do them all in one big essay.

Sandra Bell-Lundy’s Between Friends for the 2nd is declared to be a Venn Diagram joke. As longtime readers of these columns know, it’s actually an Euler Diagram: a Venn Diagram requires some area of overlap between all combinations of the various sets. Two circles that never touch, or as these two do touch at a point, don’t count. They do qualify as Euler Diagrams, which have looser construction requirements. But everything’s named for Euler, so that’s a less clear identifier.

Caption: 'The Venn Diagram of the Sandwich Generation.' Two tangent circles, one 'The Problem' and one 'The Solution'. Two friends sit pondering this over coffee 'It's what put the 'vent' in 'venti'.'
Sandra Bell-Lundy’s Between Friends for the 2nd of February, 2020. Essays mentioning Between Friends and its imperfectly formed Venn Diagrams are at this link.

John Kovaleski’s Daddy Daze for the 2nd talks about probability. Particularly about the probability of guessing someone’s birthday. This is going to be about one chance in 365, or 366 in leap years. Birthdays are not perfectly uniformly distributed through the year. The 13th is less likely than other days in the month for someone to be born; this surely reflects a reluctance to induce birth on an unlucky day. Births are marginally more likely in September than in other months of the year; this surely reflects something having people in a merry-making mood in December. These are tiny effects, though, and to guess any day has about one chance in 365 of being someone’s birthday will be close enough.

Toddler, pointing: 'Ba ba ba.' Dad: 'Her? ... Excuse me, my son would like to give you something.' Woman: 'Uh ... OK?' Dad: 'It's a birthday card he made.' Woman: 'But it's not my birthday. ... It's ... lovely.' Dad: 'He likes to give them out to random people. He figures the odds are 1 in 365 it'll be someone's birthday and it'll make them happy.' Woman: 'What are the odds it won't be someone's birthday and it'll still make them happy?'
John Kovaleski’s Daddy Daze for the 2nd of February, 2020. Essays which mention something from Daddy Daze should be at this link.

If the child does this long enough there’s almost sure to be a match of person and birthday. It’s not guaranteed in the first 365 cards given out, or even the first 730, or more. But, if the birthdays of passers-by are independent — one pedestrian’s birthday has nothing to do with the next’s — then, overall, about one-365th of all cards will go to someone whose birthday it is. (This also supposes that we won’t see things like the person picked saying that while it’s not their birthday, it is their friend’s, here.) This, the Law of Large Numbers, one of the cornerstones of probability, guarantees us.

Conference room. Projected on a wall is 'Diplopia', represented by two overlapping circles. Man at the table asks: 'Is everyone seeing a Venn diagram, or just me?'
Mark Anderson’s Andertoons for the 2nd of February, 2020. Some of the many essays mentioning Andertoons are at this link.

Mark Anderson’s Andertoons for the 2nd is the Mark Anderson’s Andertoons for the week. And it’s a Venn Diagram joke, at least if the two circles are “really” there. Diplopia is what most of us would call double vision, seeing multiple offset copies of a thing. So the Venn diagram might be an optical illusion on the part of the businessman and the reader.

Man in the Accounting department, to a person entering: 'Hey, c'mon in, Warren. We were just crunching a few numbers.' Another person is jumping up and down on a 2, a 3, and has broken several other numerals.
Brian Boychuk and Ron Boychuk’s Chuckle Brothers repeat for the 3rd of February, 2020. It originally ran the 22nd of February, 2011. Essays featuring some aspect of The Chuckle Brothers are at this link.

Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 3rd is not quite the anthropomorphic numerals joke of the week. At least, it’s built on manifesting numerals and doing things with them.

Letters 'x' and 'y' sit at a bar. The y says, 'I just knew that someday, our paths would intersect.'
Dave Blazek’s Loose Parts for the 3rd of February, 2020. Essays with some mention of topics raised by Loose Parts are at this link.

Dave Blazek’s Loose Parts for the 3rd is an anthropomorphic mathematical symbols joke. I suppose it’s algebraic symbols. We usually get to see the ‘x’ and ‘y’ axes in (high school) algebra, used to differentiate two orthogonal axes. The axes can be named anything. If ‘x’ and ‘y’ won’t do, we might move to using \hat{i} and \hat{j} . In linear algebra, when we might want to think about Euclidean spaces with possibly enormously many dimensions, we may change the names to \hat{e}_1 and \hat{e}_2 . (We could use subscripts of 0 and 1, although I do not remember ever seeing someone do that.)

Mikki: 'First our teacher says 6 and 4 make 10. Then she says 7 and 3 equals 10. Then 5 and 5 make 10. We need a teacher who can make up her mind.'
Morrie Turner’s Wee Pals repeat for the 3rd of February, 2020. Many, but not all, of the essays featuring Wee Pals are at this link.

Morrie Turner’s Wee Pals for the 3rd is a repeat, of course. Turner died several years ago and no one continued the strip. But it is also a repeat that I have discussed in these essays before, which likely makes this a good reason to drop Wee Pals from my regular reading here. There are 42 distinct ways to add (positive) whole numbers up to make ten, when you remember that you can add three or four or even six numbers together to do it. The study of how many different ways to make the same sum is a problem of partitioning. This might not seem very interesting, but if you try to guess how many ways there are to add up to 9 or 11 or 15, you’ll notice it’s a harder problem than it appears.


And for all that, there’s still some more comic strips to review. I will probably slot those in to Sunday, and start taking care of this current week’s comic strips on … probably Tuesday. Please check in at this link Sunday, and Tuesday, and we’ll see what I do.

Reading the Comics, January 27, 2020: Alley Oop Followup Edition


I apologize for missing Sunday. I wasn’t able to make the time to write about last week’s mathematically-themed comic strips. But I’m back in the swing of things. Here are some of the comic strips that got my attention.

Jonathan Lemon and Joey Alison Sayers’s Little Oop for the 26th has something neat in the background. Oop and Garg walk past a vendor showing off New Numbers. This is, among other things, a cute callback to one of the first of Lemon and Sayers’s Little Oop strips.. (And has nothing to do with the daily storyline featuring the adult Alley Oop.) And it is a funny idea to think of “new numbers”. I imagine most of us trust that numbers are just … existing, somewhere, as concepts independent of our knowing them. We may not be too sure about the Platonic Forms. But, like, “eight” seems like something that could plausibly exist independently of our understanding of it.

Science Expo. Little Alley Oop leads Garg past the New Numbers stand to the Multistick. Garg: 'A stick? That sounds boring.' Vendor, holding up a stick: 'Quite the opposite, young man! The multi-stick can do everything! You can use it as a weapon, you can light it on fire and use it as a torch, you can use it as a fishing pole. It has literally dozens of uses!' Garg: 'Can I use it as a toy for my pet dinosaur?' Vendor: 'Well, I wouldn't recommend it. We haven't tested it out for that.' Garg: 'Eh, no thanks.'
Jonathan Lemon and Joey Alison Sayers’s Little Oop for the 26th of January, 2020. The handful of times I’ve head to talk about Alley Oop or Little Oop are gathered at this link.

Still, we do keep discovering things we didn’t know were numbers before. The earliest number notations, in the western tradition, for example, used letters to represent numbers. This did well for counting numbers, up to a large enough total. But it required idiosyncratic treatment if you wanted to handle large numbers. Hindu-Arabic numerals make it easy to represent whole numbers as large as you like. But that’s at the cost of adding ten (well, I guess eight) symbols that have nothing to do with the concept represented. Not that, like, ‘J’ looks like the letter J either. (There is a folk etymology that the Arabic numerals correspond to the number of angles made if you write them out in a particular way. Or less implausibly, the number of strokes needed for the symbol. This is ingenious and maybe possibly has helped one person somewhere, ever, learn the symbols. But it requires writing, like, ‘7’ in a way nobody has ever done, and it’s ahistorical nonsense. See section 96, on page 64 of the book and 84 of the web presentation, in Florian Cajori’s History of Mathematical Notations.)

Still, in time we discovered, for example, that there were irrational numbers and those were useful to have. Negative numbers, and those are useful to have. That there are complex-valued numbers, and those are useful to have. That there are quaternions, and … I guess we can use them. And that we can set up systems that resemble arithmetic, and work a bit like numbers. Those are often quite useful. I expect Lemon and Sayers were having fun with the idea of new numbers. They are a thing that, effectively, happens.

Francis, answering the phone: 'Hi, Nate Yeah, I did the homework. No, I'm not giving you the answers. ... I'm sure you did try hard ... I know it's due tomorrow ... You're not going to learn anything if I just ... of course I don't want to get in trouble but ... all right! This once! For #1, I got 4.5. For #2, I got 13.3. For #3, I got ... hello?' Cut to Nate, hanging up the phone: 'Wrong number.' Nate's Dad: 'I'll say.'
Lincoln Peirce’s Big Nate: First Class for the 26th of January, 2020. It originally ran the 15th of January, 1995. Essays mentioning either Big Nate or the rerun Big Nate: First Class should be gathered at this link.

Lincoln Peirce’s Big Nate: First Class for the 26th has Nate badgering Francis for mathematics homework answers. Could be any subject, but arithmetic will let Peirce fit in a couple answers in one panel.

Other Man: 'Do you ever play the lottery?' Brutus: 'I believe your chances of winning the lottery are the same as your chances of being struck by lightning!' Other: 'Have I told you the time I bought an instant lottery ticket on a whim? I won one thousand dollars!' Brutus: 'No kidding? That changes everything I said about the odds! That must've been the luckiest day of your life!' Other: 'Not really; as I left the store, I was struck by lightning!'
Art Sansom and Chip Sansom’s The Born Loser for the 26th of January, 2020. There are times that I discuss The Born Loser, and those essays are at this link.

Art Sansom and Chip Sansom’s The Born Loser for the 26th is another strip on the theme of people winning the lottery and being hit by lightning. And, as I’ve mentioned, there is at least one person known to have won a lottery and survived a lightning strike.

Woman: 'How's the project coming?' Boy: 'Fine.' Quiet panel. Then, a big explosion. Woman: 'I thought you guys were doing math!' Girl: 'Engineering!' Boy: 'It's *like* math, but louder.'
David Malki’s Wondermark for the 27th of January, 2020. I am surprised to learn that I already have a tag for this comic, but it turns out I’ve mentioned it as long ago as late December. So, essays mentioning Wondermark: they’re at this link.

David Malki’s Wondermark for the 27th describes engineering as “like math, but louder”, which is a pretty good line. And it uses backgrounds of long calculations to make the point of deep thought going on. I don’t recognize just what calculations are being done there, but they do look naggingly familiar. And, you know, that’s still a pretty lucky day.

Wavehead at the chalkboard, multiplying 2.95 by 3.2 and getting, ultimately, to '.9.4.4.0.' He says: 'I forgot where to put the decimal, so I figured I'd cover all the bases.'
Mark Anderson’s Andertoons for the 27th of January, 2020. And I have a lot of essays mentioning something from Andertoons gathered at this link.

Mark Anderson’s Andertoons for the 27th is the Mark Anderson’s Andertoons for the week. It depicts Wavehead having trouble figuring where to put the decimal point in the multiplication of two decimal numbers. Relatable issue. There are rules you can follow for where to put the decimal in this sort of operation. But the convention of dropping terminal zeroes after the decimal point can make that hazardous. It’s something that needs practice, or better: though. In this case, what catches my eye is that 2.95 times 3.2 has to be some number close to 3 times 3. So 9.440 is the plausible answer.

Baseball dugout. One player: 'Jim makes $2.1 million per year. Fred makes $9.3 million over a three-year period. How much more does Fred make than Jim each year?' Second player: '60% of Roger's income last year came from promotional work. If his annual earnings are $17.2 million, how much of his income came just from baseball?' Third player: 'Tom was traded for two relief pitchers. If together they'll earn 1.3 times Tom's former annual yearly salary of $2.5 million, how much will each earn?'
Mike Twohy’s That’s Life for the 27th of January, 2020. So I have some essays mentioning this comic strip, but from before I started tagging them. I’ll try to add tags to those old essays when I have the chance. In the meanwhile, this essay and maybe future ones mentioning That’s Life should be at this link.

