Reading the Comics, August 11, 2018: Strips For The Week Edition


The other half of last week’s mathematically-themed comics were on familiar old themes. I’ll see what I can do with them anyway.

Scott Hilburn’s The Argyle Sweater for the 9th is the anthropomorphic numerals joke for the week. I’m curious why the Middletons would need multiple division symbols, but I suppose that’s their business. It does play on the idea that “division” and “splitting up” are the same thing. And that fits the normal use of these words. We’re used to thinking, say, of dividing a desired thing between several parties. While that’s probably all right in introducing the idea, I do understand why someone would get very confused when they first divide by one-half or one-third or any number between zero and one. And then negative numbers make things even more confusing.

5, looking out the window and speaking to 3: 'Oh dear. Looks like the Middletons are getting a divorce.' 3: 'How can you tell?' (Next door a 4 has driven up with two division obeluses in the car.)
Scott Hilburn’s The Argyle Sweater for the 9th of August, 2018. The division symbol ÷ is the “obelus”, by the way. And no, the dots above and below the line are not meant to represent where you would fit a numerator and denominator into a fraction. That’s a useful trick to remember what the symbol does, but it’s not how the symbol was “designed”.

Thaves’s Frank and Ernest for the 9th is the anthropomorphic geometric figures joke for the week. I think I can wrangle a way by which Circle’s question has deeper mathematical context. Mathematicians use the idea of “space” a lot. The use is inspired by how, you know, the geometry of a room works. Euclidean space, in the trade. A Euclidean space is a collection of points that obey a couple simple rules. You can take two points and add them, and get something in the space. You can take any scalar and multiply it by any point and get a point in the space. A scalar is something that acts like a real number. For example, real numbers. Maybe complex numbers, if you’re feeling wild.

Circle, and triangle, speaking to a cube: 'Three-dimensional, eh --- what makes you so spatial?
Thaves’s Frank and Ernest for the 9th of August, 2018. Idly curious if they’ve done this same joke in Eric the Circle.

A Euclidean space can be two-dimensional. This is the geometry of stuff you draw on paper. It can be three-dimensional. This is the geometry of stuff in the real world, or stuff you draw on paper with shading. It can be four-dimensional. This is the geometry of stuff you draw on paper with big blobby lines around it. Each of these is an equally good space, though, as legitimate and as real as any other. Context usually puts an implicit “three dimensional” before most uses of the word “space”. But it’s not required to be there. There’s many kinds of spaces out there.

And “space” describes stuff that doesn’t look anything like rooms or table tops or sheets of paper. These are spaces built of things like functions, or of sets of things, or of ways to manipulate things. Spaces built of the ways you can subdivide the integers. The details vary. But there’s something in common in all these ideas that communicates.

Wavehead at the blackboard, speaking to his teacher. On the board is '14 - x = 5'. Wavehead: 'I'm just saying --- sooner or later X is going to have to solve these things for itself.'
Mark Anderson’s Andertoons for the 11th of August, 2018. Why do they always see it as x needing solving, and not, say, 14 needing solving?

Mark Anderson’s Andertoons for the 11th is the Mark Anderson’s Andertoons for the week. I think we’ve all seen this joke go across our social media feed and it’s reassuring to know Mark Anderson has social media too. We do talk about solving for x, using the language of describing how we help someone get past a problem. I wonder if people might like this kind of algebra more if we talked more about finding out what values ‘x’ could have that make the equation true. Well, it won’t stop people feeling they don’t like the mathematics they learned in school. But it might help people feel like they know why they’re doing it.


You can see this and more essays about comic strips by following this link. Other essays describing The Argyle Sweater are at this link. Essays inspired by Frank and Ernest are at this link. And some of the very many essays about Andertoons are at this link. Enjoy responsibly.

Advertisements

Reading the Comics, August 2, 2018: Non-Euclidean Geometry Edition


There’s really only the one strip that I talk about today that gets into non-Euclidean geometries. I was hoping to have the time to get into negative temperatures. That came up in the comics too, and it’s a subject close to my heart. But I didn’t have time to write that and so must go with what I did have. I’ve surely used “Non-Euclidean Geometry Edition” as a name before too, but that name and the date of August 2, 2018? Just as surely not.

Mark Anderson’s Andertoons for the 29th is the Mark Anderson’s Andertoons for the week, at last. Wavehead gets to be disappointed by what a numerator and denominator are. Common problem; there are many mathematics things with great, evocative names that all turn out to be mathematics things.

Both “numerator” and “denominator”, as words, trace to the mid-16th century. They come from Medieval Latin, as you might have guessed. “Denominator” parses out roughly as “to completely name”. As in, break something up into some number of equal-sized pieces. You’d need the denominator number of those pieces to have the whole again. “Numerator” parses out roughly as “count”, as in the count of how many denominator-sized pieces you have. So for all that numerator and denominator look like one another, with with the meat of the words being the letters “n-m–ator”, their centers don’t have anything to do with one another. (I would believe a claim that the way the words always crop up together encouraged them to harmonize their appearances.)

On the board, the fraction 3/4 with the numerator and denominator labelled. Wavehead: 'You know, for something that sounds like two killer robots, this is really disappointing.'
Mark Anderson’s Andertoons for the 29th of July, 2018. Poor Wavehead is never going to get over his disappointment when he learns about the Fredholm Alternative. I still insist it’s an underrated mid-70s paranoia-thriller.

Johnny Hart’s Back to BC for the 29th is a surprisingly sly joke about non-Euclidean geometries. You wouldn’t expect that given the reputation of the comic the last decade of Hart’s life. And I did misread it at first, thinking that after circumnavigating the globe Peter had come back to have what had been the right line touch the left. That the trouble was his stick wearing down I didn’t notice until I re-read.

But Peter’s problem would be there if his stick didn’t wear down. “Parallel” lines on a globe don’t exist. One can try to draw a straight line on the surface of a sphere. These are “great circles”, with famous map examples of those being the equator and the lines of longitude. They don’t keep a constant distance from one another, and they do meet. Peter’s experiment, as conducted, would be a piece of proof that they have to live on a curved surface.

Peter, holding up a Y-shaped stick: 'In proving to you rather dense individuals that parallel lines never meet I am about to embark on a heretofore unprecedented expedition which will encompass the globe. See you.' (He walks off, dragging both ends of the stick in the ground, creating parallel lines. He walks several panels; 'Fifty Thousand Miles Later' as the stick wears down and the parallel lines get less far apart ... he gets back where he started, with the stick worn down to a single ribbon, and the surviving line left.)
Johnny Hart’s Back to BC for the 29th of July, 2018. It originally ran it looks like, the 13th of August, 1961. Or I’m reading the second row, second panel wrong.

And this gets at one of those questions that bothers mathematicians, cosmologists, and philosophers. How do we know the geometry of the universe? If we could peek at it from outside we’d have some help, but that is a big if. So we have to rely on what we can learn from inside the universe. And we can do some experiments that tell us about the geometry we’re in. Peter’s line example would be one; he can use that to show the world’s curved in at least one direction. A couple more lines and he’d be confident the world was a sphere. If we could make precise enough measurements we could do better, with geometric experiments smaller than the circumference of the Earth. (Or universe.) Famously, the sum of the interior angles of a triangle tell us something about the space the triangle’s inscribed in. There are dangers in going from information about one point, or a small area, to information about the whole. But we can tell some things.

Dr Strange-y type doing mind stuff: 'Using my MENTALISTIC powers of the occult, I shall attempt to DOUBLE your brain power, Captain Victorious! Peruse the potency of ... PROFESSOR PECULIAR!' Captain Victorious: 'Mind ... reeling! So much ... information!! ... Two plus two equals ... four! Hey! It worked!' Professor Peculiar: 'I guess double was too relative a term.'
Phil Dunlap’s Ink Pen rerun for the 29th of July, 2018. This one originally ran the 21st of August, 2011.

Phil Dunlap’s Ink Pen for the 29th is another use of arithmetic as shorthand for intelligence. Might be fun to ponder how Captain Victorious would know that he was right about two plus two equalling four, if he didn’t know that already. But we all are in the same state, for mathematical truths. We know we’ve got it right because we believe we have a sound logical argument for the thing being true.

A 'Newton Enterprises' boat pulls up to a desert island. A skeleton's under the tree; beside it, a whiteboard that starts with 'Coconut' and proceeds through a few lines of text to, finally, 'F = GMm/R^2'. Caption: 'How Newton actually stumbled across his formula for the theory of gravity.'
Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 30th of July, 2018. All right, so the rubber boat is an obvious anachronism. But Newton’s pal Edmond Halley made some money building diving bells for people to excavate shipwrecks and if that doesn’t mess with your idea of what the 17th century was you’re a stronger one than I am.

Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 30th is a riff on the story of Isaac Newton and the apple. The story of Newton starting his serious thinking of gravity by pondering why apples should fall while the Moon did not is famous. And it seems to trace to Newton. We have a good account of it from William Stukeley, who in the mid-18th century wrote Memoirs of Sir Isaac Newton’s Life. Stukeley knew Newton, and claimed to get the story right from him. He also told it to his niece’s husband, John Conduitt. Whether this is what got Newton fired with the need to create such calculus and physics, or whether it was a story he composed to give his life narrative charm, is beyond my ability to say. It’s an important piece of mathematics history anyway.


If you’d like more Reading the Comics essays you can find them at this link. Some of the many essays to mention Andertoons are at this link. Other essays mentioning B.C. (vintage and current) are at this link. The comic strip Ink Pen gets its mentions at this link, although I’m surprised to learn it’s a new tag today. And the Chuckle Brothers I discuss at this link. Thank you.

Reading the Comics, July 11, 2018: GoComics Hardly Needs Me Edition


The first half of last week’s comics are mostly ones from Comics Kingdom and Creators.com. That’s unusual. GoComics usually far outranks the other sites. Partly for sheer numbers; they have an incredible number of strips, many of them web-only, that Comics Kingdom and Creators.com don’t match. I think the strips on GoComics are more likely to drift into mathematical topics too. But to demonstrate that would take so much effort. Possibly any effort at all. Hm.

Bill Holbrook’s On the Fastrack for the 8th of July is premised on topographic maps. These are some of the tools we’ve made to understand three-dimensional objects with a two-dimensional representation. When topographic maps come to the mathematics department we tend to call them “contour maps” or “contour plots”. These are collections of shapes. They might be straight lines. They might be curved. They often form a closed loop. Each of these curves is called a “contour curve” or a “contour line” (even if it’s not straight). Or it’s called an “equipotential curve”, if someone’s being all fancy, or pointing out the link between potential functions and these curves.

Dethany standing, in perspective, on a white surface with black curves traced on. The camera pulls out, revealing more and more curves, until they finally form an outline of her boss, Rose Trellis. Cut to the actual meeting, where Dethany is listening to Trellis speak. Dethany thinks: 'If only there was a topographic map showing how high a priority this is to her ... '
Bill Holbrook’s On the Fastrack for the 8th of July, 2018. I do like Holbrook’s art here, in evoking a figure standing vertically upon a most horizontal surface. There’s never enough intriguing camera angles in comic strips.

Their purpose is in thinking of three-dimensional surfaces. We can represent a three-dimensional surface by putting up some reasonable coordinate system. For the sake of simplicity let’s suppose the “reasonable coordinate system” is the Cartesian one. So every point in space has coordinates named ‘x’, ‘y’, and ‘z’. Pick a value for ‘x’ and ‘y’. There’s at most one ‘z’ that’ll be on the surface. But there might be many sets of values of ‘x’ and ‘y’ together which have that height ‘z’. So what are all the values of ‘x’ and ‘y’ which match the same height ‘z’? Draw the curve, or curves, which match that particular value of ‘z’.

Topographical maps are a beloved example of this, to mathematicians, because we imagine everyone understands them. A particular spot on the ground at some given latitude and longitude is some particular height above sea level. OK. Imagine the slice of a hill representing all the spots that are exactly 10 feet above sea level, or whatever. That’s a curve. Possibly several curves, but we just say “a curve” for simplicity.

A topographical map will often include more than one curve. Often at regular intervals, say with one set of curves representing 10 feet elevation, another 20 feet, another 30 feet, and so on. Sometimes these curves will be very near one another, where a hill is particularly steep. Sometimes these curves will be far apart, where the ground is nearly level. With experience one can learn to read the lines and their spacing. One can see where extreme values are, and how far away they might be.

Topographical maps date back to 1789. These sorts of maps go back farther. In 1701 Edmond Halley, of comet fame, published maps showing magnetic compass variation. He had hopes that the difference between magnetic north and true north would offer a hint at how to find longitude. (The principle is good. But the lines of constant variation are too close to lines of latitude for the method to be practical. And variation changes over time, too.) And that shows how the topographical map idea can be useful to visualize things that aren’t heights. Weather maps include “isobars”, contour lines showing where the atmospheric pressure is a set vale. More advanced ones will include “isotherms”, each line showing a particular temperature. The isobar and isotherm lines can describe the weather and how it can be expected to change soon.

This idea, rendering three-dimensional information on a two-dimensional surface, is a powerful one. We can use it to try to visualize four-dimensional objects, by looking at the contour surfaces they would make in three dimensions. We can also do this for five and even more dimensions, by using the same stuff but putting a note that “D = 16” or the like in the corner of our image. And, yes, if Cartesian coordinates aren’t sensible for the problem you can use coordinates that are.