Mike Twohy’s That’s Life for the 27th presents a couple of plausible enough word problems, framed as Sports Math. It’s funny because of the idea that the workers who create events worth billions of dollars a year should be paid correspondingly.


This isn’t all for the week from me. I hope to have another Reading the Comics installment at this link, soon. Thanks for reading.

Reading the Comics, January 18, 2020: Decimals In Fractions Edition


Let me first share the other comic strips from last week which mentioned mathematics, but in a casual way.

Jerry Scott and Jim Borgman’s Zits for the 14th used the phrase “do the math”, and snarked on the younger generation doing mathematics. This was as part of the longrunning comic’s attempt to retcon the parents from being Baby Boomers to being Generation X. Scott and Borgman can do as they like but, I mean, their kids are named Chad and Jeremy. That’s only tenable if they’re Boomers. (I’m not sure Chad has returned from college in the past ten years.) And even then it was marginal.

John Kovaleski’s Bo Nanas rerun for the 14th is a joke about the probability of birthdays.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th features “the Bertrand Russell Drinking Game”, playing on the famous paradox about self-referential statements of logic.

Stephan Pastis’s Pearls Before Swine for the 17th has Rat use a bunch of mathematical jargon to give his declarations authority.

Cy Olson’s Office Hours for the 18th, rerunning a strip from the 9th of November, 1971, is in the line of jokes about parents not understanding their children’s arithmetic. It doesn’t seem to depend on mocking the New Math, which is a slight surprise for a 1971 comic.


Classroom. The blackboard problem is 0.25 / 0.05 = ? Wavehead, to teacher: 'Decimals *in* fractions?! Have you no shame?!'
Mark Anderson’s Andertoons for the 12th of January, 2020. This and other essays with some topic raised by Andertoons should appear at this link.

So Mark Anderson’s Andertoons for the 12th is the only comic strip of some substance that I noticed last week. You see what a slender month it’s been. It does showcase the unsettling nature of seeing notations for similar things mixed. It’s not that there’s anything which doesn’t parse about having decimals in the numerator or denominator. It just looks weird. And that can be enough to throw someone out of a problem. They might mistake the problem for one that doesn’t have a coherent meaning. Or they might mistake it for one too complicated to do. Learning to not be afraid of a problem that looks complicated is worth doing. As is learning how to tell whether a problem parses at all, even if it looks weird.


And that’s an end to last week in comics. I plan to have a fresh Reading the Comics post on Sunday. Thank you for reading in the meanwhile.

Reading the Comics, November 15, 2019: The Quick Mentions Edition


Once again unexpected developments ate up time I’d otherwise have used to go into the mathematically-themed comic strips of the week. So let me present last week’s casual mentions. I should have the comics that I can write a good paragraph about tomorrow, at this link.

Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 14th has Skip not paying attention to his mathematics homework. It’s a different joke from if he weren’t paying attention to his social studies homework.

Mark Anderson’s Andertoons for the 15th is sort of a wordplay strip, fussing around the connotations of some numbers like 86 and 22 (as in catch-22) to get to a nonsense result.

Dave Blazek’s Loose Parts for the 15th is wordplay built on the notion of a pyramid scheme. And fitting other shapes in.

I may have mentioned there weren’t many this past week. This was the rare week there were more strips just mentioning mathematics than ones I could write a good paragraph about. Anyway, this is also the penultimate week of the Fall 2019 A-to-Z, so do please check in on that Tuesday. Thank you.

Reading the Comics, November 9, 2019: Two Pairs Edition


So finally I get to the mathematically-themed comic strips of last week. There were four strips which group into natural pairings. So let’s use that as the name for this edition.

Vic Lee’s Pardon My Planet for the 3rd puts forth “cookie and cake charts”, as a riff on pie charts. There’s always room for new useful visual representations of data, certainly, although quite a few of the ones we do use are more than two centuries old now. Pie charts, which we trace to William Playfair’s 1801 Statistical Breviary, were brought to the public renown by Florence Nightingale. She wanted her reports on the causes of death in the Crimean War to communicate well, and illustrations helped greatly.

Woman giving a presentation in an office; the pie chart on display is lumpy and odd-shaped. She says: 'This was way hard, but my cookie and cake charts are awesome!'
Vic Lee’s Pardon My Planet for the 3rd of November, 2019. It’s been over two years since the last time I mentioned this strip. But this, and those, appearances of Pardon My Planet are available at this link.

Wayno and Piraro’s Bizarro for the 9th is another pie chart joke. If I weren’t already going on about pie charts this week I probably would have relegated this to the “casual mentions” heap. I love the look of the pie, though.

Woman explaining to a kid: 'It's 30% pumpkin, 24% apple, 19% key lime, 15% cherry, and 12% banana cream.' Label: 'Chart pie.' On the table is a pie divided into five pieces, each a different sort of pie.
Wayno and Piraro’s Bizarro for the 9th of November, 2019. It’s only been about seven months since I last mentioned Bizarro, in this and other essays at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th jokes about stereotypes of mathematics and English classes. Or exams, anyway. There is some stabbing truth in the presentation of English-as-math-class. Many important pieces of mathematics are definitions or axioms. In an introductory class there’s not much you can usefully say about, oh, why we’d define a limit to be this rather than that. The book surely has its reasons and we’ll avoid confusion by trusting in them.

Caption: 'If Mathematics were like English Class' Exam question: 'What is the square root of 64?' Answer; 'Square rooting is a multifaceted process that has been used in myriad times, eras, and epochs. It has its 'roots' in ... ' Caption: 'if English class were like Math Class' Exam question; 'Why did Captain Ahab hunt Moby-Dick?' Answer: 'Book said so. QED.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th of November, 2019. It’s been whole minutes since the most recent essay mentioning Saturday Morning Breakfast Club.

I dislike the stereotype of English as a subject rewarding longwinded essays that avoid the question. It seems at least unfair to what good academic writing strives for. (If you wish to argue about bad English writing, you have your blog for that, but let’s not pretend mathematics lacks fundamentally bad papers.) And writing an essay about why a thing should be true, or interesting, is certainly worthwhile. I’m reminded of a mathematical logic professor I had, who spoke of a student who somehow could not do a traditional proper-looking proof. But could write a short essay explaining why a thing should be true which convinced the professor that the student deserved an A. The professor was sad that the student was taking the course pass-fail.

Question worked out: 'B = 1/3 (bugs encountered per km by a moving vehicle w/1-square-meter forward surface, units bugs/km*m^2); S = 1/3 (forward surface area of Superman, units m^2); D = 5500 (distance from Fortress of Solitude to Metropolis, units km); B * S * D = what superman actually looks like when he saves you. Picture of a horrified woman being mugged as a bug-encrusted Superman declares 'I'm here to help!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th of November, 2019. So, uh, my apologies to people who did not need to see Superman with a whomping great mass of dead bugs on him.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th shows off a bit of mathematical modeling. The specific problem is silly, yes. But the approach is dead on: identify the things that affect what you’re interested in, and how they interact. Add to this estimates of the things’ values and you’ll get at least a provisional answer. You can then use that answer to guide the building of a more precise model, if you need one.

This little bugs-on-Superman problem makes note of the units everything’s measured in. Paying attention to the units is often done in dimensional analysis, a great tool for building simple models. I ought to write an essay sequence about that sometime.

Wavehead, looking at the angle the teacher's drawn and labelled 75 degrees; 'What about wind chill?'
Mark Anderson’s Andertoons for the 9th of November, 2019. The Andertoons drought is finally over! The last mention, in August, is at this link, as are other past Andertoons discussions.

Mark Anderson’s Andertoons for the 9th is the Mark Anderson’s Andertoons for the week. This one plays on the use of the same word to measure an angle and a temperature. Degree, etymologically, traces back to “a step”, like you might find in stairs. This, taken to represent a stage of progress, got into English in the 13th century. By the late 14th century “degree” was used to describe this 1/360th slice of a circle. By the 1540s it was a measure of heat. Making the degree the unit of temperature, as on a thermometer, seems to be written down only as far back as the 1720s.


And for a last strip of the week, Gary Wise and Lance Aldrich’s Real Life Adventures for the 7th mentions an advantage of being a cartoonist “instead of an engineer” is how cartooning doesn’t require math. Also I guess this means the regular guy in Real Life Adventures represents one (or both?) of the creators? I guess that makes the name Real Life Adventures make more sense. I just thought he was a generic comic strip male. And, of course, there’s nothing about mathematics that keeps one from being a cartoonist, although I don’t know of any current daily-syndicated cartoonists with strong mathematics backgrounds. Bill Amend, of FoxTrot, and Bud Grade, of The Piranha Club/Ernie, were both physics majors, which is a heavy-mathematics program.


And that covers last week’s comics. Reading the Comics should return Sunday at this link. And tomorrow I hope to get tothe Fall 2019 A to Z’s exploration of the letter ‘U’. Thanks for reading.

Reading the Comics, August 23, 2019: Basics of Logic Edition


While there were a good number of comic strips to mention mathematics this past week, there were only a few that seemed substantial to me. This works well enough. This probably is going to be the last time I keep the Reading the Comics post until after Sunday, at least until the Fall 2019 A To Z is finished.

And I’m still open to topics for the first third of the alphabet. If you’d like to see my try to understand a thing of your choice please nominate one or more concepts over at this page. You might be the one to name a topic I can’t possibly summarize!

Gordon Bess’s Redeye rerun for the 18th is a joke building on animals’ number sense. And, yeah, about dumb parents too. Horses doing arithmetic have a noteworthy history. But more in the field of understanding how animals learn, than in how they do arithmetic. In particular in how animals learn to respond to human cues, and how slight a cue has to be to be recognized and acted on. I imagine this reflects horses being unwieldy experimental animals. Birds — pigeons and ravens, particularly — make better test animals.

Kid: 'I've taught Loco [the horse] how to add!' Dad: 'You couldn't teach that stupid horse to come in out of the rain, let alone add.' Kid: 'He can too add! Just watch! OK, Loco, how much is two plus two?' Loco taps his foot four times. 'Four taps!' Dad: 'See! I told you he was a stupid horse!'
Gordon Bess’s Redeye rerun for the 18th of August, 2019. It originally ran the 1st of April, 1973. Essays with mention of Redeye are at this link. This seems to be the first time in over a year the strip has included an actual image and not just a casual “oh, this also mentioned mathematics” line.

Art Sansom and Chip Sansom’s The Born Loser for the 18th gives a mental arithmetic problem. It’s a trick question, yes. But Brutus gives up too soon on what the problem is supposed to be. Now there’s no calculating, in your head, exactly how many seconds are in a year; that’s just too much work. But an estimate? That’s easy.

At least it’s easy if you remember one thing: a million seconds is about eleven and a half days. I find this easy to remember because it’s one of the ideas used all the time to express how big a million, a billion, and a trillion are. A million seconds are about eleven and a half days. A billion seconds are a little under 32 years. A trillion seconds are about 32,000 years, which is about how long it’s been since the oldest known domesticated dog skulls were fossilized. I’m sure that gives everyone a clear idea of how big a trillion is. The important thing, though, is that a million seconds is about eleven and a half days.

Hattie: 'Betcha a buck I can ask a question you can't answer!' Brutus: 'You're on!' Hattie: 'How many seconds are in a year?' Brutus: 'Without a calculator I have no idea.' Hattie: 'It's easy! There are 12 seconds in a year.' Brutus: 'No way that's correct!' Hattie: 'Sure, there's 12 months in a year, so there's January 2nd, February 2nd, and so on through December 2nd. Twelve seconds, pay me!'
Art Sansom and Chip Sansom’s The Born Loser for the 18th of August, 2019. Appearances by The Born Loser should be at this link.

So. Think of the year. There are — as the punch line to Hattie’s riddle puts it — twelve 2nd’s in the year. So there are something like a million seconds spent each year on days that are the 2nd of the month. There about a million seconds spent each year on days that are the 1st of the month, too. There are about a million seconds spent each year on days that are the 3rd of the month. And so on. So, there’s something like 31 million seconds in the year.

You protest. There aren’t a million seconds in twelve days; there’s a million seconds in eleven and a half days. True. Also there aren’t 31 days in every month; there’s 31 days in seven months of the year. There’s 30 days in four months, and 28 or 29 in the remainder. That’s fine. This is mental arithmetic. I’m undercounting the number of seconds by supposing that a million seconds makes twelve days. I’m overcounting the number of seconds by supposing that there are twelve months of 31 days each. I’m willing to bet this undercount and this overcount roughly balance out. How close do I get?