If you need a generic name for these contour lines that doesn’t suggest lines or topography or weather or such, try ‘isogonal curves’. Nobody will know what you mean, but you’ll be right.

Hazel, sitting at a table, with a bunch of society women, as she works a calculator: ' ... making a total of $77.60. Fifteen percent for the tip, divided four ways ... '
Ted Key’s Hazel for the 9th of July, 2018. It’s a rerun, as all Hazel strips are. Ted Key, creator of Peabody’s Improbable History, died in 2008, and even then he’d retired in 1993. (I’m not clear whether someone else took up the strip in now-unpublished reruns or whether its original run ended then.)

Ted Key’s Hazel for the 9th is a joke about the difficulties in splitting the bill. It is archetypical of the sort of arithmetic people know they need to do in the real world. Despite that at least people in presented humor don’t get any better at it. I suppose real-world people don’t either, given some restaurants now list 15 and 20 percent tips on the bill. Well, at least everybody has a calculator on their phone so they can divide evenly. And I concede that, yeah, there isn’t really specifically a joke here. It’s just Hazel being competent, like the last time she showed up here.

Wavehead entering class: 'My dad said to tell you that geometry is squaresville. I don't understand what that means but he assured me that was comedy gold.'
Mark Anderson’s Andertoons for the 11th of July, 2018. I think Wavehead’s dad is underestimating triangles here. (There is a lot that we do with triangles, and extend to other polygons by breaking them into triangles.)

Mark Anderson’s Andertoons for the 11th is the Mark Anderson’s Andertoons for the week. And it’s a bit of geometry wordplay, too. Also about how you can carry a joke over well enough even without understanding it, or the audience understanding it, if it’s delivered right.

Dad: 'Joe, I gave you a five-dollar bill. The ice cream sandwich was a dollar fifty. How much change do you owe me?' Joe: 'Dad, you KNOW I don't like math. It's got so many problems!'
Rick DeTorie’s One Big Happy for the 11th of July, 2018. GoComics.com has a different strip for the day, as DeTorie publishes the new strips on Creators.com and uses several-years-old reruns on GoComics.

Rick DeTorie’s One Big Happy for the 11th is another strip about arithmetic done in the real world. I’m also amused by Joe’s attempts to distract from how no kid that age has ever not known precisely how much money they have, and how much of it is fairly won.

[ Toonie Excelsior Cornstarch thought green tea would make him smarter. ] Cornstarch: 'Also greener! And that's th'color of money! And most algae!' [ He downed 20 to 30 bottles of the stuff every day. ] Cornstarch: 'I already understand ALGEBRA! It comes from aliens!' [ Soon he began to think he knew everything about everything ... even quantum physics. ] Cornstarch: 'Dark matter just got much lighter!' [ But, being a TOONIE, he couldn't get a job at MIT, so he took to the streets to protest. That's when he was arrested by the INCORRECT SPELLING POLICE. ] (Cop dressed in a blend of Zippy the Pinhead gown and Keystone Cops uniform has his hand on the naked Cornstarch, who wears the sign 'MY ELEKTRONS CAN BEAT YOUR FOTONS!'
Bill Griffith’s Zippy the Pinhead for the 11th of July, 2018. This is part of a relatively new running sequence, perhaps a spinoff of Griffith’s very long Dingburg obsession, about people who are kind of generically golden-age-of-cartoon characters.

Bill Griffith’s Zippy the Pinhead for the 11th is another example of using understanding algebra as a show of intelligence. And it follows that up with undrestanding quantum physics as a show of even greater intelligence. One can ask what’s meant by “understanding” quantum physics. Someday someone might even answer. But it seems likely that the ability to do calculations based on a model has to be part of fully understanding it.


I have even more Reading the Comics posts, gathered in reverse chronological order at this link. Other essays with On The Fastrack tagged are at this link. Other Reading the Comics posts that mention Hazel are at this link. Some of the many, many essays mentioning Andertoons are at this link. Posts with mention of One Big Happy, both then-current and then-rerun, are at this link. And other mentions of Zippy the Pinhead are at this link.

Reading the Comics, May 29, 2018: Finding Reruns Edition


There were a bunch of mathematically-themed comic strips this past week. A lot of them are ones I’d seen before. One of them is a bit risque and I’ve put that behind a cut. This saves me the effort of thinking up a good nonsense name to give this edition, so there’s that going for me too.

Bill Amend’s FoxTrot Classics for the 24th of May ought to have run last Sunday, but I wasn’t able to make time to write about it. It’s part of a sequence of Jason tutoring Paige in geometry. She’s struggling with the areas of common shapes which is relatable. Many of these area formulas could be kept straight by thinking back to rectangles. The size of the area is equal to the length of the base times the length of the height. From that you could probably reason right away the area of a trapezoid. It would have the same area as a rectangle with a base of length the mean length of the trapezoid’s different-length sides. The parallelogram works like the rectangle, length of the base times the length of the height. That you can convince yourself of by imagining the parallelogram. Then imagine slicing a right triangle off one of its sides. Move that around to the other side. Put it together right and you have a rectangle. Already know the area of a rectangle. The triangle, then, you can get by imagining two triangles of the same size and shape. Rotate one of the triangles 180 degrees. Slide it over, so the two triangles touch. Do this right and you have a parallelogram and so you know the area. The triangle’s half the area of that parallelogram.

Paige: 'OK, let me see if I've got these area formulas memorized. For a triangle, it's 1/2 bh. For a trapezoid, it's 1/2 (a + b)h. And for a circle, it's pi r^2.' Jason: 'Yes! Yes! Yes! You got them all right! You're going to ace this test! I'm going to make $10!' Paige: 'I always get confused --- does h stand for my height or the triangle's? ... Just kidding.' Jason: 'WILL YOU QUIT TOYING WITH ME?!'
Bill Amend’s FoxTrot Classics for the 24th of May, 2018. It originally ran the 30th of May, 1996.

The circle, I don’t know. I think just remember that if someone says “pi” they’re almost certainly going to follow it with either “r squared” or “day”. One of those suggests an area; the other doesn’t. Best I can do.

Jeri: 'Arrrrhh'. Teena: 'Sup?' Jeri: 'I'm having issues with this math issue. It's the way they phrase these word things. They're like trick questions. I can never figure them out.' Teena: 'Here, let me see what you're having trouble with. ... 'Sarah sits next to Stephen, who is very good at algebra. This causes Sarah, who has issues with BOTH Steven AND algebra, to feel bad But if Sarah moves next to someone else, Steven will feel bad. How do you protect Sarah's and Steven's self-esteem?' Jeri: 'I'm not that comfortable with my answer.' Teena: 'Which is?' Jeri: 'Eleven.' Teena: 'It must be very interesting in your school.'
Allison Barrows’s PreTeena rerun for the 27th of May, 2018. It originally ran the 15th of February, 2004.

Allison Barrows’s PreTeena rerun for the 27th discusses self-esteem as though it were a good thing that children ought to have. This is part of the strip’s work to help build up the Old Person Complaining membership that every comics section community group relies on. But. There is mathematics in Jeri’s homework. Not mathematics in the sense of something particular to calculate. There’s just nothing to do there. But it is mathematics, and useful mathematics, to work out the logic of how to satisfy multiple requirements. Or, if it’s impossible to satisfy them all at once, then to come as near satisfying them as possible. These kinds of problems are considered optimization or logistics problems. Most interesting real-world examples are impossibly hard, or at least become impossibly hard before you realize it. You can make a career out of doing as best as possible in the circumstances.

Charles Schulz’s Peanuts rerun for the 27th features an extended discussion by Lucy about the nature of … well, she explicitly talks about “nothing”. Is she talking about zero? Probably; you have to get fairly into mathematics or philosophy to start worrying about the difference between the number zero and the idea of nothing. In Algebra, mathematicians learn to work with systems of things that work like numbers enough that you can add and subtract and multiply them together, without committing to the idea that they’re working with numbers. They will have something that works like zero, though, a “nothing” that can be added to or subtracted from anything without changing it. And for which multiplication turns something into that “nothing”.

Charlie Brown, at Lucy's Psychiatric Help 5 cents booth: 'I always wanted to go up to that little red-haired girl and talk to her, but I just couldn't. I couldn't start a conversation because I was such a nothing and she was something. If she had wanted to talk to me, it would have been easy because someone who is really something can just go right up to someone who is nothing, and just talk.' Lucy: 'I think your problem is mathematical, Charlie Brown.' Charlie Brown: 'Mathematical?' Lucy: 'If you add nothing and something, what do you get?' Charlie Brown: 'Something, I guess.' Lucy: 'Right ... now, if you subtract nothing from something, what do you get?' Charlie Brown: 'Something.' Lucy: 'Very good ... now, if you multiply something by nothing, what do you get?' Charlie Brown: 'Nothing.' Lucy: 'Five cents, please.' Charlie Brown: 'When you're a nothing, you have a hard time understanding anything!'
Charles Schulz’s Peanuts rerun for the 27th of May, 2018. It originally ran the 30th of May, 1971. This strip originally ran during a time when, in-continuity, the Little Red-Haired Girl had moved away and Charlie Brown was coping with having never spoken to her. At some point she moved back, possibly because Schulz felt he had done everything he could with that or possibly because he forgot she had moved away.

I’m with Charlie Brown in not understanding where Lucy was going with all this, though. Maybe she lost the thread herself.

Mark Anderson’sAndertoons for the 28th is Mark Anderson’sAndertoons for the week. Wavehead’s worried about the verbs of both squaring and rounding numbers. Will say it’s a pair of words with contrary alternate meanings that I hadn’t noticed before. I have always taken the use of “square” to reflect, well, if you had a square with sides of size 4, then you’d have a square with area of size 16. The link seems obvious and logical. So on reflection that’s probably not at all where English gets it from. I mean, not to brag or anything but I’ve been speaking English all my life. If I’ve learned anything about it, it’s that the origin is probably something daft like “while Tisquantum [Squanto] was in England he impressed locals with his ability to do arithmetic and his trick of multiplying one number by itself got nicknamed squantuming, which got shortened to squaning to better fit the meter in a music-hall song about him, and a textbook writer in 1704 thought that was a mistake and `corrected’ it to squaring and everyone copied that”. I’m not even going to venture a guess about the etymology of “rounding”.

On the board: 2^2 = 4, 3^2 = 9, 4^2 = 16. Wavehead: 'Wait, we're squaring numbers now? We just figured out how to round them!'
Mark Anderson’sAndertoons for the 28th of May, 2018. But why would the examples be written out before the students were told what the were doing?

Marguerite Dabaie and Tom Hart’s Ali’s House for the 28th sets up a homework-help session over algebra. Can’t say where exactly Maisa is going wrong. Her saying “x equals 30 but the train equals” looks like trouble to me. It’s often good practice to start by writing out what are the things in the problem that seem important. And what symbol one wants each to mean. And what one knows about the relationship between these things. It helps clarify why someone would want to do that instead of something else. This is a new comic strip tag and I don’t think I’ve ever had cause to discuss it before.

Maisa: 'Can you help me with my homework?' Sahib: 'Dad promised me a hamburger.' Maisa: 'You see - x equals 30 but the train equals ... ' Sahib: 'Dad never makes hamburgers ... mutter mutter mutter.' Maisa: 'Look, I really need help with this.' Sahib: 'My brain isn't set on pay attention my brain is set on burger!'
Marguerite Dabaie and Tom Hart’s Ali’s House for the 28th of May, 2018. Relatable.

Hilary Price’s Rhymes With Orange for the 29th is a Rubik’s Cube joke. I’ve counted that as mathematical enough, usually. The different ways that you can rotate parts of the cube form a group. This is something like what I mentioned in the Peanuts discussion. The different rotations you can do can be added to or subtracted from each other, the way numbers can. (Multiplication I’m wary about.)

Rubik's Headquarters. It's a three-by-three wireframe with tiny offices inside. Person looking in: 'My corner office ... gone! I hate when they do a management shuffle.' [ Title panel, Other person: 'Rumor has it they're going to an open-concept model.' ]
Hilary Price’s Rhymes With Orange for the 29th of May, 2018. Pity whoever gets the center office, bottom layer.

And now here’s the strip that is unsuitable for reading at work, owing to the appearance of an undressed woman.

Continue reading “Reading the Comics, May 29, 2018: Finding Reruns Edition”

Reading the Comics, May 23, 2018: Nice Warm Gymnasium Edition


I haven’t got any good ideas for the title for this collection of mathematically-themed comic strips. But I was reading the Complete Peanuts for 1999-2000 and just ran across one where Rerun talked about consoling his basketball by bringing it to a nice warm gymnasium somewhere. So that’s where that pile of words came from.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for this installment. It has Wavehead suggest a name for the subtraction of fractions. It’s not by itself an absurd idea. Many mathematical operations get specialized names, even though we see them as specific cases of some more general operation. This may reflect the accidents of history. We have different names for addition and subtraction, though we eventually come to see them as the same operation.

On the board, 3/5 - 1/4. Wavehead, to teacher: 'You should call it sub-*fraction*. You can use that --- that's a freebie.'
Mark Anderson’s Andertoons for the 21st of May, 2018. I’m not sure the girl in class needs to be quite so horrified by this suggestion. On the other hand, she sees a lot of this kind of stuff in class.