There are 31,536,000 seconds in a common year. That is, a non-leap-year. So “31 million” is a bit low. But it’s not bad for working without a calculator.

T-Rex: 'Everyone! Check this out and I hope you haven't left your balls on the floor because you'll trip on them when you hear this. Ready? 'This sentence is a lie!' Get it? Welcome to Paradox Towne, population: you!' Utahraptor: 'This paradox is ancient.' T-Rex 'WHAT'S THAT? YOU CAN'T HEAR YOUR OWN CRITICISM AS YOU QUICK-TRIP BALLS.' Dromiceiomimus: 'It's old. We've all heard this and dealt with it. Personally, I said 'Oh, I get it'.' T-Rex: 'You say 'Oh, I get it' but here in Paradox Towne that actually means, 'Oh balls, I am here to trip you!' Hours later Paradox Towne is stil infested by balls. You strap a shotgun to your back and set off alone downtown ... oh wow, *this* must be how Shakespeare felt!'
Ryan North’s Dinosaur Comics for the 19th of August, 2019. This and other essays with Dinosaur Comics under discussion should be at this link.

Ryan North’s Dinosaur Comics for the 19th lays on us the Eubulides Paradox. It’s traced back to the fourth century BCE. Eubulides was a Greek philosopher, student of “Not That” Euclid of Megara. We know Eubulides for a set of paradoxes, including the Sorites paradox. As T-Rex’s friends point out, we’ve all heard this paradox. We’ve all gone on with our lives, knowing that the person who said it wanted us to say they were very clever. Fine.

But if we take this seriously we find … this keeps not being simple. We can avoid the problem by declaring self-referential statements exist outside of truth or falsity. This forces us to declare the sentence “this sentence is true” can’t be true. This seems goofy. We can avoid the problem by supposing there are things that are neither true nor false. That solves our problem here at the mere cost of ruining our ability to prove stuff by contradiction. There’s a lot of stuff we prove by contradiction. It’s hard to give that all up for this (Although, so far as I’m aware, anything that can be proved by contradiction can also be proven by a direct line of reasoning. The direct line may just be tedious.) We can solve this problem by saying that our words are fuzzy imprecise things. This is true enough, as see any time my love and I debate how many things are in “a couple of things”. But declaring that we just can’t express the problem well enough to answer it seems like running away from the question. We can resolve things by accepting there are limits to what can be proved by logic. Gödel’s Incompleteness Theorem shows that any interesting enough logic system has statements that are true but unprovable. A version of this paradox helps us get to this interesting conclusion.

So this is one of those things it should be easy to laugh off, but why it should be easy is hard.

Alan Turing, holding a club: 'The Halting Problem is easy to solve. If the program runs too long, I take this stick and beat the computer until it stops.' Caption: 'What if Alan Turing had been an engineer?'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st of August, 2019. In case I ever mention Saturday Morning Breakfast Cereal in an essay you’ll see it at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st is about the other great logic problem of the 20th century. The Halting Problem here refers to Turing Machines. This is the algorithmic model for computing devices. It’s rather abstract, so the model won’t help you with your C++ homework, but nothing will. But it turns out we can represent a computer running a program as a string of cells. Each cell holds one of a couple possible values. The program is a series of steps. Each step starts at one cell. The program resets the value of that cell to something dictated by the algorithm. Then, the program moves focus to another cell, again as the algorithm dictates. Do enough of this and you get SimCity 2000. I don’t know all the steps in-between.

So. The Halting Program is this: take a program. Run it. What happens in the long run? Well, it does something or other, yes. But there’s three kinds of things it can do. It can run for a while and then finish, that is, ‘halt’. It can run for a while and then get into a repeating loop, after which it repeats things forever. It can run forever without repeating itself. (Yeah, I see the structural resemblance to terminating decimals, repeating decimals, and irrational numbers too, but I don’t know of any link there.) The Halting Problem asks, if all we know is the algorithm, can we know what happens? Can we say for sure the program will always end, regardless of what the data it works on are? Can we say for sure the program won’t end if we feed it the right data to start?

If the program is simple enough — and it has to be extremely simple — we can say. But, basically, if the program is complicated enough to be even the least bit interesting, it’s impossible to say. Even just running the program isn’t enough: how do you know the difference between a program that takes a trillion seconds to finish and one that never finishes?

For human needs, yes, a program that needs a trillion seconds might as well be one that never finishes. Which is not precisely the joke Weinersmith makes here, but is circling around similar territory.

Wavehead, having divided 19 by 4 on the chalkboard and gotten 4 r 3: 'So there's a little leftover? Great! I can use that in some other math later in the week!'
Mark Anderson’s Andertoons for the 23rd of August, 2019. Tune in to all the times Wavehead says something to a teacher with the Andertoons-based essays at this link.

Mark Anderson’s Andertoons for the 23rd is the Mark Anderson’s Andertoons for the week. And it teases my planned post for Thursday, available soon at this link. Thanks for reading.

Reading the Comics, August 10, 2019: In Security Edition


There were several more comic strips last week worth my attention. One of them, though, offered a lot for me to write about, packed into one panel featuring what comic strip fans call the Wall O’ Text.

Bea R’s In Security for the 9th is part of a storyline about defeating an evil “home assistant”. The choice of weapon is Michaela’s barrage of questions, too fast and too varied to answer. There are some mathematical questions tossed in the mix. The obvious one is “zero divided by two equals zero, but why’z two divided by zero called crazy town?” Like with most “why” mathematics questions there are a range of answers.

Evil Alexa: 'I ordered a spanking for you: express.' Sedine: 'DIE!' Michaela: 'How 'we defeat this evil genius? (To the home-assistant) What's the diffrence between wrong and right? Who's got better fries, McD or BK? Why's a ball round? Is a wingless fly a 'walk'? Why'z all this communism so capitalistic? If Jeff Bezos is so rich why'zint he abel to own a toupee? Zero divded by two equals zero, but why'z two divided by zero called crazy town? So if infinity is forever, isn't that crazy too? If reality is a human construck why does my mommy act so normal? Tell me!' Sputtering Alexia: 'I - I must compute!'
Bea R’s In Security for the 9th of August, 2019. This is a new comic strip for these parts. So this essay and any future ones which explore topics raised by In Security are to be be at this link.

The obvious one, I suppose, is to appeal to intuition. Think of dividing one number by another by representing the numbers with things. Start with a pile of the first number of things. Try putting them into the second number of bins. How many times can you do this? And then you can pretty well see that you can fill two bins with zero things zero times. But you can fill zero bins with two things — well, what is filling zero bins supposed to mean? And that warns us that dividing by zero is at least suspicious.

That’s probably enough to convince a three-year-old, and probably most sensible people. If we start getting open-mined about what it means to fill no containers, we might say, well, why not have two things fill the zero containers zero times over, or once over, or whatever convenient answer would work? And here we can appeal to mathematical logic. Start with some ideas that seem straightforward. Like, that division is the inverse of multiplication. That addition and multiplication work like you’d guess from the way integers work. That distribution works. Then you can quickly enough show that if you allow division by zero, this implies that every number equals every other number. Since it would be inconvenient for, say, “six” to also equal “minus 113,847,506 and three-quarters” we say division by zero is the problem.

This is compelling until you ask what’s so great about addition and multiplication as we know them. And here’s a potentially fruitful line of attack. Coming up with alternate ideas for what it means to add or to multiply are fine. We can do this easily with modular arithmetic, that thing where we say, like, 5 + 1 equals 0 all over again, and 5 + 2 is 1 and 5 + 3 is 2. This can create a ring, and it can offer us wild ideas like “3 times 2 equals 0”. This doesn’t get us to where dividing by zero means anything. But it hints that maybe there’s some exotic frontier of mathematics in which dividing by zero is good, or useful. I don’t know of one. But I know very little about topics like non-standard analysis (where mathematicians hypothesize non-negative numbers that are not zero, but are also smaller than any positive number) or structures like surreal numbers. There may be something lurking behind a Quanta Magazine essay I haven’t read even though they tweet about it four times a week. (My twitter account is, for some reason, not loading this week.)

Michaela’s questions include a couple other mathematically-connected topics. “If infinity is forever, isn’t that crazy, too?” Crazy is a loaded word and probably best avoided. But there are infinity large sets of things. There are processes that take infinitely many steps to complete. Please be kind to me in my declaration “are”. I spent five hundred words on “two divided by zero”. I can’t get into that it means for a mathematical thing to “exist”. I don’t know. In any event. Infinities are hard and we rely on them. They defy our intuition. Mathematicians over the 19th and 20th centuries worked out fairly good tools for handling these. They rely on several strategies. Most of these amount to: we can prove that the difference between “infinitely many steps” and “very many steps” can be made smaller than any error tolerance we like. And we can say what “very many steps” implies for a thing. Therefore we can say that “infinitely many steps” gives us some specific result. A similar process holds for “infinitely many things” instead of “infinitely many steps”. This does not involve actually dealing with infinity, not directly. It involves dealing with large numbers, which work like small numbers but longer. This has worked quite well. There’s surely some field of mathematics about to break down that happy condition.

And there’s one more mathematical bit. Why is a ball round? This comes around to definitions. Suppose a ball is all the points within a particular radius of a center. What shape that is depends on what you mean by “distance”. The common definition of distance, the “Euclidean norm”, we get from our physical intuition. It implies this shape should be round. But there are other measures of distance, useful for other roles. They can imply “balls” that we’d say were octahedrons, or cubes, or rounded versions of these shapes. We can pick our distance to fit what we want to do, and shapes follow.

I suspect but do not know that it works the other way, that if we want a “ball” to be round, it implies we’re using a distance that’s the Euclidean measure. I defer to people better at normed spaces than I am.

Wavehead, standing in front of a digital blackboard which has the problem 3 + 5 on it: 'I'm just saying, with all the computing power in this electronic board, I bet it could take care of this itself.'
Mark Anderson’s Andertoons for the 10th of August, 2019. The handful of times that I’ve mentioned explore Andertoons around here can be found at this link.

Mark Anderson’s Andertoons for the 10th is the Mark Anderson’s Andertoons for the week. It’s also a refreshing break from talking so much about In Security. Wavehead is doing the traditional kid-protesting-the-chalkboard-problem. This time with an electronic chalkboard, an innovation that I’ve heard about but never used myself.

Molly: 'We'll play after I finish my homework. I'm studying pi.' Bear: (Panel filled with the word GUSH! His mouth dangles open, and he drools.) 'You said pie!!'
Bob Scott’s Bear With Me for the 10th of August, 2019. Appearances by Bear With Me should be at this link. This strip originally ran the 15th of October, 2015, when the comic was titled Molly and the Bear.

Bob Scott’s Bear With Me for the 10th is the Pi Day joke for the week.


And that last one seemed substantial enough to highlight. There were even slighter strips. Among them: Mark Anderson’s Andertoons for the 4th features latitude and longitude, the parts of spherical geometry most of us understand. At least feel we understand. Jim Toomey’s Sherman’s Lagoon for the 8th mentions mathematics as the homework parents most dread helping with. Larry Wright’s Motley rerun for the 10th does a joke about a kid being bad at geography and at mathematics.


And that’s this past week’s mathematics comics. Reading the Comics essays should all be gathered at this link. Thanks for reading this far.

Reading the Comics, August 3, 2019: Summer Trip Edition


I was away from home most of last week. Comic Strip Master Command was kind and acknowledged this. There wasn’t much for me to discuss. There’s not even many comics too slight to discuss. I thank them for their work in not overloading me. But if you wondered why Sunday’s post was what it was, you now know. I suspect you didn’t wonder.

Mark Anderson’s Andertoons for the 29th of July is a comfortable and familiar face for these Reading the Comics posts. I’m glad to see it. The joke is built on negative numbers, and Wavehead’s right to say this is kind of the reason people hate mathematics. At least, that mathematicians will become comfortable with something that has a clear real-world intuitive meaning, such as that adding things together gets you a bigger thing. And then for good reasons of logic get to counter-intuitive things, such as adding things together to get a lesser thing. Negative numbers might be the first of these intuition-breaking things that people encounter. That or fractions. I encounter stories of people who refuse to accept that, say, \frac16 is smaller than \frac13 , although I’ve never seen it myself.