In calculus we get introduced to Maclaurin Series. These are polynomials that approximate more complicated functions. They’re the best possible approximations for a region around 0 in the domain. They’re special cases of the Taylor Series. Those are polynomials that approximate more complicated functions. But you get to pick where in the domain they should be the best approximation. Maclaurin series are nothing but a Taylor series; we keep the names separate anyway, for the reasons. And slightly baffling ones; James Gregory and Brook Taylor studied Taylor series before Colin Maclaurin did Maclaurin series. But at least Taylor worked on Taylor series, and Maclaurin on Macularin series. So for a wonder mathematicians named these things for appropriate people. (Ignoring that Indian mathematicians were poking around this territory centuries before the Europeans were. I don’t know whether English mathematicians of the 18th century could be expected to know of Indian work in the field, in fairness.)

In numerical calculus, we have a scheme for approximating integrals known as the trapezoid rule. It approximates the areas under curves by approximating a curve as a trapezoid. (Any questions?) But this is one of the Runge-Kutta methods. Nobody calls it that except to show they know neat stuff about Runge-Kutta methods. The special names serve to pick out particularly interesting or useful cases of a more generally used thing. Wavehead’s coinage probably won’t go anywhere, but it doesn’t hurt to ask.

Skippy: 'Look at 'im. The meanest kid on the block. He's got a grudge on the school teacher 'cause she made him stop copyin' answers out of his arithmetic. So he tore out the front of the book an' says 'What good is it without the last part?'
Percy Crosby’s Skippy for the 22nd of May, 2018. It was originally run, looks like, the 12th of February, 1931.

Percy Crosby’s Skippy for the 22nd I admit I don’t quite understand. It mentions arithmetic anyway. I think it’s a joke about a textbook like this being good only if it’s got the questions and the answers. But it’s the rare Skippy that’s as baffling to me as most circa-1930 humor comics are.

Lecturer presenting a blackboard full of equations, titled, 'Mathematical Proof that God does not exist'. In the audience is God.
Ham’s Life on Earth for the 23rd of May, 2018. How did the lecturer get stuff on the top of the board there?

Ham’s Life on Earth for the 23rd presents the blackboard full of symbols as an attempt to prove something challenging. In this case, to say something about the existence of God. It’s tempting to suppose that we could say something about the existence or nonexistence of God using nothing but logic. And there are mathematics fields that are very close to pure logic. But our scary friends in the philosophy department have been working on the ontological argument for a long while. They’ve found a lot of arguments that seem good, and that fall short for reasons that seem good. I’ll defer to their experience, and suppose that any mathematics-based proof to have the same problems.

Paige: 'I keep forgetting ... what's the cosine of 60 degrees?' Jason: 'Well, let's see. If I recall correctly ... 1 - (pi/3)^2/2! + (pi/3)^4/4! - (pi/3)^6/6! + (pi/3)^8/8! - (pi/3)^10/10! + (pi/3)^12/12! - (and this goes on a while, up to (pi/3)^32/32! - ... )' Paige: 'In case you've forgotten, I'm not paying you by the hour.' Jason: '1/2'.
Bill Amend’s FoxTrot Classics for the 23rd of May, 2018. It originally ran the 29th of May, 1996.

Bill Amend’s FoxTrot Classics for the 23rd deploys a Maclaurin series. If you want to calculate the cosine of an angle, and you know the angle in radians, you can find the value by adding up the terms in an infinitely long series. So if θ is the angle, measured in radians, then its cosine will be:

\cos\left(\theta\right) = \sum_{k = 0}^{\infty} \left(-1\right)^k \frac{\theta^k}{k!}

60 degrees is \frac{\pi}{3} in radians and you see from the comic how to turn this series into a thing to calculate. The series does, yes, go on forever. But since the terms alternate in sign — positive then negative then positive then negative — you have a break. Suppose all you want is the answer to within an error margin. Then you can stop adding up terms once you’ve gotten to a term that’s smaller than your error margin. So if you want the answer to within, say, 0.001, you can stop as soon as you find a term with absolute value less than 0.001.

For high school trig, though, this is all overkill. There’s five really interesting angles you’d be expected to know anything about. They’re 0, 30, 45, 60, and 90 degrees. And you need to know about reflections of those across the horizontal and vertical axes. Those give you, like, -30 degrees or 135 degrees. Those reflections don’t change the magnitude of the cosines or sines. They might change the plus-or-minus sign is all. And there’s only three pairs of numbers that turn up for these five interesting angles. There’s 0 and 1. There’s \frac{1}{2} and \frac{\sqrt{3}}{2} . There’s \frac{1}{\sqrt{2}} and \frac{1}{\sqrt{2}} . Three things to memorize, plus a bit of orienteering, to know whether the cosine or the sine should be the larger size and whether they should positive or negative. And then you’ve got them all.

You might get asked for, like, the sine of 15 degrees. But that’s someone testing whether you know the angle-addition or angle-subtraction formulas. Or the half-angle and double-angle formulas. Nobody would expect you to know the cosine of 15 degrees. The cosine of 30 degrees, though? Sure. It’s \frac{\sqrt{3}}{2} .

Michael: 'It's near the end of the school year. You should ease up on the homework. I've learned more than enough this year.' Teacher: 'Oh, sure. How does a 50-percent cut sound?' Michael: 'Why cut it by just one-third?' Teacher: 'You're not helping your case.'
Mike Thompson’s Grand Avenue for the 23rd of May, 2018. I don’t know why the kid and the teacher are dressed the same. I’m honestly not sure if they’re related.

Mike Thompson’s Grand Avenue for the 23rd is your basic confused-student joke. People often have trouble going from percentages to decimals to fractions and back again. Me, I have trouble in going from percentage chances to odds, as in, “two to one odds” or something like that. (Well, “one to one odds” I feel confident in, and “two to one” also. But, say, “seven to five odds” I can’t feel sure I understand, other than that the second choice is a perceived to be a bit more likely than the first.)

… You know, this would have parsed as the Maclaurin Series Edition, wouldn’t it? Well, if only I were able to throw away words I’ve already written and replace them with better words before publishing, huh?

Reading the Comics, May 18, 2018: Quincy Doesn’t Make The Cut Edition


I hate to disillusion anyone but I lack hard rules about what qualifies as a mathematically-themed comic strip. During a slow week, more marginal stuff makes it. This past week was going slow enough that I tagged Wednesday’s Quincy rerun, from March of 1979 for possible inclusion. And all it does is mention that Quincy’s got a mathematics test due. Fortunately for me the week picked up a little. It cheats me of an excuse to point out Ted Shearer’s art style to people, but that’s not really my blog’s business.

Also it may not surprise you but since I’ve decided I need to include GoComics images I’ve gotten more restrictive. Somehow the bit of work it takes to think of a caption and to describe the text and images of a comic strip feel like that much extra work.

Roy Schneider’s The Humble Stumble for the 13th of May is a logic/geometry puzzle. Is it relevant enough for here? Well, I spent some time working it out. And some time wondering about implicit instructions. Like, if the challenge is to have exactly four equally-sized boxes after two toothpicks are moved, can we have extra stuff? Can we put a toothpick where it’s just a stray edge, part of no particular shape? I can’t speak to how long you stay interested in this sort of puzzle. But you can have some good fun rules-lawyering it.

Dad: A guy showed me a brain teaser down at the coffee shop. Watch.' Molly: Ooh, coolie! I'm good at these!' Dad: 'OK, you've got 5 equal-sized boxes here ... moving only 2 toothpicks, make it into FOUR equal-size boxes.' (It's three matchstick boxes in the top row, and two underneath, with the rightmost of the top row above the leftmost of the bottom row.) Dad: 'Heh-heh! THAT ought to keep you busy for a while!' Molly: 'I'll have it in a minute.' Silent final panel, Molly there, bloodshot eyes, late at night.
Roy Schneider’s The Humble Stumble rerun for the 13th of May, 2018. This originally ran the 18th of August, 2006, but I wasn’t doing mathematics blogs back then. Also, Molly there is me with any mathematics puzzle, which is why I panic whenever someone brings one to me. This is a new tag for the comic strip.

Jeff Harris’s Shortcuts for the 13th is a children’s informational feature about Aristotle. Aristotle is renowned for his mathematical accomplishments by many people who’ve got him mixed up with Archimedes. Aristotle it’s harder to say much about. He did write great texts that pop-science writers credit as giving us the great ideas about nature and physics and chemistry that the Enlightenment was able to correct in only about 175 years of trying. His mathematics is harder to summarize though. We can say certainly that he knew some mathematics. And that he encouraged thinking of subjects as built on logical deductions from axioms and definitions. So there is that influence.

A panel full of jokes, activities, and trivia relating to Aristotle. There's no way for me to summarize it all (which includes a word search and a maze as activities) in the space available.
Jeff Harris’s Shortcuts for the 13th of May, 2018. That demonstration of Aristotle’s syllogisms is the same one I see when I search DuckDuckGo for ‘aristotle mathematics’ so it must come right from his texts that I’ve never read! That’s how citations work, right?

Dan Thompson’s Brevity for the 15th is a pun, built on the bell curve. This is also known as the Gaussian distribution or the normal distribution. It turns up everywhere. If you plot how likely a particular value is to turn up, you get a shape that looks like a slightly melted bell. In principle the bell curve stretches out infinitely far. In practice, the curve turns into a horizontal line so close to zero you can’t see the difference once you’re not-too-far away from the peak.

Baseball manager warning the player, 'Watch out, he's got a wicked curve'. The pitcher is a classic hand-style bell with clapper, and also arms and a glove and ball.
Dan Thompson’s Brevity for the 15th of May, 2018. I am curious whether there’s any significance to Thompson’s uniforms, particularly the player having a ‘B’ camp and a ‘U’ shoulder patch. I don’t think there’s an obvious relevance to the statistics jokes being made.

Jason Chatfield’s Ginger Meggs for the 16th I assume takes place in a mathematics class. I’m assuming the question is adding together four two-digit numbers. But “what are 26, 24, 33, and 32” seems like it should be open to other interpretations. Perhaps Mr Canehard was asking for some class of numbers those all fit into. Integers, obviously. Counting numbers. Compound numbers rather than primes. I keep wanting to say there’s something deeper, like they’re all multiples of three (or something) but they aren’t. They haven’t got any factors other than 1 in common. I mention this because I’d love to figure out what interesting commonality those numbers have and which I’m overlooking.

Teacher: 'Meggs! Pop quiz: what are 26, 24, 33, and 32?' Ginger Meggs, after a panel of silent thought: 'Your last four payslips?'
Jason Chatfield’s Ginger Meggs for the 16th of May, 2018. Little surprised Ginger didn’t name cricketeers with those uniform numbers, trusting that cricket players have uniform numbers.

Ed Stein’s Freshly Squeezed for the 17th is a story problem strip. Bit of a passive-aggressive one, in-universe. But I understand why it would be formed like that. The problem’s incomplete, as stated. There could be some fun in figuring out what extra bits of information one would need to give an answer. This is another new-tagged comic.

Nate, the son: 'We're supposed to do today's homework with our parents.' Mom: 'Okay.' Nate: '1. If there are 28 kids in a class, and the education budget is cut by $465 million, how many will be in the class next year?' Dad: 'Taking parental involvement to the next level.' Nate: '2. If the teacher's insurance doesn't cover nervous breakdowns ... '
Ed Stein’s Freshly Squeezed rerun for the 17th of May, 2018. This originally ran the 5th of May, 2011 and maybe I even featured it then. … No, it doesn’t look like I did. Well, I can only imagine how very well this appeal to the parents of the school district under guise of homework went over!

Henry Scarpelli and Craig Boldman’s Archie for the 19th name-drops calculus, credibly, as something high schoolers would be amazed to see one of their own do in their heads. There’s not anything on the blackboard that’s iconically calculus, it happens. Dilton’s writing out a polynomial, more or less, and that’s a fit subject for high school calculus. They’re good examples on which to learn differentiation and integration. They’re a little more complicated than straight lines, but not too weird or abstract. And they follow nice, easy-to-summarize rules. But they turn up in high school algebra too, and can fit into geometry easily. Or any subject, really, as remember, everything is polynomials.

Archie: 'It's amazing how Dilton can do calculus in his head!' Reggie: 'Yeah, I suppose! I guess I'll settle for being the school's most admired athlete and greatest sex symbol!' Jughead: 'It's amazing how Reggie does all that in *his* head, too!'
Henry Scarpelli and Craig Boldman’s Archie rerun for the 19th of May, 2018. And yeah, C^2 + x + 1) isn’t really a coherent expression. It’s either missing a ( mark or, if the C is the open-parentheses, then it’s got nothing-in-particular squared. Also I am so bothered to have close-parentheses and open-parentheses out of order that last sentence. You have no idea.

Mark Anderson’s Andertoons for the 19th is Mark Anderson’s Andertoons for the week. Glad that it’s there. Let me explain why it is proper construction of a joke that a Fibonacci Division might be represented with a spiral. Fibonacci’s the name we give to Leonardo of Pisa, who lived in the first half of the 13th century. He’s most important for explaining to the western world why these Hindu-Arabic numerals were worth learning. But his pop-cultural presence owes to the Fibonacci Sequence, the sequence of numbers 1, 1, 2, 3, 5, 8, and so on. Each number’s the sum of the two before it. And this connects to the Golden Ratio, one of pop mathematics’ most popular humbugs. As the terms get bigger and bigger, the ratio between a term and the one before it gets really close to the Golden Ratio, a bit over 1.618.