On the chalkboard, '-3 + -5 = -8'. Wavehead, to teacher: 'So by adding them together we ended up with less than we started with? See, this is why people hate math.'
Mark Anderson’s Andertoons for the 29th of July, 2019. Essays with some mention of Andertoons are common enough, and are at this link.

So why do mathematicians take stuff like “adding” and break it? Convenience, I suppose, is the important reason. Having negative numbers lets us treat “having a quantity” and “lacking a quantity” using the same mechanisms. So that’s nice to have. If we have positive and negative numbers, then we can treat “adding” and “subtracting” using the same mechanisms. That’s nice to do. The trouble is then knowing, like, “if -3 times 4 is greater than -16, is -3 times -4 greater than 16? Or less than? Why?”

Caption: 'Mime over Matter'. Several mimes stand in a science lab, surrounded by beakers and stuff. On the blackboard are mathematical scribblings, including E = mc^2 but mostly gibberish equations.
Jeffrey Caulfield and Brian Ponshock’s Yaffle for the 31st of July, 2019. Fewer essays mention Yaffle, but those that do are at this link.

Jeffrey Caulfield and Brian Ponshock’s Yaffle for the 31st of July uses the blackboard-full-of-mathematics as shorthand for deep thought about topics. The equations don’t mean much of anything, individually or collectively. I’m curious whether Caulfield and Ponshock mean, in the middle there, for that equation to be π times y2 equalling z3, or whether it’s π times x times y2 that is. Doens’t matter either way. It’s just decoration.


And then there are the most marginal comic strips for the week. And if that first Yaffle didn’t count as too marginal to mention, think what that means for the others. Yaffle on the 28th of July features a mention of sudoku as the sort of thing one struggles to solve. Tony Rubino and Gary Markstein’s Daddy’s Home for the 1st of August mentions mathematics as the sort of homework a parent can’t help with. Jim Toomey’s Sherman’s Lagoon for the 2nd sets up a math contest. It’s mentioned as the sort of things the comic strip’s regular cast can’t hope to do.


And there we go. I’m ready now for August. Around Sunday I should have a fresh Reading the Comics page here. And it does seem like I’m missing my other traditional post here, doesn’t it? Have to work on that.

Reading the Comics, July 22, 2019: Mathematics Education Edition


There were a decent number of mathematically-themed comic strips this past week. This figures, because I’ve spent this past week doing a lot of things, and look to be busier this coming week. Nothing to do but jump into it, then.

Jason Chatfield’s Ginger Meggs for the 21st is your usual strip about the student resisting the story problem. Story problems are hard to set. Ideally, they present problems like mathematicians actually do, proposing the finding of something it would be interesting to learn. But it’s hard to find different problems like this. You might be fairly interested in how long it takes a tub filling with water to overflow, but the third problem of this kind is going to look a lot like the first two. And it’s also hard to find problems that allow for no confounding alternate interpretations, like this. Have some sympathy and let us sometimes just give you an equation to solve.

Teacher: 'If there were three cricketeers and one of them got hit in the head with the ball, how many wold be left?' Ginger: 'None!' Teacher: 'Right. And HOW do you figure that?' Ginger: 'Simple, really. True teammates would go to the hospital with him!'
Jason Chatfield’s Ginger Meggs for the 21st of July, 2019. Essays which mention Ginger Meggs are at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st is a pun built on two technical definitions for “induction”. The one used in mathematics, and logic, is a powerful tool for certain kinds of proof. It’s hard to teach how to set it up correctly, though. It’s a way to prove an infinitely large number of logical propositions, though. Let me call those propositions P1, P2, P3, P4, and so on. Pj for every counting number j. The first step of the proof is showing that some base proposition is true. This is usually some case that’s really easy to do. This is the fun part of a proof by induction, because it feels like you’ve done half the work and it amounts to something like, oh, showing that 1 is a triangular number.

Scientist pointing her finger in someone's face: 'If you object to my conjecture I'll put you inside this coil of wires that'll create electrical eddy currents in your body until you VAPORIZE!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st of July, 2019. It’s not quite every Reading the Comics post with some mention of this comic. Those which do explore Saturday Morning Breakfast Cereal are at this link.

The second part is hard. You have to show that whenever Pj is true, this implies that Pj + 1 is also true. This is usually a step full of letters representing numbers rather than anything you can directly visualize with, like, dots on paper. This is usually the hard part. But put those two halves together? And you’ve proven that all your propositions are true. Making things line up like that is so much fun.

On the chalkboard, 4 + 3 = 6. Wavehead, to teacher: 'It's a rough draft.'
Mark Anderson’s Andertoons for the 22nd of July, 2019. It’s not quite every Reading the Comics post with some mention of this comic. Those which do explore Andertoons are at this link.

Mark Anderson’s Andertoons for the 22nd is the Mark Anderson’s Andertoons for the week. It’s again your student trying to get out of not really knowing mathematics in class. Longtime readers will know, though, that I’m fond of rough drafts in mathematics. I think most mathematicians are. If you are doing something you don’t quite understand, then you don’t know how to do it well. It’s worth, in that case, doing an approximation of what you truly want to do. This is for the same reason writers are always advised to write something and then edit later. The rough draft will help you find what you truly want. In thinking about the rough draft, you can get closer to the good draft.

Herb: 'I don't get it, Ezekiel!' Ezekiel: 'What's that, dad?' Herb: 'You can remember every word from the lyrics of that new rap song! Why can't you remember simple mathematics?' Ezekiel, thinking: 'Cause it isn't put to music and played ten times an hour on the radio.'
Stephen Bentley’s Herb and Jamaal rerun for the 22nd of July, 2019. It originally ran sometime in 2014, based on the copyright notice. Essays mentioning Herb and Jamaal in some way are at this link. Also, what’s the cheaper but more fun snark: observing the genericness of “that new rap song” or the slightly out-of-date nature of a kid listening to the radio?

Stephen Bentley’s Herb and Jamaal for the 22nd is one lost on me. I grew up when Schoolhouse Rock was a fun and impossible-to-avoid part of watching Saturday Morning cartoons. So there’s a lot of simple mathematics that I learned by having it put to music and played often.

Still, it’s surprising Herb can’t think of why it might be easier to remember something that’s fun, that’s put to a memory-enhancing tool like music, and repeated often, than it is to remember whether 8 times 7 is 54. Arithmetic gets easier to remember when you notice patterns, and find them delightful. Even fun. It’s a lot like everything else humans put any attention to, that way.


This was a busy week for comic strips. I hope to have another Reading the Comics post around Tuesday, and at this link. There might even be another one this week. Please check back in.

Reading the Comics, June 20, 2019: Old Friends Edition


We continue to be in the summer vacation doldrums for mathematically-themed comic strips. But there’ve been a couple coming out. I could break this week’s crop into two essays, for example. All of today’s strips are comics that turn up in my essays a lot. It’s like hanging out with a couple of old friends.

Samson’s Dark Side of the Horse for the 17th uses the motif of arithmetic expressions as “difficult” things. The expressions Samson quotes seem difficult for being syntactically weird: What does the colon under the radical sign mean in \sqrt{9:}33 ? Or they’re difficult for being indirect, using a phrase like “50%” for “half”. But with some charity we can read this as Horace talking about 3:33 am to about 6:30 am. I agree that those are difficult hours.

Horace: 'I've lived through some difficult times. Especially from sqrt{9:}33 AM to 50% past sixish o'clock. Maybe I should get my watch fixed.'
Samson’s Dark Side of the Horse for the 17th of June, 2019. Some of the many essays inspired by Dark Side of the Horse are at this link.

It also puts me in mind of a gift from a few years back. An aunt sent me an Irrational Watch, with a dial that didn’t have the usual counting numbers on it. Instead there were various irrational numbers, like the Golden Ratio or the square root of 50 or the like. Also the Euler-Mascheroni Constant, a number that may or may not be irrational. Nobody knows. It’s likely that it is irrational, but it’s not proven. It’s a good bit of fun, although it does make it a bit harder to use the watch for problems like “how long is it until 4:15?” This isn’t quite what’s going on here — the square root of nine is a noticeably rational number — but it seems in that same spirit.

Mark Anderson’s Andertoons for the 18th sees Wavehead react to the terminology of the “improper fraction”. “Proper” and “improper” as words carry a suggestion of … well, decency. Like there’s something faintly immoral about having an improper fraction. “Proper” and “improper”, as words, attach to many mathematical concepts. Several years ago I wrote that “proper” amounted to “it isn’t boring”. This is a fair way to characterize, like, proper subsets or proper factors or the like. It’s less obvious that \frac{13}{12} is a boring fraction.

The teacher has on the blackboard 1/3 + 3/4 rewritten as 4/12 + 9/12 = 13/12. Wavehead: 'OK, we made it so they had something in common, added them together, and the result is *improper*? I mean, I kinda feel like we just made things worse!'
Mark Anderson’s Andertoons for the 18th of June, 2019. Essays with some mention of a topic from Andertoons are at this link.

I may need to rewrite that old essay. An “improper” form satisfies all the required conditions for the term. But it misses some of the connotation of the term. It’s true that, say, the new process takes “a fraction of the time” of the old, if the old process took one hour and the new process takes fourteen years. But if you tried telling someone that they would assume you misunderstood something. The ordinary English usage of “fraction” carries the connotation of “a fraction between zero and one”, and that’s what makes a “proper fraction”.

In practical terms, improper fractions are fine. I don’t know of any mathematicians who seriously object to them, or avoid using them. The hedging word “seriously” is in there because of a special need. That need is: how big is, say, \frac{75}{14} ? Is it bigger than five? Is it smaller than six? An improper fraction depends on you knowing, in this case, your fourteen-times tables to tell. Switching that to a mixed fraction, 5 + \frac{5}{14} , helps figure out what the number means. That’s as far as we have to worry about the propriety of fractions.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th uses the form of a Fermi problem for its joke. Fermi problems have a place in mathematical modeling. The idea is to find an estimate for some quantity. We often want to do this. The trick is to build a simple model, and to calculate using a tiny bit of data. The Fermi problem that has someone reached public consciousness is called the Fermi paradox. The question that paradox addresses is, how many technologically advanced species are there in the galaxy? There’s no way to guess. But we can make models and those give us topics to investigate to better understand the problem. (The paradox is that reasonable guesses about the model suggest there should be so many aliens that they’d be a menace to air traffic. Or that the universe should be empty except for us. Both alternatives seem unrealistic.) Such estimates can be quite wrong, of course. I remember a Robert Heinlein essay in which he explained the Soviets were lying about the size of Moscow, his evidence being he didn’t see the ship traffic he expected when he toured the city. I do not remember that he analyzed what he might have reasoned wrong when he republished this in a collection of essays he didn’t seem to realize were funny.

HR interviewer: 'At this company we only want geniuses. So we ask puzzles and judge how well you solve them. Quick! Estimate how many employees we have!' Job applicant: 'Given other companies use empirically validated non-annoying hiring protocols and that engineers have lots of options, I'd estimate your company has exactly one employee.' Interviewer: 'Please don't leave me.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th of June, 2019. Anyone who’s been reading these for a couple weeks knows, but, Saturday Morning Breakfast Cereal features in essays at this link. Hey, every essay is somebody’s first.

So the interview question presented is such a Fermi problem. The job applicant, presumably, has not committed to memory the number of employees at the company. But there would be clues. Does the company own the whole building it’s in, or just a floor? Just an office? How large is the building? How large is the parking lot? Are there people walking the hallways? How many desks are in the offices? The question could be answerable. The applicant has a pretty good chain of reasoning too.

Bill Amend’s FoxTrot Classics for the 20th has several mathematical jokes in it. One is the use of excessively many decimal points to indicate intelligence. Grant that someone cares about the hyperbolic cosines of 15.2. There is no need to cite its wrong value to nine digits past the decimal. Decimal points are hypnotic, though, and listing many of them has connotations of relentless, robotic intelligence. That is what Amend went for in the characters here. That and showing how terrible nerds are when they find some petty issue to rage over.