Business group looking at a slide showing the golden spiral. Speaker: 'And, as you can see, the Fibonacci division is right on track.'
Mark Anderson’s Andertoons for the 19th of May, 2018. I wonder which direction it’s moving in.

So. Draw a quarter-circle that connects the opposite corners of a 1×1 square. Connect that to a quarter-circle that connects opposite corners of a 2×2 square. Connect that to a quarter-circle connecting opposite corners of a 3×3 square. And a 5×5 square, and an 8×8 square, and a 13×13 square, and a 21×21 square, and so on. Yes, there are ambiguities in the way I’ve described this. I’ve tried explaining how to do things just right. It makes a heap of boring words and I’m trying to reduce how many of those I write. But if you do it the way I want, guess what shape you have?

And that is why this is a correctly-formed joke about the Fibonacci Division.

Reading the Comics, April 28, 2018: Friday Is Pretty Late Edition


I should have got to this yesterday; I don’t know. Something happened. Should be back to normal Sunday.

Bill Rechin’s Crock rerun for the 26th of April does a joke about picking-the-number-in-my-head. There’s more clearly psychological than mathematical content in the strip. It shows off something about what people understand numbers to be, though. It’s easy to imagine someone asked to pick a number choosing “9”. It’s hard to imagine them picking “4,796,034,621,322”, even though that’s just as legitimate a number. It’s possible someone might pick π, or e, but only if that person’s a particular streak of nerd. They’re not going to pick the square root of eleven, or negative eight, or so. There’s thing that are numbers that a person just, offhand, doesn’t think of as numbers.

Crock to the two prisoners in lockboxes: 'Guess the number I'm thinking and I'll set you free.' First prisoner: '4,796,034,621,322.' Crock: 'Sorry, it's nine.' Second prisoner: 'What made you guess THAT number?' First prisoner: 'It was the first one to pop into my head.'
Bill Rechin’s Crock rerun for the 26th of April, 2018. Going ahead and guessing there’s another Crock with the same setup, except the prisoner guesses nine, and Crock says it was 4,796,034,621,322, and then in the final panel we see that Crock really had thought nine and lied.

Mark Anderson’s Andertoons for the 26th sees Wavehead ask about “borrowing” in subtraction. It’s a riff on some of the terminology. Wavehead’s reading too much into the term, naturally. But there are things someone can reasonably be confused about. To say that we are “borrowing” ten does suggest we plan to return it, for example, and we never do that. I’m not sure there is a better term for this turning a digit in one column to adding ten to the column next to it, though. But I admit I’m far out of touch with current thinking in teaching subtraction.

On the board: 51 - 26, with the 51 rewritten as 4 with a borrowed 11. Wavehead: 'So we're just borrowing 10 no questions asked? What about a credit check? What's the interest rate?'
Mark Anderson’s Andertoons for the 26th of April, 2018. This is Mark Anderson’s Andertoons for the week.

Greg Cravens’s The Buckets for the 26th is kind of a practical probability question. And psychology also, since most of the time we don’t put shirts on wrong. Granted there might be four ways to put a shirt on. You can put it on forwards or backwards, you can put it on right-side-out or inside-out. But there are shirts that are harder to mistake. Collars or a cut around the neck that aren’t symmetric front-to-back make it harder to mistake. Care tags make the inside-out mistake harder to make. We still manage it, but the chance of putting a shirt on wrong is a lot lower than the 75% chance we might naively expect. (New comic tag, by the way.)

Larry: 'Your shirt is on all wrong.' Toby: 'It was bound to happen.' Larry: 'What? Why?' Toby: 'There's FOUR different ways a shirt can go on! That gives me only, like, a 20% chance any time I put it on.'
Greg Cravens’s The Buckets for the 26th of April, 2018. I’m not sure Larry (the father)’s disbelief at his kid figuring putting the shirt on all wrong was bound to happen. It’s a mistake we all make; accepting the inevitability of that doesn’t seem that wrong.

Charles Schulz’s Peanuts rerun for the 27th is surely set in mathematics class. The publication date interests me. I’m curious if this is the first time a Peanuts kid has flailed around and guessed “the answer is twelve!” Guessing the answer is twelve would be a Peppermint Patty specialty. But it has to start somewhere.

Sally, at her schooldesk: 'The answer is twelve! It isn't? How about six? Four? Nine? Two? Ten? ... Do you have the feeling that I'm guessing?'
Charles Schulz’s Peanuts rerun for the 27th of April, 2018. This strip first ran the 30th of April, 1971. It also was rerun the 25th of April, 2003, with a different colorization scheme for some reason.

Knowing nothing about the problem, if I did get the information that my first guess of 12 was wrong, yeah, I’d go looking for 6 or 4 as next guesses, and 12 or 48 after that. When I make an arithmetic mistake, it’s often multiplying or dividing by the wrong number. And 12 has so many factors that they’re good places to look. Subtracting a number instead of adding, or vice-versa, is also common. But there’s nothing in 12 by itself to suggest another place to look, if the addition or subtraction went wrong. It would be in the question which, of course, doesn’t exist.

Venn Diagram. One circle's labelled 'Venn Diagrams'; the second 'Jokes'. The intersection is 'Lazy Cartoonists'.
Maria Scrivan’s Half-Full for the 28th of April, 2018. Hey, cartoonists deserve easy days at work too. And there’s not always a convenient holiday they can have the cast just gather around and wish everyone a happy instance of.

Maria Scrivan’s Half-Full for the 28th is the Venn Diagram joke for this week. It could include an extra circle for bloggers looking for content they don’t need to feel inspired to write. This one isn’t a new comics tag, which surprises me.

Guy: 'Relax. Half the time, job interviewers don't even read your resume. They just see how long it is.' Mathematician: 'Really?' Guy: 'Yeah. Where are you going?' Mathematician: 'To make a Mobius strip.' Interviewer: 'Wow! I've never met someone with *infinite* skills and work experience.' Mathematician: 'I don't like to brag.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 28th of April, 2018. If I had seen this strip in 2007 maybe I would’ve got that tenure-track posting instead of going into the world of technically being an extant mathematics blog.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 28th uses the M&oum;bius Strip. It’s an example of a surface that you could just go along forever. There’s nothing topologically special about the M&oum;bius Strip in this regard, though. The mathematician would have as infinitely “long” a résumé if she tied it into a simple cylindrical loop. But the M&oum;bius Strip sounds more exotic, not to mention funnier. Can’t blame anyone going for that instead.

Reading the Comics, April 14, 2018: Friday the 13th Edition?


And now I can close out last week’s mathematically-themed comic strips. There was a bunch toward the end of the week. And I’m surprised that none of the several comics to appear on Friday the 13th had anything to do with the calendar. Or at least not enough for me to talk about them.

Julie Larson’s Dinette Set rerun for the 12th is a joke built on the defining feature of (high school) algebra. The use of a number whose value we hope to figure out isn’t it. Those appear from the start of arithmetic, often as an empty square or circle or a spot of ____ that’s to be filled out. We used to give these numbers names like “thing” or “heap” or “it” or the like. Something pronoun-like. The shift to using ‘x’ as the shorthand is a legacy of the 16th century, the time when what we see as modern algebra took shape. People are frightened by it, to suddenly see letters in the midst of a bunch of numbers. But it’s no more than another number. And it communicates “algebra” in a way maybe nothing else does.

Timmy: 'Can you help me on my summer math practice book, Grandpa? It says 2x - 5 = 3. So what is x?' Grandpa: 'Must be a misprint, cause last time I checked, x is NOT a number!' Dad: 'I'd show your teacher that typo so she can complain to the publisher.'
Julie Larson’s Dinette Set rerun for the 12th of April, 2018. Don’t be thrown by the side bits like the show on the TV or the rather oversized Nutty Professor DVD box. They’re just side jokes, not part of the main gag.

Ruben Bolling’s Tom the Dancing Bug rerun for the 12th is one of the God-Man stories. I’m delighted by the Freshman Philosophy-Major Man villain. The strip builds on questions of logic, and about what people mean by “omnipotence”. I don’t know how much philosophy of mathematics the average major takes. I suspect it’s about as much philosophy of mathematics as the average mathematics major is expected to take. (It’s an option, but I don’t remember anyone suggesting I do it, and I do feel the lost opportunity.) But perhaps later on Freshman Philosophy-Major Man would ask questions like what do we mean by “one” and “plus” and “equals” and “three”. And whether anything could, by a potent enough entity, be done about them. For the easiest way to let an omnipotent creature change something like that. WordPress is telling me this is a new tag for me. That can’t be right.

God-Man, the Super-Hero with Omnipotent Powers. This week: Danger int he Dorm! [ God-Man settles in to watch 'Two Weeks Notice' on TBS when ... ' God-Man: 'Sandra Bullock is just adorable!' Voice: 'Help!' God-Man: 'Aw, nuts ... that cry for help came from Mid-Central University! Fear not! I'm he --- YOU?'' FPMM: 'Ah, I knew you'd take the bait!' God-Man: 'You again ... ' FPMM: 'YES! Your arch-enemy --- Freshman Philosophy-Major Man!' God-Man: 'Arch-enemy. Right.' FPMM: 'And I can PROVE that you're NOT OMNIPOTENT! You can't make one plus one equal THREE! Ha! The logic and structure of the universe couldn't exist if 1 + 1 = 3!!' God-Man: 'Of course it can, you ninny.' FPMM, disappearing in a windy vortex: 'Whaaaaa?' God-Man: 'It's just a little different. ... What a pain! Well, if I hurry back, I can catch the end of Three Weeks Notice'. [ God-Man flies out past a streaming vortex of stuff. ]
Ruben Bolling’s Tom the Dancing Bug rerun for the 12th of April, 2018. Yes, basically every God-Man installment is the same strip, but it works for me every time. (It helps that there’s only a couple each year.)

Mike Thompson’s Grand Avenue for the 13th is another resisting-the-story-problem joke, attacking the idea that a person would have ten apples. People like to joke about story problems hypothesizing people with ridiculous numbers of pieces of fruit. But ten doesn’t seem like an excessive number of apples to me; my love and I could eat that many in two weeks without trying hard. The attempted diversion would work better if it were something like forty watermelons or the like.

Teacher: 'If Sally had ten apples and ... ' Gabby: 'Oh, come on! Who goes around with ten apples?' Teacher: 'It's a math problem.' Gabby: 'No, it's a psychological problem. There's a problem with someone who feels the need to carry around so many apples.' Teacher: 'You see to have great insight into other people's problems.' Gabby: 'They don't call me a problem child for nothing!'
Mike Thompson’s Grand Avenue for the 13th of April, 2018. And I realize this is like the complaint I raised about the Grand Avenue earlier this week. But Gabby is assuming that Sally is carrying around ten apples, when the problem hasn’t said anything of the sort. Ten isn’t a ridiculous number of apples to carry to start with, but to simply have them in one’s possession? That’s just not peculiar.

Mark Tatulli’s Heart of the City for the 13th has Heart and Dean complaining about their arithmetic class. I rate it as enough to include here because they go into some detail about things. I find it interesting they’re doing story problems with decimal points; that seems advanced for what I’d always taken their age to be. But I don’t know. I have dim memories of what elementary school was like, and that was in a late New Math-based curriculum.

Heart: 'Ugh, could you believe all those crazy word problems Mr Basner dumped on us today? I got a headache fro all the figuring!' Dean: 'Yeah, multiplication, division, adding, and subtracting. My brain is flip-flopping from all the numbers and decimal points. Well, we've got a Friday night and two whole days to undo the damage.' Heart: 'Oh, magical glowing box full of endless, empty entertainment, take us away!'
Mark Tatulli’s Heart of the City for the 13th of April, 2018. One of the things I do appreciate about Heart of the City is that while Dean is a nerd and mostly likes school, he’s not one-note about it and gets as tired of it as anyone else does. Nerd kids in comic strips have a tendency to take their pro-school agenda a bit far.

Nick Galifianakis’s Nick and Zuzu for the 13th is a Venn diagram joke, the clearest example of one we’ve gotten in a while. I believe WordPress when it tells me this is a new tag for the comic strip.

Nick(?), looking at a Venn diagram: 'Nice. I've neer seen spite and integrity overlap.'
Nick Galifianakis’s Nick and Zuzu for the 13th of April, 2018. First, this is some of the nicest grey-washing I’ve seen in these Reading the Comics posts in a while. Second, my experience is that spite with integrity is some of the most fun and delightful that spite ever gets to be. The integrity lets you add a layer of smugness to the spite. And if anyone protests, you get to feel smugly superior to them, too.

Mark Anderson’s Andertoons for the 14th is the Mark Anderson’s Andertoons for the week. It starts at least with teaching ordinal numbers. In normal English that’s the adjective form of a number. Ordinal numbers reappear in the junior or senior year of a mathematics major’s work, as they learn enough set theory to be confused by infinities. In this guise they describe the sizes of sets of things. And they’re introduced as companions to cardinal numbers, which also describe the sizes of sets of things. They’re different, in ways that I feel like I always forget in-between reading books about infinitely large sets. The kids don’t need to worry about this yet.