Eugene: 'Lousy camp-issued calculator!' Marcus: 'What's wrong now?' Eugene: 'This thing says the hyperbolic cosine of 15.2 is 0.965016494 when any moron knows this can't be right! What kin of boneheads run this palce? See? It did it again!' Marcus: 'You need to hit the blue button first. Right now you're just getting the regular cosine. ... No need to say 'thank you'. I'm enjoying this silence.' Jason: 'Did you want to borrow mine? Some of us don't need them.'
Bill Amend’s FoxTrot Classics for the 20th of June, 2019. It originally ran the 3rd of July, 1997. Essays based on FoxTrot, either the current-run Sundays, newspaper-rerun 2000s strips, or 90s-run Classics, are at this link.

Eugene is correct about the hyperbolic cosine being wrong, there, though. He’s not wrong to check that. It’s good form to have some idea what a plausible answer should be. It lets one spot errors, for one. No mathematician is too good to avoid making dumb little mistakes. And computing tools will make mistakes too. Fortunately they don’t often, but this strip originally ran a couple years after the discovery of the Pentium FDIV bug. This was a glitch in the way certain Pentium chips handled floating-point division. It was discovered by Dr Thomas Nicely, at Lynchberg College, who found inconsistencies in some calculations when he added Pentium systems to the computers he was using. This Pentium bug may have been on Amend’s mind.

Eugene would have spotted right away that the hyperbolic cosine was wrong, though, and didn’t need nine digits for it. The hyperbolic cosine is a function. Its domain is the real numbers. It range is entirely numbers greater than or equal to one, or less than or equal to minus one. A 0.9 something just can’t happen, not as the hyperbolic cosine for a real number.

And what is the hyperbolic cosine? It’s one of the hyperbolic trigonometric functions. The other trig functions — sine, tangent, arc-sine, and all that — have their shadows too. You’ll see the hyperbolic sine and hyperbolic tangent some. You will never see the hyperbolic arc-cosecant and anyone trying to tell you that you need it is putting you on. They turn up in introductory calculus classes because you can differentiate them, and integrate them, the way you can ordinary trig functions. They look just different enough from regular trig functions to seem interesting for half a class. By the time you’re doing this, your instructor needs that.

The ordinary trig functions come from the unit circle. You can relate the Cartesian coordinates of a point on the circle described by x^2 + y^2 = 1 to the angle made between that point and the center of the circle and the positive x-axis. Hyperbolic trig functions we can relate the Cartesian coordinates of a point on the hyperbola described by x^2 - y^2 = 1 to angles instead. The functions … don’t have a lot of use at the intro-to-calculus level. Again, other than that they let you do some quite testable differentiation and integration problems that don’t look exactly like regular trig functions do. They turn up again if you get far enough into mathematical physics. The hyperbolic cosine does well in describing catenaries, that is, the shape of flexible wires under gravity. And the family of functions turn up in statistical mechanics, often, in the mathematics of heat and of magnetism. But overall, these functions aren’t needed a lot. A good scientific calculator will offer them, certainly. But it’ll be harder to get them.

There is another oddity at work here. The cosine of 15.2 degrees is about 0.965, yes. But mathematicians will usually think of trigonometric functions — regular or hyperbolic — in terms of radians. This is just a different measure of angles. A right angle, 90 degrees, is measured as \frac{1}{2}\pi radians. The use of radians makes a good bit of other work easier. Mathematicians get to accustomed to using radians that to use degrees seems slightly alien. The cosine of 15.2 radians, then, would be about -0.874. Eugene has apparently left his calculator in degree mode, rather than radian mode. If he weren’t so worked up about the hyperbolic cosine being wrong he might have noticed. Perhaps that will be another exciting error to discover down the line.

This strip was part of a several-months-long story Bill Amend did, in which Jason has adventures at Math Camp. I don’t remember the whole story. But I do expect the strip to have several more appearances here this summer.


And that’s about half of last week’s comics. A fresh Reading the Comics post should be at this link later this week. Thank you for reading along.

Reading the Comics, June 15, 2019: School Is Out? Edition


This has not been the slowest week for mathematically-themed comic strips. The slowest would be the week nothing on topic came up. But this was close. I admit this is fine as I have things disrupting my normal schedule this week. I don’t need to write too many essays too.

On-topic enough to discuss, though, were:

Lalo Alcaraz’s La Cucaracha for the 9th features a teacher trying to get ahead of student boredom. The idea that mathematics is easier to learn if it’s about problems that seem interesting is a durable one. It agrees with my intuition. I’m less sure that just doing arithmetic while surfing is that helpful. My feeling is that a problem being interesting is separate from a problem naming an intersting thing. But making every problem uniquely interesting is probably too much to expect from a teacher. A good pop-mathematics writer can be interesting about any problem. But the pop-mathematics writer has a lot of choice about what she’ll discuss. And doesn’t need to practice examples of a problem until she can feel confident her readers have learned a skill. I don’t know that there is a good answer to this.

Teacher: 'Class, today is the last day of school. You don't want to be here, and neither do I. So, I found a way where we can learn while getting an early start on the summer break!' Next panel, they're all on surfboards. Teacher: 'Next question: whats eight sick waves times eight six waves?' Students: 'Sixty-four sick waves!'
Lalo Alcaraz’s La Cucaracha for the 9th of June, 2019. I had thought I’d mentioned this comic at least a couple times in the past, and seem to be wrong. So this is a new tag and that’s always nice to have. Any future essays which mention something inspired by La Cucaracha should be at this link.

Also part of me feels that “eight sick waves times eight sick waves” has to be “sixty-four sick-waves-squared”. This is me worrying about the dimensional analysis of a joke. All right, but if it were “eight inches times eight inches” and you came back with “sixty-four inches” you’d agree something was off, right? But it’s easy to not notice the units. That we do, mechanically, the same thing in multiplying (oh) three times $1.20 or three times 120 miles or three boxes times 120 items per box as we do multiplying three times 120 encourages this. But if we are using numbers to measure things, and if we are doing calculations about things, then the units matter. They carry information about the kinds of things our calculations represent. It’s a bad idea to misuse or ignore those tools.

Paul Trap’s Thatababy for the 14th is roughly the anthropomorphized geometry cartoon of the week. It does name the three ways to group triangles based on how many sides have the same length. Or if you prefer, how many interior angles have the same measure. So it’s probably a good choice for your geometry tip sheet. “Scalene” as a word seems to have entered English in the 1730s. Its origin traces to Late Latin “scalenus”, from the Greek “skalenos” and meaning “uneven” or “crooked”.

Thatababy drawing triangles: an equilateral triangle, an isosceles triangle, a scalene triangle, and then a love triangle, showing two isosceles triangles holding hands; one of them looks with interest at an equilateral triangle.
Paul Trap’s Thatababy for the 14th of June, 2019. Now, this strip I thought I featured more around here. It doesn’t seem to have gotten an appearance in over a year, though. Still, other appearances by Thatababy should be in essays at this link.

“Isosceles” also goes to Late Latin and, before that, the Greek “isoskeles”, with “iso” the prefix meaning “equal” and “skeles” meaning “legs”. The curious thing to me is “Isosceles”, besides sounding more pleasant, came to English around 1550. Meanwhile, “equilateral” — a simple Late Latin for “equal sides” — appeared around 1570. I don’t know what was going on that it seemed urgent to have a word for triangles with two equal sides first, and a generation later triangles with three equal sides. And then triangles with no two equal sides went nearly two centuries without getting a custom term.

But, then, I’m aware of my bias. There might have been other words for these concepts, recognized by mathematicians of the year 1600, that haven’t come to us. Or it might be that scalene triangles were thought to be so boring there wasn’t any point giving them a special name. It would take deeper mathematics history knowledge than I have to say.


Those are all the mathematically-themed comic strips I can find something to discuss from the past week. There were some others with mentions of mathematics, though. These include:

Tony Rubino and Gary Markstein’s Daddy’s Home for the 9th, in which mathematics is the last class of the school year. Francesco Marciuliano and Jim Keefe’s Sally Forth for the 11th has a study session with “math charades” mentioned. Mark Andersons Andertoons for the 11th wants in on some of my sweet Thatababy exposition. Harley Schwadron’s 9 to 5 for the 14th is trying to become the default pie chart joke around here. It won’t beat out Randolph Itch, 2 am without a stronger punch line. And Mark Tatulli’s Heart of the City for the 15th sees Dean mention hiding sleeping in algebra class.


This closes out a week’s worth of comic strips. My next Reading the Comics post should be at this link next Sunday. And now I need to think of something to post for the Thursday and, if I can, Tuesday publication dates.

Reading the Comics, May 20, 2019: I Guess I Took A Week Off Edition


I’d meant to get back into discussing continuous functions this week, and then didn’t have the time. I hope nobody was too worried.

Bill Amend’s FoxTrot for the 19th is set up as geometry or trigonometry homework. There are a couple of angles that we use all the time, and they do correspond to some common unit fractions of a circle: a quarter, a sixth, an eighth, a twelfth. These map nicely to common cuts of circular pies, at least. Well, it’s a bit of a freak move to cut a pie into twelve pieces, but it’s not totally out there. If someone cuts a pie into 24 pieces, flee.

Offscreen voice: 'So a pizza sliced into fourths has ... ' Paige: '90 degrees per slice.' Voice: 'Correct! And a pizza sliced into sixths has ... ' Page: '60 degrees per slice.' Voice: 'Good! And a pizza sliced into eighths has ... ' Paige: '45 degrees per slice.' Voice: 'Yep! I'd say you're ready for your geometry final, Paige.' Paige: 'Woo-hoo!' Voice, revealed to be Peter: 'Now help me clean up these [ seven pizza ] boxes.' Page: 'I still don't understand why teaching me this required *actual* pizzas.'
Bill Amend’s FoxTrot for the 19th of May, 2019. Essays featuring FoxTrot, either the current (Sunday-only) strips or the 1990s-vintage reruns, should be at this link.

Tom Batiuk’s vintage Funky Winkerbean for the 19th of May is a real vintage piece, showing off the days when pocket electronic calculators were new. The sales clerk describes the calculator as having “a floating decimal”. And here I must admit: I’m poorly read on early-70s consumer electronics. So I can’t say that this wasn’t a thing. But I suspect that Batiuk either misunderstood “floating-point decimal”, which would be a selling point, or shortened the phrase in order to make the dialogue less needlessly long. Which is fine, and his right as an author. The technical detail does its work, for the setup, by existing. It does not have to be an actual sales brochure. Reducing “floating point decimal” to “floating decimal” is a useful artistic shorthand. It’s the dialogue equivalent to the implausibly few, but easy to understand, buttons on the calculator in the title panel.

Calculator salesman: 'This little pocket calculator is a real beauty. It's nice and light so you can take it anywhere. It has an eight-digit readout with automatic roundoff. Not only that, but it has a floating decimal which enables you to solve ANY type of problem with it!' Les Moore: 'Amazing! May I try it out?' (To the calculator) 'Hello, pocket calculator? Why do I have so much trouble getting girls to like me?'
Tom Batiuk’s vintage Funky Winkerbean for the 19th of May, 2019. The strip originally ran the 17th of June, 1973. Comics Kingdom is printing both the current Funky Winkerbean strips and early-70s reprints. Essays that mention Funky Winkerbean, old or new, should appear at this link.

Floating point is one of the ways to represent numbers electronically. The storage scheme is much like scientific notation. That is, rather than think of 2,038, think of 2.038 times 103. In the computer’s memory are stored the 2.038 and the 3, with the “times ten to the” part implicit in the storage scheme. The advantage of this is the range of numbers one can use now. There are different ways to implement this scheme; a common one will let one represent numbers as tiny as 10-308 or as large as 10308, which is enough for most people’s needs.

The disadvantage is that floating point numbers aren’t perfect. They have only around (commonly) sixteen digits of significance. That is, the first sixteen or so nonzero numbers in the number you represent mean anything; everything after that is garbage. Most of the time, that trailing garbage doesn’t hurt. But most is not always. Trying to add, for example, a tiny number, like 10-20, to a huge number, like 1020 won’t get the right answer. And there are numbers that can’t be represented correctly anyway, including such exotic and novel numbers as \frac{1}{3} . A lot of numerical mathematics is about finding ways to compute that avoid these problems.

Back when I was a grad student I did have one casual friend who proclaimed that no real mathematician ever worked with floating point numbers, because of the limitations they impose. I could not get him to accept that no, in fact, mathematicians are fine with these limitations. Every scheme for representing numbers on a computer has limitations, and floating point numbers work quite well. At some point, you have to suspect some people would rather fight for a mistaken idea they already have than accept something new.

Matrix-O-Magic: Draw a nine-square grid on a notepad, filling in the numbers 1-9 like this: 2, 9, 4 // 7, 5, 3 // 6, 1, 8 Hand the pad and marker to a friend and tell him to pick any row of three numbers, upward, downward, or diagonal. Tell him to black out any numbers not in his row. Instruct your friend to add up his three randomly chosen numbers. Ask your friend to flip through the rest of the notepad to make sure the pages are blank. All the pages are blank except one. That one bears the number that his numbers added up to: 15. (All the rows/columns/diagonals add to 15; because the other numbers are blacked out your friend won't notice. If asked to do the trick more than once the grid can be made to look different by rotating the order of the numbers left or right, et, 6, 7, 2 // 1, 5, 9 // 8, 3, 4.)
Mac King and Bill King’s Magic in a Minute for the 19th of May, 2019. So far as I know all these panels are new ones, although they do reuse gimmicks now and then. But the arithmetic and logic tricks featured in Magic In A Minute get discussed at this link, when they get mention from me at all.

Mac King and Bill King’s Magic in a Minute for the 19th does a bit of stage magic supported by arithmetic: forecasting the sum of three numbers. The trick is that all eight possible choices someone would make have the same sum. There’s a nice bit of group theory hidden in the “Howdydoit?” panel, about how to do the trick a second time. Rotating the square of numbers makes what looks, casually, like a different square. It’s hard for human to memorize a string of digits that don’t have any obvious meaning, and the longer the string the worse people are at it. If you’ve had a person — as directed — black out the rows or columns they didn’t pick, then it’s harder to notice the reused pattern.

The different directions that you could write the digits down in represent symmetries of the square. That is, geometric operations that would replace a square with something that looks like the original. This includes rotations, by 90 or 180 or 270 degrees clockwise. Mac King and Bill King don’t mention it, but reflections would also work: if the top row were 4, 9, 2, for example, and the middle 3, 5, 7, and the bottom 8, 1, 6. Combining rotations and reflections also works.

If you do the trick a second time, your mark might notice it’s odd that the sum came up 15 again. Do it a third time, even with a different rotation or reflection, and they’ll know something’s up. There are things you could do to disguise that further. Just double each number in the square, for example: a square of 4/18/8, 14/10/6, 12/2/16 will have each row or column or diagonal add up to 30. But this loses the beauty of doing this with the digits 1 through 9, and your mark might grow suspicious anyway. The same happens if, say, you add one to each number in the square, and forecast a sum of 18. Even mathematical magic tricks are best not repeated too often, not unless you have good stage patter.

Wavehead, to classmate, over lunch: 'Did you know that every square is a rhombus, but not every rhombus is a square? I mean, you can't make this stuff up!'
Mark Anderson’s Andertoons for the 20th of May, 2019. Always glad to discuss Andertoons, as you can see from these essays.

Mark Anderson’s Andertoons for the 20th is the Mark Anderson’s Andertoons for the week. Wavehead’s marveling at what seems at first like an asymmetry, about squares all being rhombuses yet rhombuses not all being squares. There are similar results with squares and rectangles. Still, it makes me notice something. Nobody would write a strip where the kid marvelled that all squares were polygons but not all polygons were squares. It seems that the rhombus connotes something different. This might just be familiarity. Polygons are … well, if not a common term, at least something anyone might feel familiar. Rhombus is a more technical term. It maybe never quite gets familiar, not in the ways polygons do. And the defining feature of a rhombus — all four sides the same length — seems like the same thing that makes a square a square.


There should be another Reading the Comics post this coming week, and it should appear at this link. I’d like to publish it Tuesday but, really, Wednesday is more probable.

Reading the Comics, May 8, 2019: Strips With Art I Like Edition


Of course I like all the comics. … Well, that’s not literally true; but I have at least some affection for nearly all of the syndicated comics. This essay I bring up some strips, partly, because I just like them. This is my content hole. If you want a blog not filled with comic strips, go start your own and don’t put these things on it.

Mark Anderson’s Andertoons for the 5th is the Mark Anderson’s Andertoons for the week. Also a bit of a comment on the ability of collective action to change things. Wavehead is … well, he’s just wrong about making the number four plus the number four equal to the number seven. Not based on the numbers we mean by the words “four” and “seven”, and based on the operation we mean by “plus” and the relationship we mean by “equals”. The meaning of those things is set by, ultimately, axioms and deductive reasoning and the laws of deductive reasoning and there’s no changing the results.

Wavehead, to another student: 'If I say 4 + 4 = 7 it's wrong. If you say 4 + 4 = 7 it's wrong. But if the entire first grade says 4 + 4 = 7, well, now she has to take us seriously.
Mark Anderson’s Andertoons for the 5th of May, 2019. Essays mentioning Andertoons are at this link and also at nearly every Reading the Comics post, it feels like.

But. The thing we’re referring to when we say “seven”? Or when we write the symbol “7”? That is convention. That is a thing we’ve agreed on as a reference for this concept. And that we can change, if we decide we want to. We’ve done this. Look at a thousand-year-old manuscript and the symbol that looks like ‘4’ may represent the number we call five. And the names of numbers are just common words. They’re subject to change the way every other common word is. Which is, admittedly, not very subject. It would be almost as much bother to change the word ‘four’ as it would be to change the word ‘mom’. But that’s not impossible. Just difficult.

Viivi: 'Oh, sorry! Oh, pain!' Wagner: 'Stop worrying. 85% of fears never come through.' Viivi: 'That means 15% do! It's worse than I thought.'
Juba’s Viivi and Wagner for the 5th of May, 2019. I don’t often have chances to talk about Viivi and Wagner but when I do, it’s here.

Juba’s Viivi and Wagner for the 5th is a bit of a percentage joke. The characters also come to conclude that a thing either happens or it does not; there’s no indefinite states. This principle, the “excluded middle”, is often relied upon for deductive logic, and fairly so. It gets less clear that this can be depended on for predictions of the future, or fears for the future. And real-world things come in degrees that a mathematical concept might not. Like, your fear of the home catching fire comes true if the building burns down. But it’s also come true if a quickly-extinguished frying pan fire leaves the wall scorched, embarrassing but harmless. Anyway, relaxing someone else’s anxiety takes more than a quick declaration of statistics. Show sympathy.

Dogs in school. The dog teacher is pointing to '1 + 1' on the blackboard. A dog student whispers to the other, 'Sometimes I feel so stupid.'
Harry Bliss and Steve Martin’s Bliss for the 6th of May, 2019. Yes, by the way, it’s the Steve Martin you know and love from Looney Tunes: Back In Action and from the 1996 Sergeant Bilko movie. Anyway I haven’t had chance to write about this strip before but this and future appearances of Bliss should be here.

Harry Bliss and Steve Martin’s Bliss for the 6th is a cute little classroom strip, with arithmetic appearing as the sort of topic that students feel overwhelmed and baffled by. It could be anything, but mathematics uses the illustration space efficiently. The strip may properly be too marginal to include, but I like Bliss’s art style and want more people to see it.

Spud: 'It's official, Wallace. My socks are *too* tight. And I know it'll take at least three minutes to run home and change. Yet I can see the bus is only two stops away.' Wallace: 'I can stall for a good thirty seconds.' Spud: 'My life is a sadistic math problem.'
Will Henry’s Wallace the Brave for the 7th of May, 2019. This is one of the comic strips I’m most excited about, the last several years. Wallace the Brave appears in essays at this link.

Will Henry’s Wallace the Brave for the 7th puts up what Spud calls a sadistic math problem. And, well, it is a story problem happening in their real life. You could probably turn this into an actual exam problem without great difficulty.

Ruthie, holding up a triangle: 'What's this shape?' James: 'A square!' Ruthie: 'I already *told* you what it is, James! You're just acting dumb to hurt my feelings! Stop it! N-n-now (sob) what does this look like to you? (Sniff)?' James: 'A cryangle!'
Rick Detorie’s One Big Happy for the 8th of May, 2019. There are two strings of One Big Happy available for daily reading. Appearances by the current or the several-years-old GoComics prints of One Big Happy should be at this link.

Rick Detorie’s One Big Happy for the 8th is a bit of wordplay built around geometry, as Ruthie plays teacher. She’s a bit dramatic, but she always has been.


I’ll read some more comics for later in this week. That essay, and all similar comic strip talk, should appear at this link. Thank you.

Reading the Comics, April 24, 2019: Mic Drop Edition Edition


I can’t tell you how hard it is not to just end this review of last week’s mathematically-themed comic strips after the first panel here. It really feels like the rest is anticlimax. But here goes.

John Deering’s Strange Brew for the 20th is one of those strips that’s not on your mathematics professor’s office door only because she hasn’t seen it yet. The intended joke is obvious, mixing the tropes of the Old West with modern research-laboratory talk. “Theoretical reckoning” is a nice bit of word juxtaposition. “Institoot” is a bit classist in its rendering, but I suppose it’s meant as eye-dialect.

Cowboys at the 'Institoot of Theoretical Reckoning'. One at the whiteboard says, 'Well, boys, looks like this here's the end of the line!' The line is a long string of what looks like legitimate LaTeX
John Deering’s Strange Brew for the 20th of April, 2019. Other appearances by Strange Brew, including ones less diligent about making the blackboard stuff sensible, are at this link.

What gets it a place on office doors is the whiteboard, though. They’re writing out mathematics which looks legitimate enough to me. It doesn’t look like mathematics though. What’s being written is something any mathematician would recognize. It’s typesetting instructions. Mathematics requires all sorts of strange symbols and exotic formatting. In the old days, we’d handle this by giving the typesetters hazard pay. Or, if you were a poor grad student and couldn’t afford that, deal with workarounds. Maybe just leave space in your paper and draw symbols in later. If your university library has old enough papers you can see them. Maybe do your best to approximate mathematical symbols using ASCII art. So you get expressions that look something like this:

  / 2 pi  
 |   2
 |  x cos(theta) dx - 2 F(theta) == R(theta)
 |
/ 0

This gets old real fast. Mercifully, Donald Knuth, decades ago, worked out a great solution. It uses formatting instructions that can all be rendered in standard, ASCII-available text. And then by dark incantations and summoning of Linotype demons, re-renders that as formatted text. It handles all your basic book formatting needs — much the way HTML, used for web pages, will — and does mathematics much more easily. For example, I would enter a line like:

\int_{0}^{2\pi} x^2 \cos(\theta) dx - 2 F(\theta) \equiv R(\theta)

And this would be rendered in print as:

\int_{0}^{2\pi} x^2 \cos(\theta) dx - 2 F(\theta) \equiv R(\theta)

There are many, many expansions available to this, to handle specialized needs, hardcore mathematics among them.

Anyway, the point that makes me realize John Deering was aiming at everybody with an advanced degree in mathematics ever with this joke, using a string of typesetting instead of the usual equations here?

The typesetting language is named TeX.

Wavehead, at lunch: 'You know if I were the other shapes I'd be like, 'listen, circle, you can have a perimeter or a circumference, but you can't have both'.'
Mark Anderson’s Andertoons for the 21st of April, 2019. When do I ever not discuss this comic? All the essays at this link are about Andertoons, at least in part.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. It’s about one of those questions that nags at you as a kid, and again periodically as an adult. The perimeter is the boundary around a shape. The circumference is the boundary around a circle. Why do we have two words for this? And why do we sound all right talking about either the circumference or the perimeter of a circle, while we sound weird talking about the circumference of a rhombus? We sound weird talking about the perimeter of a rhombus too, but that’s the rhombus’s fault.