On the blackboard: 'Ordinal numbers: 1st, 2nd, 3rd'. Kid: 'You forgot Participant.'
Mark Anderson’s Andertoons for the 14th of April, 2018. The kid appears often enough I feel like I should know his name. Or assign one in case the strip doesn’t have a canonical name for him. I’ll take nominations if anyone wants to offer them.

Reading the Comics, March 24, 2018: Arithmetic and Information Edition


And now I can bring last week’s mathematically-themed comics into consideration here. Including the whole images hasn’t been quite as much work as I figured. But that’s going to change, surely. One of about four things I know about life is that if you think you’ve got your workflow set up to where you can handle things you’re about to be surprised. Can’t wait to see how this turns out.

John Deering’s Strange Brew for the 22nd is edging its way toward an anthropomorphic numerals joke.

Man, to woman at candlelit dinner: 'I can still remember the cute little number you were wearing the day we first met.' He's wearing the number 72102; she, 67350.
John Deering’s Strange Brew for the 22nd of March, 2018. I like to think she was wearing something from the Gary Larson collection.

Brant Parker and Johnny Hart’s Wizard of Id for the 22nd is a statistics joke. Really a demographics joke. Which still counts; much of the historical development of statistics was in demographics. That it was possible to predict accurately the number of people in a big city who’d die, and what from, without knowing anything about whether any particular person would die was strange and astounding. It’s still an astounding thing to look directly at.

The Duke: 'Sire, I have worked out some amazing statistics, here.' The King: 'Let's hear them.' The Duke: 'My figures show that the odds against a short man outliving a tall man are 5 to 1.' The King: 'Have the royal basketball team report to the gallows.'
Brant Parker and Johnny Hart’s Wizard of Id for the 25th of March 1968, and rerun the 22nd of March, 2018. That’s an interesting demographic the Kingdom of Id has there. Just saying.

Hilary Price and Rina Piccolo’s Rhymes with Orange for the 23rd has the form of a story problem. I could imagine turning this into a proper story problem. You’d need some measure of how satisfying the 50-dollar wines are versus the 5-dollar wines. Also how much the wines affect people’s ability to notice the difference. You might be able to turn this into a differential equations problem, but that’s probably overkill.

The Pop^Cork Quiz. Hostess with bottles of wine. Caption: 'If Laura owns 5 bottles of 50-dollar wine and 5 bottles of 5-dollar wine, how many bottles of 50-dollar wine must she serve in order to switch to the 5-dollar wine without anyone noticing?'
Hilary Price and Rina Piccolo’s Rhymes with Orange for the 23rd of March, 2018. Fortunately, one of Laura’s guests brought Jesus of Nazareth along as his `plus one’.

Mark Anderson’s Andertoons for the 23rd is Mark Anderson’s Andertoons for this half of the week. It’s a student-avoiding-the-problem joke. Could be any question. But arithmetic has the advantages of being plausible, taking up very little space to render, and not confusing the reader by looking like it might be part of the joke.

Kid at the blackboard, pondering 72 / 8: 'I know the answer, I'm just letting the suspense build.'
Mark Anderson’s Andertoons for the 23rd of March, 2018. Yeah, don’t try this with your thesis committee. Word to the wise.

John Zakour and Scott Roberts’s Working Daze for the 23rd has another cameo appearance by arithmetic. It’s also a cute reminder that there’s no problem you can compose that’s so simple someone can’t over-think it. And it puts me in mind of the occasional bit where a company’s promotional giveaway will technically avoid being a lottery by, instead of awarding prizes, awarding the chance to demonstrate a skill. Demonstration of that skill, such as a short arithmetic quiz, gets the prize. It’s a neat bit of loophole work and does depend, as the app designers here do, on the assumption there’s some arithmetic that people can be sure of being able to do.

Ed: 'The trick to making an easy quiz app is to come up with questions anybody could get right.' Rita: 'One plus one. Well, that's easy. It's two. No, wait. It's a trick question. It's eleven. Right? Unless ... ' Roy, thinking: 'This is going to be harder than we thought.'
John Zakour and Scott Roberts’s Working Daze for the 23rd of March, 2018. Ask your friend who does web stuff about Javascript and addition. You won’t understand the results but that’s all right; neither do they.

Teresa Burritt’s Frog Applause for the 24th is its usual bit of Dadist nonsense. But in the talk about black holes it throws in an equation: S = \frac{A k c^3}{4 G \hbar} . This is some mathematics about black holes, legitimate and interesting. It is the entropy of a black hole. The dazzling thing about this is all but one of those symbols on the right is the same for every black hole. ‘c’ is the speed of light, as in ‘E = mc2‘. G is the gravitational constant of the universe, a measure of how strong gravity is. \hbar is Planck’s constant, a kind of measure of how big quantum mechanics effects are. ‘k’ is the Boltzmann constant, which normal people never heard of but that everyone in physics and chemistry knows well. It’s what you multiply by to switch from the temperature of a thing to the thermal energy of the thing, or divide by to go the other way. It’s the same number for everything in the universe.

Woman's legs emerging from a portable hole, in three panels. The caption: 'Help! I'm defying the laws of gravity while also being sucked into a black hole that's supposed to be invisible --- except when the hole is in a comic strip!' (And on the side, S = Akc^3/4G h-bar.) 'Holy Hawking! As the space-time continuum continuums, I'm being warped into a state of striped-pants disreality teetering on a crummy fulcrum of fugly shoes. And even if I shout, 'I've fallen in a black hole and I can't get out', I'll forever be sinking deeper into a lamer surreality that never reaches the tendency pit of analyticity.'
Teresa Burritt’s Frog Applause for the 24th of March, 2018. Honestly surprised I didn’t see talk about striped-pants direality in Zippy the Pinhead first.

The only thing custom to a particular black hole is ‘A’, which is the surface area of the black hole. I mean the surface area of the event horizon. Double the surface area of the event horizon and you double its entropy. (This isn’t doubling the radius of the event horizon, but you know how much growth in the radius it is.) Also entropy. Hm. Everyone who would read this far into a pop mathematics blog like this knows that entropy is “how chaotic a thing is”. Thanks to people like Boltzmann we can be quantitative, and give specific and even exact numbers to the entropy of a system. It’s still a bit baffling since, superficially, a black hole seems like it’s not at all chaotic. It’s a point in space that’s got some mass to it, and maybe some electric charge and maybe some angular momentum. That’s about it. How messy can that be? It doesn’t even have any parts. This is how we can be pretty sure there’s stuff we don’t understand about black holes yet. Also about entropy.

This strip might be an oblique and confusing tribute to Dr Stephen Hawking. The entropy formula described was demonstrated by Drs Jacob Bekenstein and Stephen Hawking in the mid-1970s. Or it might be coincidence.

Reading the Comics, March 21, 2018: Old Mathematics Jokes Edition


For this, the second of my Reading the Comics postings with all the comics images included, I’ve found reason to share some old and traditional mathematicians’ jokes. I’m not sure how this happened, but sometimes it just does.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th brings to mind a traditional mathematics joke. A dairy hires a mathematician to improve operations. She tours the place, inspecting the cows and their feeding and the milking machines. She speaks with the workers. She interviews veterinarians. She talks with the truckers who haul out milk. She interviews the clients. Finally she starts to work on a model of better milk production. The first line: “Assume a spherical cow.”

[Pro Tip: this is the answer to any thermodynamics question that requires you to determine an object's temperature: ] T = 2.73 K (assume well-mixed Cosmos)
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th of March, 2018. Temperature’s a great subject though, and I’ve been thinking for ages about doing a series on it just because I want to explain negative temperatures Kelvin.

One big field of mathematics is model-building. When doing that you have to think about the thing you model. It’s hard. You have to throw away all the complicating stuff that makes your questions too hard to answer. But you can’t throw away all the complicating stuff or you have a boring question to answer. Depending on what kinds of things you want to know, you’ll need different models. For example, for some atmosphere problems you’ll do fine if you assume the air has no viscosity. For others that’s a stupid assumption. For some you can ignore that the planet rotates and is heated on one side by the sun. For some you don’t dare do that. And so on. The simplifications you can make aren’t always obvious. Sometimes you can ignore big stuff; a satellite’s orbit, for example, can be treated well by pretending that the whole universe except for the Earth doesn’t exist. Depends what you’re looking for. If the universe were homogenous enough, it would all be at the same temperature. Is that useful to your question? That’s the trick.

On the board: 1/2 - 1/8 = ?. Student: 'Apropos of nothing, I have two cats.'
Mark Anderson’s Andertoons for the 20th of March, 2018. Okay, but why the poster with the octopus on it?

Mark Anderson’s Andertoons for the 20th is the Mark Anderson’s Andertoons for this essay. It’s just a student trying to distract the issue from fractions. I suppose mathematics was chosen for the blackboard problem because if it were, say, a history or an English or a science question someone would think that was part of the joke and be misled. Fractions, though, those have the signifier of “the thing we’d rather not talk about”.

Woman: 'And if you haven't figured it out yet, this is the math department lavatory'. The door reads 1 +/- 2
Daniel Beyer’s Long Story Short for the 21st of March, 2018. Not to nitpick but shouldn’t it be 1½ ± ½?

Daniel Beyer’s Long Story Short for the 21st is a mathematicians-mindset sort of joke. Let me offer another. I went to my love’s college reunion. On the mathematics floor of the new sciences building the dry riser was labelled as “N Bourbaki”. Let me explain why is a correctly-formed and therefore very funny mathematics joke. “Nicolas Bourbaki” was the pseudonym used by the mathematical equivalent of an artist’s commune, in France, through several decades of the mid-20th century. Their goal was setting mathematics on a rigorous and intuition-free basis, the way mathematicians sometimes like to pretend it is. Bourbaki’s influential nonexistence lead to various amusing-for-academia problems and you can see why a fake office is appropriately named so, then. (This is the first time I’ve tagged this strip, looks like.)

Employee: 'Cool 'power tie' boss'. The tie reads E = mc^2.
Harley Schwadron’s 9 to 5 for the 21st of March, 2018. I understand the tie has to face the audience to make the joke work, but isn’t it more fun to imagine that it’s actually a pyramidal tie, like, a solid triangular projection of tie material, and we see one side of it and maybe there’s another equation written on the other side? Please vote in the comments.

Harley Schwadron’s 9 to 5 for the 21st is a name-drop of Einstein’s famous equation as a power tie. I must agree this meets the literal specification of a power tie since, you know, c2 is in it. Probably something more explicitly about powers wouldn’t communicate as well. Possibly Fermat’s Last Theorem, although I’m not sure that would fit and be legible on the tie as drawn.

Clare: 'How many cylinders with length 3 and diameter 1.5 equal the volume of a sphere with diameter 3?' Neil: 'Um ... 2.6. no, 2.7!' Clare: 'Neil, how on earth did you know that?' Neil: 'It's simple, Clare! I converted the cylinder to 'Ho Hos' and the sphere to Hostess 'Sno Balls', then I imagined eating them!' Clare: 'Um ... wow.' Neil: 'My brain's only average, but my tummy's a genius!'
Mark Pett’s Lucky Cow for the 21st of March, 2018. I preferred Ding Dongs eater myself. But my heart was with the Suzy Q’s, if we’re not letting Tastykake into the discussion.

Mark Pett’s Lucky Cow rerun for the 21st has the generally inept Neil work out a geometry problem in his head. The challenge is having a good intuitive model for what the relationship between the shapes should be. I’m relieved to say that Neil is correct, to the number of decimal places given. I’m relieved because I’ve spent embarrassingly long at this. My trouble was missing, twice over, that the question gave diameters instead of radiuses. Pfaugh. Saving me was just getting answers that were clearly crazy, including at one point 21 1/3.

Professor in girl's daydream: 'But don't take my word for it. It's Euler's theorem.' (Points to e^{i pi} + 1 = 0 on the board.) Girl: 'Greg! Greg! I've changed my mind! Let's be colleagues again! ... Greg?' (Sees a closet jammed shut by a door.) Person inside: 'Help! I'm stuck!' (She unjams the door.) Person inside: 'Did she leave? Where's ray? Someone has to stop her!' Girl: 'That's like trying to stop a yeti!' Person inside: 'By my calculations it's far worse.' (Looks over sheet labelled 'Monster Unit Conversions', with Wray worked out to be 8 orcs or 3 trolls or 6 werewolves or werebears or 2.788 Yetis.)
Zach Weinersmith, Chris Jones and James Ashby’s Snowflakes for the 21st of March, 2018. I would like to give you more context for this but I confess I haven’t been able to follow the storyline. I don’t know why but this is one of the strips I don’t get the flow of.

Zach Weinersmith, Chris Jones and James Ashby’s Snowflakes for the 21st mentions Euler’s Theorem in the first panel. Trouble with saying “Euler’s Theorem” is that Euler had something like 82 trillion theorems. If you ever have to bluff your way through a conversation with a mathematician mention “Euler’s Theorem”. You’ll probably have said something on point, if closer to the basics of the problem than people figured. But the given equation — e^{\imath \pi} + 1 = 0 — is a good bet for “the” Euler’s Theorem. It’s a true equation, and it ties together a lot of interesting stuff about complex-valued numbers. It’s the way mathematicians tie together exponentials and simple harmonic motion. It makes so much stuff easier to work with. It would not be one of the things presented in a Distinctly Useless Mathematics text. But it would be mentioned along the way to something fascinating and useless. It turns up everywhere. (This is another strip I’m tagging for the first time.)