The easy part is why there’s two words. Perimeter is a word of Greek origin; circumference, of Latin. Perimeter entered the English language in the early 15th century; circumference in the 14th. Why we have both I don’t know; my suspicion is either two groups of people translating different geometry textbooks, or some eager young Scholastic with a nickname like ‘Doctor Magnifico Triangulorum’ thought Latin sounded better. Perimeter stuck with circules early; every etymology I see about why we use the symbol π describes it as shorthand for the perimeter of the circle. Why `circumference’ ended up the word for circles or, maybe, ellipses and ovals and such is probably the arbitrariness of language. I suspect that opening “circ” sound cues people to think of it for circles and circle-like shapes, in a way that perimeter doesn’t. But that is my speculation and should not be mistaken for information.

Information panel about numerals, including a man who typed every number from one to a million, using one finger; it took over 16 years, seven months. Puzzle: add together every number that, written as a word, consists of three letters; what's the total?
Steve McGarry’s KidTown for the 21st of April, 2019. It’s rare that this panel is on-topic enough for me to bring up, but at least a few KidTown panels are discussed here.

Steve McGarry’s KidTown for the 21st is a kids’s information panel with a bit of talk about representing numbers. And, in discussing things like how long it takes to count to a million or a billion, or how long it would take to type them out, it gets into how big these numbers can be. Les Stewart typed out the English names of numbers, in words, by the way. He’d also broken the Australian record for treading water, and for continuous swimming.

Bub: 'I don't like crosswords because I'm not good at word stuff. I'm much better at math. That's why I like sudoku.' Betty: 'What math? There's no adding or subtracting or multiplying in sudoku.' Bub: 'That's my favorite kind of math.' Betty: 'If you were better at word stuff, you'd know you're confusing math with logic.'
Gary Delainey and Gerry Rasmussen’s Betty for the 24th of April, 2019. I don’t seem to have discussed this comic before. This and future appearances by Betty should be at this link.

Gary Delainey and Gerry Rasmussen’s Betty for the 24th is a sudoku comic. Betty makes the common, and understandable, conflation of arithmetic with mathematics. But she’s right in identifying sudoku as a logical rather than an arithmetic problem. You can — and sometimes will see — sudoku type puzzles rendered with icons like stars and circles rather than numerals. That you can make that substitution should clear up whether there’s arithmetic involved. Commenters at GoComics meanwhile show a conflation of mathematics with logic. Certainly every mathematician uses logic, and some of them study logic. But is logic mathematics? I’m not sure it is, and our friends in the philosophy department are certain it isn’t. But then, if something that a recognizable set of mathematicians study as part of their mathematics work isn’t mathematics, then we have a bit of a logic problem, it seems.


Come Sunday I should have a fresh Reading the Comics essay available at this link.

Reading the Comics, April 10, 2019: Grand Avenue and Luann Want My Attention Edition


So this past week has been a curious blend for the mathematically-themed comics. There were many comics mentioning some mathematical topic. But that’s because Grand Advenue and Luann Againn — reprints of early 90s Luann comics — have been doing a lot of schoolwork. There’s a certain repetitiveness to saying, “and here we get a silly answer to a story problem” four times over. But we’ll see what I do with the work.

Mark Anderson’s Andertoons for the 7th is Mark Anderson’s Andertoons for the week. Very comforting to see. It’s a geometry-vocabulary joke, with Wavehead noticing the similar ends of some terms. I’m disappointed that I can’t offer much etymological insight. “Vertex”, for example, derives from the Latin for “highest point”, and traces back to the Proto-Indo-European root “wer-”, meaning “to turn, to bend”. “Apex” derives from the Latin for “summit” or “extreme”. And that traces back to the Proto-Indo-European “ap”, meaning “to take, to reach”. Which is all fine, but doesn’t offer much about how both words ended up ending in “ex”. This is where my failure to master Latin by reading a teach-yourself book on the bus during my morning commute for three months back in 2002 comes back to haunt me. There’s probably something that might have helped me in there.

On the blackboard is a square-based pyramid with 'apex' labelled; also a circular cone with 'vertex' labelled. Wavehead: 'And if you put them together they're a duplex.'
Mark Anderson’s Andertoons for the 7th of March, 2019. I write about this strip a lot. Essays mentioning Andertoons are at this link.

Mac King and Bill King’s Magic in a Minute for the 7th is an activity puzzle this time. It’s also a legitimate problem of graph theory. Not a complicated one, but still, one. Graph theory is about sets of points, called vertices, and connections between points, called edges. It gives interesting results for anything that’s networked. That shows up in computers, in roadways, in blood vessels, in the spreads of disease, in maps, in shapes.

Here's a tough little puzzle to get your brain firing on all four cylinders. See if you can connect the matching numbered boxes with three lines. The catch is that the liens cannot cross over each other. From left to right are disjoint boxes labelled 1, 2, 1, and 2. Above and below the center of the row are two boxes labelled 3.
Mac King and Bill King’s Magic in a Minute for the 7th of March, 2019. I should have the essays mentioning Magic In A Minute at this link.

One common problem, found early in studying graph theory, is about whether a graph is planar. That is, can you draw the whole graph, all its vertices and edges, without any lines cross each other? This graph, with six vertices and three edges, is planar. There are graphs that are not. If the challenge were to connect each number to a 1, a 2, and a 3, then it would be nonplanar. That’s a famous non-planar graph, given the obvious name K3, 3. A fun part of learning graph theory — at least fun for me — is looking through pictures of graphs. The goal is finding K3, 3 or another one called K5, inside a big messy graph.

Exam Question: Jack bought seven marbles and lost six. How many additional marbles must Jack buy to equal seven? Kid's answer: 'Jack wouldn't know. He's lost his marbles.'
Mike Thompson’s Grand Avenue for the 8th of March, 2019. I’m not always cranky about this comic strips. Examples of when I’m not are at this link, as are the times I’m annoyed with Grand Avenue.

Mike Thompson’s Grand Avenue for the 8th has had a week of story problems featuring both of the kid characters. Here’s the start of them. Making an addition or subtraction problem about counting things is probably a good way of making the problem less abstract. I don’t have children, so I don’t know whether they play marbles or care about them. The most recent time I saw any of my niblings I told them about the subtleties of industrial design in the old-fashioned Western Electric Model 2500 touch-tone telephone. They love me. Also I’m not sure that this question actually tests subtraction more than it tests reading comprehension. But there are teachers who like to throw in the occasional surprisingly easy one. Keeps students on their toes.

Gunther: 'You put a question mark next to the part about using the slope-intercept form of a linear equation. What don't you understand?' Luann: 'Lemme see. Oh ... yeah. I don't understand why on earth I need to know this.'
Greg Evans’s Luann Againn for the 10th of March, 2019. This strip originally ran the 10th of March, 1991. Essays which include some mention of Luann, either current or 1990s reprints, are at this link.

Greg Evans’s Luann Againn for the 10th is part of a sequence showing Gunther helping Luann with her mathematics homework. The story started the day before, but this was the first time a specific mathematical topic was named. The point-slope form is a conventional way of writing an equation which corresponds to a particular line. There are many ways to write equations for lines. This is one that’s convenient to use if you know coordinates for one point on the line and the slope of the line. Any coordinates which make the equation true are then the coordinates for some point on the line.

How To Survive a Shark Attack (illustrated with a chicken surviving a shark.0 Keep your eye on the shark and move slowly toward safety. Don't make any sudden movements such as splashing or jazz hands. If the shark comes at you, punch it in the gills, snout, or eyes. You won't hurt the shark, but it will be surprised by your audacity. If all else fails, try to confuse it with logical paradoxes. Chicken: 'This statement is false.' Shark, wide-eyed and confused: '?'
Doug Savage’s Savage Chickens for the 10th of March, 2019. And when I think of something to write about Savage Chickens the results are at this link.

Doug Savage’s Savage Chickens for the 10th tosses in a line about logical paradoxes. In this case, using a classic problem, the self-referential statement. Working out whether a statement is true or false — its “truth value” — is one of those things we expect logic to be able to do. Some self-referential statements, logical claims about themselves, are troublesome. “This statement is false” was a good one for baffling kids and would-be world-dominating computers in science fiction television up to about 1978. Some self-referential statements seem harmless, though. Nobody expects even the most timid world-dominating computer to be bothered by “this statement is true”. It takes more than just a statement being about itself to create a paradox.


And a last note. The blog hardly needs my push to help it out, but, sometimes people will miss a good thing. Ben Orlin’s Math With Bad Drawings just ran an essay about some of the many mathematics-themed comics that Hilary Price and Rina Piccolo’s Rhymes With Orange has run. The comic is one of my favorites too. Orlin looks through some of the comic’s twenty-plus year history and discusses the different types of mathematical jokes Price (with, in recent years, Piccolo) makes.

Myself, I keep all my Reading the Comics essays at this link, and those mentioning some aspect of Rhymes With Orange at this link.

Reading the Comics, March 19, 2019: Average Edition


This time around, averages seem important.

Mark Anderson’s Andertoons for the 18th is the Mark Anderson’s Andertoons for the week. This features the kids learning some of the commonest terms in descriptive statistics. And, as Wavehead says, the similarity of names doesn’t help sorting them out. Each is a kind of average. “Mean” usually is the arithmetic mean, or the thing everyone including statisticians calls “average”. “Median” is the middle-most value, the one that half the data is less than and half the data is greater than. “Mode” is the most common value. In “normally distributed” data, these three quantities are all the same. In data gathered from real-world measurements, these are typically pretty close to one another. It’s very easy for real-world quantities to be normally distributed. The exceptions are usually when there are some weird disparities, like a cluster of abnormally high-valued (or low-valued) results. Or if there are very few data points.

On the blackboard the teacher's written Median, Mode, and Mean, with a bunch of numbers from 3 through 15. Wavehead: 'I know they're all subtly different, but I have to say, the alliteration doesn't help.'
Mark Anderson’s Andertoons for the 18th of March, 2019. Essays which discuss topics raised by Andertoons can be found at this link. Also at this link, nearly enough.

The word “mean” derives from the Old French “meien”, that is, “middle, means”. And that itself traces to the Late Latin “medianus”, and the Latin “medius”. That traces back to the Proto-Indo-European “medhyo”, meaning “middle”. That’s probably what you might expect, especially considering that the mean of a set of data is, if the data is not doing anything weird, likely close to the middle of the set. The term appeared in English in the middle 15th century.

The word “median”, meanwhile, follows a completely different path. That one traces to the Middle French “médian”, which traces to the Late Latin “medianus” and Latin “medius” and Proto-Indo-European “medhyo”. This appeared as a mathematical term in the late 19th century; Etymology Online claims 1883, but doesn’t give a manuscript citation.

The word “mode”, meanwhile, follows a completely different path. This one traces to the Old French “mode”, itself from the Latin “modus”, meaning the measure or melody or style. We get from music to common values by way of the “style” meaning. Think of something being done “á la mode”, that is, “in the [ fashionable or popular ] style”. I haven’t dug up a citation about when this word entered the mathematical parlance.

So “mean” and “median” don’t have much chance to do anything but alliterate. “Mode” is coincidence here. I agree, it might be nice if we spread out the words a little more.

Edison, pointing to a checkerboard: 'So Grandpa if you put one cookie on the first square, two on the second, four on the next, then eight, and you keep doubling them until you fill all 64 squares do you know what you'll end up with?' Grandpa: 'A stomachache for a month?'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of March, 2019. I’ve been talking about this strip a lot lately, it seems to me. Essays where I do discuss Edison Lee are at this link.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th has Edison introduce a sequence to his grandfather. Doubling the number of things for each square of a checkerboard is an ancient thought experiment. The notion, with grains of wheat rather than cookies, seems to be first recorded in 1256 in a book by the scholar Ibn Khallikan. One story has it that the inventor of chess requested from the ruler that many grains of wheat as reward for inventing the game.

If we followed Edison Lee’s doubling through all 64 squares we’d have, in total, need for 263-1 or 18,446,744,073,709,551,615 cookies. You can see why the inventor of chess didn’t get that reward, however popular the game was. It stands as a good display of how exponential growth eventually gets to be just that intimidatingly big.

Edison, like many a young nerd, is trying to stagger his grandfather with the enormity of this. I don’t know that it would work. Grandpa ponders eating all that many cookies, since he’s a comical glutton. I’d estimate eating all that many cookies, at the rate of one a second, eight hours a day, to take something like eighteen billion centuries. If I’m wrong? It doesn’t matter. It’s a while. But is that any more staggering than imagining a task that takes a mere ten thousand centuries to finish?