[ Cybil used to teach at MIT ] Cybil, teaching: 'If you've got pi/2 x 4 apples, and you eat Sigma x square root of cos(68) apples, how many apples do you have?' The class looks baffled.
Wulff and Morgenthaler’s WuMo for the 21st of March, 2018. Fun fact: since 68 is a rational number, the cosine of 68 has to be transcendental. All right, but it’s fun to me and whose blog is this? Thank you. But the cosine of any rational number other than zero is transcendental. Ditto the sine and the tangent.

Wulff and Morgenthaler’s WuMo for the 21st uses excessively complicated mathematics stuff as a way to signify intelligence. Also to name-drop Massachusetts Institute of Technology as a signifier of intelligence. (My grad school was Rensselaer Polytechnic Institute, which would totally be MIT’s rival school if we had enough self-esteem to stand up to MIT. Well, on a good day we can say snarky stuff about the Rochester Institute of Technology if we don’t think they’re listening.) Putting the “Sigma” in makes the problem literally nonsense, since “Sigma” doesn’t signify any particular number. The rest are particular numbers, though. π/2 times 4 is just 2π, a bit more than 6.28. That’s a weird number of apples to have but it’s perfectly legitimate a number. The square root of the cosine of 68 … ugh. Well, assuming this is 68 as in radians I don’t have any real idea what that would be either. If this is 68 degrees, then I do know, actually; the cosine of 68 degrees is a little smaller than ½. But mathematicians are trained to suspect degrees in trig functions, going instead for radians.

Well, hm. 68 would be between 11 times 2π and 12 times 2π. I think that’s just a little more than 11 times 2π. Oh, maybe it is something like ½. Let me check with an actual calculator. Huh. It is a little more than 0.440. Well, that’s a once-in-a-lifetime shot. Anyway the square root of that is a little more than 0.663. So you’d be left with about five and a half apples. Never mind this Sigma stuff. (A little over 5.619, to be exact.)

Reading the Comics, February 26, 2018: Possible Reruns Edition


Comic Strip Master Command spent most of February making sure I could barely keep up. It didn’t slow down the final week of the month either. Some of the comics were those that I know are in eternal reruns. I don’t think I’m repeating things I’ve already discussed here, but it is so hard to be sure.

Bill Amend’s FoxTrot for the 24th of February has a mathematics problem with a joke answer. The approach to finding the area’s exactly right. It’s easy to find areas of simple shapes like rectangles and triangles and circles and half-circles. Cutting a complicated shape into known shapes, finding those areas, and adding them together works quite well, most of the time. And that’s intuitive enough. There are other approaches. If you can describe the outline of a shape well, you can use an integral along that outline to get the enclosed area. And that amazes me even now. One of the wonders of calculus is that you can swap information about a boundary for information about the interior, and vice-versa. It’s a bit much for even Jason Fox, though.

Jef Mallett’s Frazz for the 25th is a dispute between Mrs Olsen and Caulfield about whether it’s possible to give more than 100 percent. I come down, now as always, on the side that argues it depends what you figure 100 percent is of. If you mean “100% of the effort it’s humanly possible to expend” then yes, there’s no making more than 100% of an effort. But there is an amount of effort reasonable to expect for, say, an in-class quiz. It’s far below the effort one could possibly humanly give. And one could certainly give 105% of that effort, if desired. This happens in the real world, of course. Famously, in the right circles, the Space Shuttle Main Engines normally reached 104% of full throttle during liftoff. That’s because the original specifications for what full throttle would be turned out to be lower than was ultimately needed. And it was easier to plan around running the engines at greater-than-100%-throttle than it was to change all the earlier design documents.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 25th straddles the line between Pi Day jokes and architecture jokes. I think this is a rerun, but am not sure.

Matt Janz’s Out of the Gene Pool rerun for the 25th tosses off a mention of “New Math”. It’s referenced as a subject that’s both very powerful but also impossible for Pop, as an adult, to understand. It’s an interesting denotation. Usually “New Math”, if it’s mentioned at all, is held up as a pointlessly complicated way of doing simple problems. This is, yes, the niche that “Common Core” has taken. But Janz’s strip might be old enough to predate people blaming everything on Common Core. And it might be character, that the father is old enough to have heard of New Math but not anything in the nearly half-century since. It’s an unusual mention in that “New” Math is credited as being good for things. (I’m aware this strip’s a rerun. I had thought I’d mentioned it in an earlier Reading the Comics post, but can’t find it. I am surprised.)

Mark Anderson’s Andertoons for the 26th is a reassuring island of normal calm in these trying times. It’s a student-at-the-blackboard problem.

Morrie Turner’s Wee Pals rerun for the 26th just mentions arithmetic as the sort of homework someone would need help with. This is another one of those reruns I’d have thought has come up here before, but hasn’t.

Reading the Comics, February 11, 2018: February 11, 2018 Edition


And it’s not always fair to say that the gods mock any plans made by humans, but Comic Strip Master Command has been doing its best to break me of reading and commenting on any comic strip with a mathematical theme. I grant that I could make things a little easier if I demanded more from a comic strip before including it here. But even if I think a theme is slight that doesn’t mean the reader does, and it’s easy to let the eye drop to the next paragraph if the reader does think it’s too slight. The anthology nature of these posts is part of what works for them. And then sometimes Comic Strip Master Command sends me a day like last Sunday when everybody was putting in some bit of mathematics. There’ll be another essay on the past week’s strips, never fear. But today’s is just for the single day.

Susan Camilleri Konar’s Six Chix for the 11th illustrates the Lemniscate Family. The lemniscate is a shape well known as the curve made by a bit of water inside a narrow tube by people who’ve confused it with a meniscus. An actual lemniscate is, as the chain of pointing fingers suggests, a figure-eight shape. You get — well, I got — introduced to them in prealgebra. They’re shapes really easy to describe in polar coordinates but a pain to describe in Cartesian coordinates. There are several different kinds of lemniscates, each satisfying slightly different conditions while looking roughly like a figure eight. If you’re open to the two lobes of the shape not being the same size there’s even a kind of famous-ish lemniscate called the analemma. This is the figure traced out by the sun if you look at its position from a set point on the surface of the Earth at the same clock time each day over the course of the year. That the sun moves north and south from the horizon is easy to spot. That it is sometimes east or west of some reference spot is a surprise. It shows the difference between the movement of the mean sun, the sun as we’d see it if the Earth had a perfectly circular orbit, and the messy actual thing. Dr Helmer Aslasken has a fine piece about this, and how it affects when the sun rises earliest and latest in the year.

At a restaurant: 'It was always a challenge serving the lemniscate family'. Nine people each pointing to neighbors and saying 'I'll have what s/he's having', in a sequence that would make a figure-eight as seen from above or below the tables.
Susan Camilleri Konar’s Six Chix for the 11th of February, 2018. It’s not really worse than some of the Carioid Institute dinners.

There’s also a thing called the “polynomial lemniscate”. This is a level curve of a polynomial. That is, what are all the possible values of the independent variable which cause the polynomial to evaluate to some particular number? This is going to be a polynomial in a complex-valued variable, in order to get one or more closed and (often) wriggly loops. A polynomial of a real-valued variable would typically give you a boring shape. There’s a bunch of these polynomial lemniscates that approximate the boundary of the Mandelbrot Set, that fractal that you know from your mathematics friend’s wall in 1992.

Mark Anderson’s Andertoons took care of being Mark Anderson’s Andertoons early in the week. It’s a bit of optimistic blackboard work.

Lincoln Pierce’s Big Nate features the formula for calculating the wind chill factor. Francis reads out what is legitimately the formula for estimating the wind chill temperature. I’m not going to get into whether the wind chill formula makes sense as a concept because I’m not crazy. The thinking behind it is that a windless temperature feels about the same as a different temperature with a particular wind. How one evaluates those equivalences offers a lot of room for debate. The formula as the National Weather Service, and Francis, offer looks frightening, but isn’t really hard. It’s not a polynomial, in terms of temperature and wind speed, but it’s close to that in form. The strip is rerun from the 15th of February, 2009, as Lincoln Pierce has had some not-publicly-revealed problem taking him away from the comic for about a month and a half now.

Jim Scancarelli’s Gasoline Alley included a couple of mathematics formulas, including the famous E = mc2 and the slightly less famous πr2, as part of Walt Wallet’s fantasy of advising scientists and inventors. (Scientists have already heard both.) There’s a curious stray bit in the corner, writing out 6.626 x 102 x 3 that I wonder about. 6.626 is the first couple digits of Planck’s Constant, as measured in Joule-seconds. (This is h, not h-bar, I say for the person about to complain.) It’d be reasonable for Scancarelli to have drawn that out of a physics book or reference page. But the exponent is all wrong, even if you suppose he mis-wrote 1023. It should be 6.626 x 10-34. So I don’t know whether Scancarelli got things very garbled, or if he just picked a nice sciencey-looking number and happened to hit on a significant one. (There’s enough significant science numbers that he’d have a fair chance of finding something.) The strip is a reprint from the 4th of February, 2007, as Jim Scancarelli has been absent for no publicly announced reason for four months now.

Greg Evans and Karen Evans’s Luann is not perfectly clear. But I think it’s presenting Gunther doing mathematics work to support his mother’s contention that he’s smart. There’s no working out what work he’s doing. But then we might ask how smart his mother is to have made that much food for just the two of them. Also that I think he’s eating a potato by hand? … Well, there are a lot of kinds of food that are hard to draw.

Greg Evans’s Luann Againn reprints the strip from the 11th of February (again), 1990. It mentions as one of those fascinating things of arithmetic an easy test to see if a number’s a multiple of nine. There are several tricks like this, although the only ones anybody can remember are finding multiples of 3 and finding multiples of 9. Well, they know the rules for something being a multiple of 2, 5, or 10, but those hardly look like rules, and there’s no addition needed. Similarly with multiples of 4.

Modular arithmetic underlies all these rules. Once you know the trick you can use it to work out your own add-up-the-numbers rules to find what numbers are multiples of small numbers. Here’s an example. Think of a three-digit number. Suppose its first digit is ‘a’, its second digit ‘b’, and its third digit ‘c’. So we’d write the number as ‘abc’, or, 100a + 10b + 1c. What’s this number equal to, modulo 9? Well, 100a modulo 9 has to be equal to whatever a modulo 9 is: (100 a) modulo 9 is (100) modulo 9 — that is, 1 — times (a) modulo 9. 10b modulo 9 is (10) modulo 9 — again, 1 — times (b) modulo 9. 1c modulo 9 is … well, (c) modulo 9. Add that all together and you have a + b + c modulo 9. If a + b + c is some multiple of 9, so must be 100a + 10b + 1c.

The rules about whether something’s divisible by 2 or 5 or 10 are easy to work with since 10 is a multiple of 2, and of 5, and for that matter of 10, so that 100a + 10b + 1c modulo 10 is just c modulo 10. You might want to let this settle. Then, if you like, practice by working out what an add-the-digits rule for multiples of 11 would be. (This is made a lot easier if you remember that 10 is equal to 11 – 1.) And if you want to show off some serious arithmetic skills, try working out an add-the-digits rule for finding whether something’s a multiple of 7. Then you’ll know why nobody has ever used that for any real work.

J C Duffy’s Lug Nuts plays on the equivalence people draw between intelligence and arithmetic ability. Also on the idea that brain size should have something particularly strong link to intelligence. Really anyone having trouble figuring out 15% of $10 is psyching themselves out. They’re too much overwhelmed by the idea of percents being complicated to realize that it’s, well, ten times 15 cents.

Reading the Comics, January 22, 2018: Breaking Workflow Edition


So I was travelling last week, and this threw nearly all my plans out of whack. We stayed at one of those hotels that’s good enough that its free Internet is garbage and they charge you by day for decent Internet. So naturally Comic Strip Master Command sent a flood of posts. I’m trying to keep up and we’ll see if I wrap up this past week in under three essays. And I am not helped, by the way, by GoComics.com rejiggering something on their server so that My Comics Page won’t load, and breaking their “Contact Us” page so that that won’t submit error reports. If someone around there can break in and turn one of their servers off and on again, I’d appreciate the help.

Hy Eisman’s Katzenjammer Kids for the 21st of January is a curiously-timed Tax Day joke. (Well, the Katzenjammer Kids lapsed into reruns a dozen years ago and there’s probably not much effort being put into selecting seasonally appropriate ones.) But it is about one of the oldest and still most important uses of mathematics, and one that never gets respect.

Mama: 'Der deadline fer der kink's taxes iss dis veek! Der kink's new tax law makes gif'ink him yer money much easier!' Captain: 'Mit der new forms it should be a snep!' All that day ... Captain: 'Let's see. Add lines 4, 8 und 12 to line 18 und subtract line 22'. And also the next day. Captain: 'Add der number uf fish caught by you diss year und divide by der veight uf der bait ...' And the day after that ... 'If you ate t'ree meals a day all t'rough der year, check idss box ... if you vun money playink pinochle mit der Kink, enter der amount ... ' As the Captain throws the forms up, Mama says, 'Captain! Der tax collector iss here!' The Captain raspberries the agent: 'Hey! Tax collector!' Next panel, in prison. Mama: 'Dumkopf! Why din't you fill out der new easy tax forms?' Captain, in chains: 'Diss iss easier!'
Hy Eisman’s Katzenjammer Kids for the 21st of January, 2018. And, fine, but if the tax forms are that impossible to do right then shouldn’t there be a lot more people in jail for the same problem? … Although I suppose the comic strip hasn’t got enough of a cast for that.

Morrie Turner’s Wee Pals rerun for the 21st gets Oliver the reputation for being a little computer because he’s good at arithmetic. There is something that amazes in a person who’s able to calculate like this without writing anything down or using a device to help.

Steve Kelley and Jeff Parker’s Dustin for the 22nd seems to be starting off with a story problem. It might be a logic problem rather than arithmetic. It’s hard to say from what’s given.

Dustin: 'Next problem. Howard mails letters to four friends: Don, Mary, Tom, and Liz. It takes two days for the letter to get to Don.' Student: 'Excuse me? What's a letter?' Other student: 'Dude, it's the paper the mailman brings for your parents to put in the recycling.'
Steve Kelley and Jeff Parker’s Dustin for the 22nd of January, 2018. Yeah, yeah, people don’t send letters anymore and there’s an eternal struggle to make sure that story problems track with stuff that the students actually do, or know anything about. I still feel weird about how often the comic approaches Ruben Bolling’s satirical Comics For The Elderly. Usually Dustin (the teacher here) is getting the short end; it’s odd that he isn’t, for a change.

Mark Anderson’s Andertoons for the 22nd is the Mark Anderson’s Andertoons for the week. Well, for Monday, as I write this. It’s got your classic blackboard full of equations for the people in over their head. The equations look to me like gibberish. There’s a couple diagrams of aromatic organic compounds, which suggests some quantum-mechanics chemistry problem, if you want to suppose this could be narrowed down.

Greg Evans’s Luann Againn for the 22nd has Luann despair about ever understanding algebra without starting over from scratch and putting in excessively many hours of work. Sometimes it feels like that. My experience when lost in a subject has been that going back to the start often helps. It can be easier to see why a term or a concept or a process is introduced when you’ve seen it used some, and often getting one idea straight will cause others to fall into place. When that doesn’t work, trying a different book on the same topic — even one as well-worn as high school algebra — sometimes helps. Just a different writer, or a different perspective on what’s key, can be what’s needed. And sometimes it just does take time working at it all.

Richard Thompson’s Richard’s Poor Almanac rerun for the 22nd includes as part of a kit of William Shakespeare paper dolls the Typing Monkey. It’s that lovely, whimsical figure that might, in time, produce any written work you could imagine. I think I’d retired monkeys-at-typewriters as a thing to talk about, but I’m easily swayed by Thompson’s art and comic stylings so here it is.

Darrin Bell and Theron Heir’s Rudy Park for the 18th throws around a lot of percentages. It’s circling around the sabermetric-style idea that everything can be quantified, and measured, and that its changes can be tracked. In this case it’s comments on Star Trek: Discovery, but it could be anything. I’m inclined to believe that yeah, there’s an astounding variety of things that can be quantified and measured and tracked. But it’s also easy, especially when you haven’t got a good track record of knowing what is important to measure, to start tracking what amounts to random noise. (See any of my monthly statistics reviews, when I go looking into things like views-per-visitor-per-post-made or some other dubiously meaningful quantity.) So I’m inclined to side with Randy and his doubts that the Math Gods sanction this much data-mining.

Reading the Comics, January 20, 2018: Increased Workload Edition


It wasn’t much of an increased workload, really. I mean, none of the comics required that much explanation. But Comic Strip Master Command donated enough topics to me last week that I have a second essay for the week. And here it is; sorry there’s no pictures.

Mark Anderson’s Andertoons for the 17th is the Mark Anderson’s Andertoons we’ve been waiting for. It returns to fractions and their frustrations for its comic point.

Jef Mallet’s Frazz for the 17th talks about story problems, although not to the extent of actually giving one as an example. It’s more about motivating word-problem work.

Mike Thompson’s Grand Avenue for the 17th is an algebra joke. I’d call it a cousin to the joke about mathematics’s ‘x’ not coming back and we can’t say ‘y’. On the 18th was one mentioning mathematics, although in a joke structure that could have been any subject.

Lorrie Ransom’s The Daily Drawing for the 18th is another name-drop of mathematics. I guess it’s easier to use mathematics as the frame for saying something’s just a “problem”. I don’t think of, say, identifying the themes of a story as a problem in the way that finding the roots of a quadratic is.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 18th is an anthropomorphic-geometric-figures joke that I’m all but sure is a rerun I’ve shared here before. I’ll try to remember to check before posting this.

Mikael Wulff and Anders Morgenthaler’s WuMo for the 20th gives us a return of the pie chart joke that seems like it’s been absent a while. Worth including? Eh, why not.

Reading the Comics, January 6, 2018: Terms Edition


The last couple days of last week saw a rush of comics, although most of them were simpler things to describe. Bits of play on words, if you like.

Samson’s Dark Side of the Horse for the 4th of January, 2018, is one that plays on various meanings of “average”. The mean, alluded to in the first panel, is the average most people think of first. Where you have a bunch of values representing instances of something, add up the values, and divide by the number of instances. (Properly that’s the arithmetic mean. There’s some others, such as the geometric mean, but if someone’s going to use one of those they give you clear warning.) The median, in the second, is the midpoint, the number that half of all instances are less than. So you see the joke. If the distribution of intelligence is normal — which is a technical term, although it does mean “not freakish” — then the median and the mean should be equal. If you had infinitely many instances, and they were normally distributed, the two would be equal. With finitely many instances, the mean and the median won’t be exactly in line, for the same reason if you fairly toss a coin two million times it won’t turn up heads exactly one million times.

Dark Side of the Horse for the 5th delivers the Roman numerals joke of the year. And I did have to think about whether ‘D’ is a legitimate Roman numeral. This would be easier to remember before 1900.

Mike Lester’s Mike du Jour for the 4th is geometry wordplay. I’m not sure the joke stands up to scrutiny, but it lands well enough initially.

Johnny Hart’s Back to BC for the 5th goes to the desire to quantify and count things. And to double-check what other people tell you about this counting. It’s easy, today, to think of the desire to quantify things as natural to humans. I’m not confident that it is. The history of statistics shows this gradual increase in the number and variety of things getting tracked. This strip originally ran the 11th of July, 1960.

Bill Watterson’s Calvin and Hobbes for the 5th talks about averages again. And what a population average means for individuals. It doesn’t mean much. The glory of statistics is that groups are predictable in a way that individuals are not.

John Graziano’s Ripley’s Believe It Or Not for the 5th features a little arithmetic coincidence, that multiplying 21,978 by four reverses its digits. It made me think of Ray Kassinger’s question the other day about parasitic numbers. But this isn’t a parasitic number. A parasitic number is one with a value, multiplied by a particular number, that’s the same as you get by moving its last digit to the front. Flipping the order of digits seems like it should be something and I don’t know what.

Mark Anderson’s Andertoons for the 6th is a confident reassurance that 2018 is a normal, healthy year after all. Or can be. Prime numbers.

Mark O’Hare’s Citizen Dog rerun for the 6th is part of a sequence in which Fergus takes a (human) child’s place in school. Mathematics gets used as a subject that’s just a big pile of unfamiliar terms if you just jump right in. Most subjects are like this if you take them seriously, of course. But mathematics has got an economy of technical terms to stuff into people’s heads, and that have to be understood to make any progress. In grad school my functional analysis professor took great mercy on us, and started each class with re-writing the definitions of all the technical terms introduced the previous class. Also of terms that might be a bit older, but that are important to get right, which is why I got through it confident I knew what a Sobolev Space was. (It’s a collection of functions that have enough derivatives to do your differential equations problem.) Numerator and denominator, we’re experts on by now.

Reading the Comics, December 16, 2017: Andertoons Drought Ended Edition


And now, finally, we get what we’ve been waiting so long for: my having enough energy and time to finish up last week’s comics. And I make excuses to go all fanboy over Elzie Segar’s great Thimble Theatre. Also more attention to Zach Weinersmith. You’ve been warned.

Mark Anderson’s Andertoons for the 13th is finally a breath of Mark Anderson’s Andertoons around here. Been far too long. Anyway it’s an algebra joke about x’s search for identity. And as often happens I’m sympathetic here. It’s not all that weird to think of ‘x’ as a label for some number. Knowing whether it means “a number whose value we haven’t found yet” or “a number whose value we don’t care about” is one trick, though. It’s not something you get used to from learning about, like, ‘6’. And knowing whether we can expect ‘x’ to have held whatever value it represented before, or whether we can expect it to be something different, is another trick.

Doug Bratton’s Pop Culture Shock Therapy for the 13th I feel almost sure has come up here before. Have I got the energy to find where? Oh, yes. It ran the 5th of September, 2015.

Buckles: Bark! ... Bark bark! ... Bark bark bark! ... (Dazzled.) 'It's difficult to bark sequentially when you don't know how to count.'
David Gilbert’s Buckles for the 14th of December, 2017. I quite like Buckles’s little off-put look in the final panel. It’s very dog considering the situation.

David Gilbert’s Buckles for the 14th is a joke on animals’ number sense. In fairness, after that start I wouldn’t know whether to go for four or five barks myself.

Hugo: 'Adding a long column of numbers is hard. Maybe it'll be easier if I write smaller. Then the column will be shorter.'
Bud Blake’s Tiger for the 15th of December, 2017. One of my love’s favorite recurring motifs in Peanuts is when Sally works out some ridiculous string of not-quite-reasoning and Charlie Brown just sits and watches and kind of stares at the reader through it. Tiger is definitely doing that same “… what?” look as Hugo figures out his strategy.

Bud Blake’s Tiger for the 15th is a bit of kid logic about how to make a long column of numbers easier to add. I endorse the plan of making the column shorter, although I’d do that by trying to pair up numbers that, say, add to 10 or 20 or something else easy to work with. Partial sums can make the overall work so much easier. And probably avoid mistakes.

Bunzo: 'You mean to say I was hit by just one man?' Referee: 'Yes, one man - you must get up, the count will soon be to ten. My gosh, General, you must get up - I'm running out of fractions. 8 19/20 - 9 - 9 1/25 - 9 2/25 - 9 3/25 --- ' Bunzo: 'Use hundredths.' (Getting up.) 'You rat! Everybody's laughing at me! Me, the great chief General!! You're not supposed to do me like this!' Popeye: 'Don't get sore, General. Come on, it's your turn to sock me.' Bunzo: 'Hold still so I can bust your chin.' Popeye: 'Okay, shoot.' Bunzo: 'That'll finish you!' (Smacking Popeye on the chin. It's not very effective.) Popeye: 'You should eat more spinach.' Bunzo: 'Great guns! Are you still standing?!!'
Elzie Segar’s Thimble Theatre for the 8th of July, 1931, and rerun the 15th of December, 2017. If I’m not missing, this week has included Popeye’s first claims about spinach providing him with superior strength. And I know you’re looking at the referee there and thinking J Wellington Wimpy. I’m not sure, since I haven’t checked the complete collection to read ahead in the story, but I think this is merely a proto-Wimpy. (Mind, the Wikipedia entry on this is a complete mess. Bud Sagendorf’s Popeye: The First Fifty Years says Wimpy was derived from a minor character in Segar’s earlier The Five-Fifteen strip, which would itself turn into Sappo. But that proto-Wimpy didn’t have much personality or even a name.)

Elzie Segar’s Thimble Theatre for the 8th of July, 1931, is my most marginal inclusion yet. It was either that strip or the previous day’s worth including. I’m throwing it in here because Segar’s Thimble Theatre keeps being surprisingly good. And, heck, slowing a count by going into fractions is viable way to do it. As the clobbered General Bunzo points out, you can drag this out longer by going into hundredths. Or smaller units. There is no largest real number less than ten; if it weren’t incredibly against the rules, boxers could make use of that.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 15th is about those mathematics problems with clear and easy-to-understand statements whose answers defy intuition. Weinersmith is completely correct about all of this. I’m surprised he doesn’t mention the one about how you could divide an orange into five pieces, reassemble the pieces, and get back two spheres each the size of a sun.

Reading the Comics, November 25, 2017: Shapes and Probability Edition


This week was another average-grade week of mathematically-themed comic strips. I wonder if I should track them and see what spurious correlations between events and strips turn up. That seems like too much work and there’s better things I could do with my time, so it’s probably just a few weeks before I start doing that.

Ruben Bolling’s Super-Fun-Pax Comics for the 19th is an installment of A Voice From Another Dimension. It’s in that long line of mathematics jokes that are riffs on Flatland, and how we might try to imagine spaces other than ours. They’re taxing things. We can understand some of the rules of them perfectly well. Does that mean we can visualize them? Understand them? I’m not sure, and I don’t know a way to prove whether someone does or does not. This wasn’t one of the strips I was thinking of when I tossed “shapes” into the edition title, but you know what? It’s close enough to matching.

Olivia Walch’s Imogen Quest for the 20th — and I haven’t looked, but it feels to me like I’m always featuring Imogen Quest lately — riffs on the Monty Hall Problem. The problem is based on a game never actually played on Monty Hall’s Let’s Make A Deal, but very like ones they do. There’s many kinds of games there, but most of them amount to the contestant making a choice, and then being asked to second-guess the choice. In this case, pick a door and then second-guess whether to switch to another door. The Monty Hall Problem is a great one for Internet commenters to argue about while the rest of us do something productive. The trouble — well, one trouble — is that whether switching improves your chance to win the car is that whether it does depends on the rules of the game. It’s not stated, for example, whether the host must open a door showing a goat behind it. It’s not stated that the host certainly knows which doors have goats and so chooses one of those. It’s not certain the contestant even wants a car when, hey, goats. What assumptions you make about these issues affects the outcome.