Toby, looking at his homework, and a calculator, and a textbook: '... Wow. Crazy ... Huh. How about that? ... Am I stupid if math *always* has a surprise ending?'
Greg Cravens’s The Buckets for the 19th of March, 2019. It also seems like I discuss The Buckets more these days, as seen at this link.

Greg Cravens’s The Buckets for the 19th sees Toby surprised by his mathematics homework. He’s surprised by how it turned out. I know the feeling. Everyone who does mathematics enough finds that. Surprise is one of the delights of mathematics. I had a great surprise last month, with a triangle theorem. Thomas Hobbes, the philosopher/theologian, entered his frustrating sideline of mathematics when he found the Pythagorean Theorem surprising.

Mathematics is, to an extent, about finding interesting true statements. What makes something interesting? That depends on the person surprised, certainly. A good guideline is probably “something not obvious before you’ve heard it, thatlooks inevitable after you have”. That is, a surprise. Learning mathematics probably has to be steadily surprising, and that’s good, because this kind of surprise is fun.

If it’s always a surprise there might be trouble. If you’re doing similar kinds of problems you should start to see them as pretty similar, and have a fair idea what the answers should be. So, from what Toby has said so far … I wouldn’t call him stupid. At most, just inexperienced.

Caption: Eric had good feelings about his date. It turned out, contrary to what he first thought ... [ Venn Diagram picture of two circles with a good amount of overlap ] ... They actually had quite a lot in common.
Eric the Circle for the 19th of March, 2019, this one by Janka. This and other essays with Eric the Circle, by any artist, should be at this link.

Eric the Circle for the 19th, by Janka, is the Venn Diagram joke for the week. Properly any Venn Diagram with two properties has an overlap like this. We’re supposed to place items in both circles, and in the intersection, to reflect how much overlap there is. Using the sizes of each circle to reflect the sizes of both sets, and the size of the overlap to represent the size of the intersection, is probably inevitable. The shorthand calls on our geometric intuition to convey information, anyway.

She: 'What time is it?' He: 'The clock in the hall says 7:56, the oven clock says 8:02, the DVD clock says 8:07, and the bed table clock says 8:13.' She: 'Which one's right?' He: 'I dunno.' She: 'Let's ee. Four clocks ... carry the one ... divided by four ... ' He: 'Whenever we want to know what time it is we have to do algebra.' She: 'We better hurry, it's 8:05 and five-eighths!'
Tony Murphy’s It’s All About You for the 19th of March, 2019. And the occasional time I discuss something from It’s All About You are here.

Tony Murphy’s It’s All About You for the 19th has a bunch of things going on. The punch line calls “algebra” what’s really a statistics problem, calculating the arithmetic mean of four results. The work done is basic arithmetic. But making work seem like a more onerous task is a good bit of comic exaggeration, and algebra connotes something harder than arithmetic. But Murphy exaggerates with restraint: the characters don’t rate this as calculus.

Then there’s what they’re doing at all. Given four clocks, what’s the correct time? The couple tries averaging them. Why should anyone expect that to work?

There’s reason to suppose this might work. We can suppose all the clocks are close to the correct time. If they weren’t, they would get re-set, or not looked at anymore. A clock is probably more likely to be a little wrong than a lot wrong. You’d let a clock that was two minutes off go about its business, in a way you wouldn’t let a clock that was three hours and 42 minutes off. A clock is probably as likely to show a time two minutes too early as it is two minutes too late. This all suggests that the clock errors are normally distributed, or something like that. So the error of the arithmetic mean of a bunch of clock measurements we can expect to be zero. Or close to zero, anyway.

There’s reasons this might not work. For example, a clock might systematically run late. My mantle clock, for example, usually drifts about a minute slow over the course of the week it takes to wind. Or the clock might be deliberately set wrong: it’s not unusual to set an alarm clock to five or ten or fifteen minutes ahead of the true time, to encourage people to think it’s later than it really is and they should hurry up. Similarly with watches, if their times aren’t set by Internet-connected device. I don’t know whether it’s possible to set a smart watch to be deliberately five minutes fast, or something like that. I’d imagine it should be possible, but also that the people programming watches don’t see why someone might want to set their clock to the wrong time. From January to March 2018, famously, an electrical grid conflict caused certain European clocks to lose around six minutes. The reasons for this are complicated and technical, and anyway The Doctor sorted it out. But that sort of systematic problem, causing all the clocks to be wrong in the same way, will foil this take-the-average scheme.

Murphy’s not thinking of that, not least because this comic’s a rerun from 2009. He was making a joke, going for the funnier-sounding “it’s 8:03 and five-eights” instead of the time implied by the average, 8:04 and a half. That’s all right. It’s a comic strip. Being amusing is what counts.


There were just enough mathematically-themed comic strips this past week for one more post. When that is ready, it should be at this link. I’ll likely post it Tuesday.

Reading the Comics, March 12, 2019: Back To Sequential Time Edition


Since I took the Pi Day comics ahead of their normal sequence on Sunday, it’s time I got back to the rest of the week. There weren’t any mathematically-themed comics worth mentioning from last Friday or Saturday, so I’m spending the latter part of this week covering stuff published before Pi Day. It’s got me slightly out of joint. It’ll all be better soon.

Mark Anderson’s Andertoons for the 11th is the Mark Anderson’s Andertoons for this week. That’s nice to have. It’s built on the concept of story problems. That there should be “stories” behind a problem makes sense. Most actual mathematics, even among mathematicians, is done because we want to know a thing. Acting on a want is a story. Wanting to know a thing justifies the work of doing this calculation. And real mathematics work involves looking at some thing, full of the messiness of the real world, and extracting from it mathematics. This would be the question to solve, the operations to do, the numbers (or shapes or connections or whatever) to use. We surely learn how to do that by doing simple examples. The kid — not Wavehead, for a change — points out a common problem here. There’s often not much of a story to a story problem. That is, where we don’t just want something, but someone else wants something too.

On the classroom chalkboard: 'Today's number story. 2 dogs are at the park. 3 more dogs arrive. How many dogs are there?' Non-Wavehead student: 'Really? That's it? I don't mean anything by it, but where the conflict? Where's the drama? OK, try this ... a cat shows up. Or a mailman! Ooh, a cat mailman! Now we're talking!'
Mark Anderson’s Andertoons for the 11th of March, 2019. Essays which discuss topics raised by Andertoons can be found at this link. Also at this link, nearly enough.

Parker and Hart’s The Wizard of Id for the 11th is a riff on the “when do you use algebra in real life” snark. Well, no one disputes that there are fields which depend on advanced mathematics. The snark comes in from supposing that a thing is worth learning only if it’s regularly “useful”.

King: 'Wiz! We need your help! There's a giant meteor heading towards earth!' Wizard: 'oh boy! Oh boy!' (He runs off and pulls out a chalkboard full of mathematics symbols.) King: 'What are you doing?' Wizard: 'Finally! This is where algebra saves lives!'
Parker and Hart’s The Wizard of Id for the 11th of March, 2019. This is part of the current run of The Wizard of Id, such as you might find in a newspaper. Both the current and 1960s-vintage reruns get discussion at this link.

Rick Detorie’s One Big Happy for the 12th has Joe stalling class to speak to “the guy who invented zero”. I really like this strip since it’s one of those cute little wordplay jokes that also raises a legitimate point. Zero is this fantastic idea and it’s hard to imagine mathematics as we know it without the concept. Of course, we could say the same thing about trying to do mathematics without the concept of, say, “twelve”.

Teacher: 'Are there any questions before the test? Yes, Joe?' Joe: 'I would like to say a few words to the guy who invented zero. Thanks for NOTHING, dude! ... I think we can all enjoy a little math humor at a time like this.'
Rick Detorie’s One Big Happy for the 12th of March, 2019. This is part of the current run of One Big Happy, such as you might find in a newspaper. At GoComics.com strips from several years ago are reprinted. Both runs of One Big Happy get their discussion at this link.

We don’t know who’s “the guy” who invented zero. It’s probably not all a single person, though, or even a single group of people. There are several threads of thought which merged together to zero. One is the notion of emptiness, the absense of a measurable thing. That probably occurred to whoever was the first person to notice a thing wasn’t where it was expected. Another part is the notion of zero as a number, something you could add to or subtract from a conventional number. That is, there’s this concept of “having nothing”, yes. But can you add “nothing” to a pile of things? And represent that using the addition we do with numbers? Sure, but that’s because we’re so comfortable with the idea of zero that we don’t ponder whether “2 + 1” and “2 + 0” are expressing similar ideas. You’ll occasionally see people asking web forums whether zero is really a number, often without getting much sympathy for their confusion. I admit I have to think hard to not let long reflex stop me wondering what I mean by a number and why zero should be one.

And then there’s zero, the symbol. As in having a representation, almost always a circle, to mean “there is a zero here”. We don’t know who wrote the first of that. The oldest instance of it that we know of dates to the year 683, and was written in what’s now Cambodia. It’s in a stone carving that seems to be some kind of bill of sale. I’m not aware whether there’s any indication from that who the zero was written for, or who wrote it, though. And there’s no reason to think that’s the first time zero was represented with a symbol. It’s the earliest we know about.

Lemont: 'My son asked what my favorite number is. I thought, who has a favorite number? Then remembered *I* did. When I was a kid I loved the number eight, because it reminded me of infinity.' C Dog: 'Nuh-uh, Big L. You tol' me you loved it 'cause it was the only number that reminded you of food.' Lemont: 'You sure? I remember being a much more profound kid.' C Dog: 'People always re-writing e'reything.'
Darrin Bell’s Candorville for the 12th of March, 2019. Essays featuring some topic raised by of Candorville should appear here.

Darrin Bell’s Candorville for the 12th has some talk about numbers, and favorite numbers. Lemont claims to have had 8 as his favorite number because its shape, rotated, is that of the infinity symbol. C-Dog disputes Lemont’s recollection of his motives. Which is fair enough; it’s hard to remember what motivated you that long ago. What people mostly do is think of a reason that they, today, would have done that, in the past.

The ∞ symbol as we know it is credited to John Wallis, one of that bunch of 17th-century English mathematicians. He did a good bit of substantial work, in fields like conic sections and physics and whatnot. But he was also one of those people good at coming up with notation. He developed what’s now the standard notation for raising a number to a power, that x^n stuff, and showed how to define raising a number to a rational-number power. Bunch of other things. He also seems to be the person who gave the name “continued fraction” to that concept.

Wallis never explained why he picked ∞ as a shape, of all the symbols one could draw, for this concept. There’s speculation he might have been varying the Roman numeral for 1,000, which we’ve simplified to M but which had been rendered as (|) or () and I can see that. (Well, really more of a C and a mirror-reflected C rather than parentheses, but I don’t have the typesetting skills to render that.) Conflating “a thousand” with “many” or “infinitely many” has a good heritage. We do the same thing when we talk about something having millions of parts or costing trillions of dollars or such. But, Wallis never explained (so far as we’re aware), so all this has to be considered speculation and maybe mnemonic helps to remembering the symbol.

Colin: 'These math problems are impossible!' Dad: 'Calm down, I'll help you think it through. [ Reading ] Dot has 20 gumballs. Jack has twice as many, and Joe has a third as many as Jack. If Dot gives Jack half her gumballs, and Jack chews half the new amount, how many will the teacher have to take away for all the kids' gumballs to be equal?' ... Now I see why people buy the answers to these things on the Internet!' Colin: 'I'm never going to harvard, am I?'
Terry Laban and Patty LaBan’s Edge City rerun for the 12th of March, 2019. (The strip has ended.) This comic originally ran in 2004. Edge City inspires discussions in the essays at this link.

Terry LaBan and Patty LaBan’s Edge City for the 12th is another story problem joke. Curiously the joke seems to be simply that the father gets confused following the convolutions of the story. The specific story problem circles around the “participation awards are the WORST” attitude that newspaper comics are surprisingly prone to. I think the LaBans just wanted the story problem to be long and seem tedious enough that our eyes glazed over. Anyway you could not pay me to read whatever the comments on this comic are. Sorry not sorry.


I figure to have one more Reading the Comics post this week. When that’s posted it should be available at this link. Thanks for being here.