If you take the assumptions that I would, given the problem — the host knows which door the car’s behind, and always offers the choice to switch, and the contestant would rather have a car, and such — then Walch’s analysis is spot on.

Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 20th features a pretend virtual reality arithmetic game. The strip is of incredibly low mathematical value, but it’s one of those comics I like that I never hear anyone talking about, so, here.

Richard Thompson’s Cul de Sac rerun for the 20th talks about shapes. And the names for shapes. It does seem like mathematicians have a lot of names for slightly different quadrilaterals. In our defense, if you’re talking about these a lot, it helps to have more specific names than just “quadrilateral”. Rhomboids are those parallelograms which have all four sides the same length. A parallelogram has to have two pairs of equal-sized legs, but the two pairs’ sizes can be different. Not so a rhombus. Mathworld says a rhombus with a narrow angle that’s 45 degrees is sometimes called a lozenge, but I say they’re fibbing. They make even more preposterous claims on the “lozenge” page.

Todd Clark’s Lola for the 20th does the old “when do I need to know algebra” question and I admit getting grumpy like this when people ask. Do French teachers have to put up with this stuff?

Brian Fies’s Mom’s Cancer rerun for the 23rd is from one of the delicate moments in her story. Fies’s mother just learned the average survival rate for her cancer treatment is about five percent and, after months of things getting haltingly better, is shaken. But as with most real-world probability questions context matters. The five-percent chance is, as described, the chance someone who’d just been diagnosed in the state she’d been diagnosed in would survive. The information that she’s already survived months of radiation and chemical treatment and physical therapy means they’re now looking at a different question. What is the chance she will survive, given that she has survived this far with this care?

Mark Anderson’s Andertoons for the 24th is the Mark Anderson’s Andertoons for the week. It’s a protesting-student kind of joke. For the student’s question, I’m not sure how many sides a polygon has before we can stop memorizing them. I’d say probably eight. Maybe ten. Of the shapes whose names people actually care about, mm. Circle, triangle, a bunch of quadrilaterals, pentagons, hexagons, octagons, maybe decagon and dodecagon. No, I’ve never met anyone who cared about nonagons. I think we could drop heptagons without anyone noticing either. Among quadrilaterals, ugh, let’s see. Square, rectangle, rhombus, parallelogram, trapezoid (or trapezium), and I guess diamond although I’m not sure what that gets you that rhombus doesn’t already. Toss in circles, ellipses, and ovals, and I think that’s all the shapes whose names you use.

Stephan Pastis’s Pearls Before Swine for the 25th does the rounding-up joke that’s been going around this year. It’s got a new context, though.

Reading the Comics, October 14, 2017: Physics Equations Edition


So that busy Saturday I promised for the mathematically-themed comic strips? Here it is, along with a Friday that reached the lowest non-zero levels of activity.

Stephan Pastis’s Pearls Before Swine for the 13th is one of those equations-of-everything jokes. Naturally it features a panel full of symbols that, to my eye, don’t parse. There are what look like syntax errors, for example, with the one that anyone could see the { mark that isn’t balanced by a }. But when someone works rough they will, often, write stuff that doesn’t quite parse. Think of it as an artist’s rough sketch of a complicated scene: the lines and anatomy may be gibberish, but if the major lines of the composition are right then all is well.

Most attempts to write an equation for everything are really about writing a description of the fundamental forces of nature. We trust that it’s possible to go from a description of how gravity and electromagnetism and the nuclear forces go to, ultimately, a description of why chemistry should work and why ecologies should form and there should be societies. There are, as you might imagine, a number of assumed steps along the way. I would accept the idea that we’ll have a unification of the fundamental forces of physics this century. I’m not sure I would believe having all the steps between the fundamental forces and, say, how nerve cells develop worked out in that time.

Mark Anderson’s Andertoons makes it overdue appearance for the week on the 14th, with a chalkboard word-problem joke. Amusing enough. And estimating an answer, getting it wrong, and refining it is good mathematics. It’s not just numerical mathematics that will look for an approximate solution and then refine it. As a first approximation, 15 minus 7 isn’t far off 10. And for mental arithmetic approximating 15 minus 7 as 10 is quite justifiable. It could be made more precise if a more exact answer were needed.

Maria Scrivan’s Half Full for the 14th I’m going to call the anthropomorphic geometry joke for the week. If it’s not then it’s just wordplay and I’d have no business including it here.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 14th tosses in the formula describing how strong the force of gravity between two objects is. In Newtonian gravity, which is why it’s the Newton Police. It’s close enough for most purposes. I’m not sure how this supports the cause of world peace.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th names Riemann’s Quaternary Conjecture. I was taken in by the panel, trying to work out what the proposed conjecture could even mean. The reason it works is that Bernhard Riemann wrote like 150,000 major works in every field of mathematics, and about 149,000 of them are big, important foundational works. The most important Riemann conjecture would be the one about zeroes of the Riemann Zeta function. This is typically called the Riemann Hypothesis. But someone could probably write a book just listing the stuff named for Riemann, and that’s got to include a bunch of very specific conjectures.

Reading the Comics, October 4, 2017: Time-Honored Traditions Edition


It was another busy week in mathematically-themed comic strips last week. Busy enough I’m comfortable rating some as too minor to include. So it’s another week where I post two of these Reading the Comics roundups, which is fine, as I’m still recuperating from the Summer 2017 A To Z project. This first half of the week includes a lot of rerun comics, and you’ll see why my choice of title makes sense.

Lincoln Pierce’s Big Nate: First Class for the 1st of October reprints the strip from the 2nd of October, 1993. It’s got a well-formed story problem that, in the time-honored tradition of this setup, is subverted. I admit I kind of miss the days when exams would have problems typed out in monospace like this.

Ashleigh Brilliant’s Pot-Shots for the 1st is a rerun from sometime in 1975. And it’s an example of the time-honored tradition of specifying how many statistics are made up. Here it comes in at 43 percent of statistics being “totally worthless” and I’m curious how the number attached to this form of joke changes over time.

The Joey Alison Sayers Comic for the 2nd uses a blackboard with mathematics — a bit of algebra and a drawing of a sphere — as the designation for genius. That’s all I have to say about this. I remember being set straight about the difference between ponies and horses and it wasn’t by my sister, who’s got a professional interest in the subject.

Mark Pett’s Lucky Cow rerun for the 2nd is a joke about cashiers trying to work out change. As one of the GoComics.com commenters mentions, the probably best way to do this is to count up from the purchase to the amount you have to give change for. That is, work out $12.43 to $12.50 is seven cents, then from $12.50 to $13.00 is fifty more cents (57 cents total), then from $13.00 to $20.00 is seven dollars ($7.57 total) and then from $20 to $50 is thirty dollars ($37.57 total).

It does make me wonder, though: what did Neil enter as the amount tendered, if it wasn’t $50? Maybe he hit “exact change” or whatever the equivalent was. It’s been a long, long time since I worked a cash register job and while I would occasionally type in the wrong amount of money, the kinds of errors I would make would be easy to correct for. (Entering $30 instead of $20 for the tendered amount, that sort of thing.) But the cash register works however Mark Pett decides it works, so who am I to argue?

Keith Robinson’s Making It rerun for the 2nd includes a fair bit of talk about ratios and percentages, and how to inflate percentages. Also about the underpaying of employees by employers.

Mark Anderson’s Andertoons for the 3rd continues the streak of being Mark Anderson Andertoons for this sort of thing. It has the traditional form of the student explaining why the teacher’s wrong to say the answer was wrong.

Brian Fies’s The Last Mechanical Monster for the 4th includes a bit of legitimate physics in the mad scientist’s captioning. Ballistic arcs are about a thing given an initial speed in a particular direction, moving under constant gravity, without any of the complicating problems of the world involved. No air resistance, no curvature of the Earth, level surfaces to land on, and so on. So, if you start from a given height (‘y0‘) and a given speed (‘v’) at a given angle (‘θ’) when the gravity is a given strength (‘g’), how far will you travel? That’s ‘d’. How long will you travel? That’s ‘t’, as worked out here.

(I should maybe explain the story. The mad scientist here is the one from the first, Fleischer Studios, Superman cartoon. In it the mad scientist sends mechanical monsters out to loot the city’s treasures and whatnot. As the cartoon has passed into the public domain, Brian Fies is telling a story of that mad scientist, finally out of jail, salvaging the one remaining usable robot. Here, training the robot to push aside bank tellers has gone awry. Also, the ground in his lair is not level.)

Tom Toles’s Randolph Itch, 2 am rerun for the 4th uses the time-honored tradition of Albert Einstein needing a bit of help for his work.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th uses the time-honored tradition of little bits of physics equations as designation of many deep thoughts. And then it gets into a bit more pure mathematics along the way. It also reflects the time-honored tradition of people who like mathematics and physics supposing that those are the deepest and most important kinds of thoughts to have. But I suppose we all figure the things we do best are the things it’s important to do best. It’s traditional.

And by the way, if you’d like more of these Reading the Comics posts, I put them all in the category ‘Comic Strips’ and I just now learned the theme I use doesn’t show categories for some reason? This is unsettling and unpleasant. Hm.

Reading the Comics, September 29, 2017: Anthropomorphic Mathematics Edition


The rest of last week had more mathematically-themed comic strips than Sunday alone did. As sometimes happens, I noticed an objectively unimportant detail in one of the comics and got to thinking about it. Whether I could solve the equation as posted, or whether at least part of it made sense as a mathematics problem. Well, you’ll see.

Patrick McDonnell’s Mutts for the 25th of September I include because it’s cute and I like when I can feature some comic in these roundups. Maybe there’s some discussion that could be had about what “equals” means in ordinary English versus what it means in mathematics. But I admit that’s a stretch.

Professor Earl's Math Class. (Earl is the dog.) 'One belly rub equals two pats on the head!'
Patrick McDonnell’s Mutts for the 25th of September, 2017. I should be interested in other people’s research on this. My love’s parents’ dogs are the ones I’ve had the most regular contact with the last few years, and the dogs have all been moderately to extremely alarmed by my doing suspicious things, such as existing or being near them or being away from them or reaching a hand to them or leaving a treat on the floor for them. I know this makes me sound worrisome, but my love’s parents are very good about taking care of dogs others would consider just too much trouble.

Olivia Walch’s Imogen Quest for the 25th uses, and describes, the mathematics of a famous probability problem. This is the surprising result of how few people you need to have a 50 percent chance that some pair of people have a birthday in common. It then goes over to some other probability problems. The examples are silly. But the reasoning is sound. And the approach is useful. To find the chance of something happens it’s often easiest to work out the chance it doesn’t. Which is as good as knowing the chance it does, since a thing can either happen or not happen. At least in probability problems, which define “thing” and “happen” so there’s not ambiguity about whether it happened or not.

Piers Baker’s Ollie and Quentin rerun for the 26th I’m pretty sure I’ve written about before, although back before I included pictures of the Comics Kingdom strips. (The strip moved from Comics Kingdom over to GoComics, which I haven’t caught removing old comics from their pages.) Anyway, it plays on a core piece of probability. It sets out the world as things, “events”, that can have one of multiple outcomes, and which must have one of those outcomes. Coin tossing is taken to mean, by default, an event that has exactly two possible outcomes, each equally likely. And that is near enough true for real-world coin tossing. But there is a little gap between “near enough” and “true”.

Rick Stromoski’s Soup To Nutz for the 27th is your standard sort of Dumb Royboy joke, in this case about him not knowing what percentages are. You could do the same joke about fractions, including with the same breakdown of what part of the mathematics geek population ruins it for the remainder.

Nate Fakes’s Break of Day for the 28th is not quite the anthropomorphic-numerals joke for the week. Anthropomorphic mathematics problems, anyway. The intriguing thing to me is that the difficult, calculus, problem looks almost legitimate to me. On the right-hand-side of the first two lines, for example, the calculation goes from

\int -8 e^{-\frac{ln 3}{14} t}

to
-8 -\frac{14}{ln 3} e^{-\frac{ln 3}{14} t}

This is a little sloppy. The first line ought to end in a ‘dt’, and the second ought to have a constant of integration. If you don’t know what these calculus things are let me explain: they’re calculus things. You need to include them to express the work correctly. But if you’re just doing a quick check of something, the mathematical equivalent of a very rough preliminary sketch, it’s common enough to leave that out.

It doesn’t quite parse or mean anything precisely as it is. But it looks like the sort of thing that some context would make meaningful. That there’s repeated appearances of - \frac{ln 3}{14} , or - \frac{14}{ln 3} , particularly makes me wonder if Frakes used a problem he (or a friend) was doing for some reason.

Mark Anderson’s Andertoons for the 29th is a welcome reassurance that something like normality still exists. Something something student blackboard story problem something.

Anthony Blades’s Bewley rerun for the 29th depicts a parent once again too eager to help with arithmetic homework.

Maria Scrivan’s Half Full for the 29th gives me a proper anthropomorphic numerals panel for the week, and none too soon.