I think few will oppose me if I say the best part of March 2020 was that it ended. Let me close out nearly all my March business by getting through the last couple comic strips which mentioned some mathematics topic that month. I’ll still have my readership review, probably to post Friday, and then that finishes my participation in the month at last.

Connie Sun’s Connie to the for the 30th features the title character trying to explain what “exponential growth” is. She struggles. Appropriately, as it’s something we see very rarely in ordinary life.

They turn up in mathematics all the time. And mathematical physics, and such. Any process with a rate of change that’s proportional to the current amount of the thing tends to be exponential. This whether growing or decaying. Even circular motion, periodic motion, can be understood as exponential growth with imaginary numbers. So anyone doing mathematics gets trained to see, and expect, exponentials. They have great analytic properties, too. You can use them to solve differential equations. And differential equations are so much of science that it’s easy to forget they’re not.

In ordinary life, though? Well, yes, a lot of quantities will change at rates which depend on their current quantity. But in anything that’s been around a while, the quantity will usually be at, or near enough, an equilibrium. Some kind of balance. It may move away from that balance, but usually, it’ll move back towards it. (I am skipping some complicating factors. Don’t worry about them.) A mathematician will see the hidden exponentials in this. But to anyone else? The thing may start growing, but then it peters out and slows to a stop. Or it might collapse, but that change also peters out. Maybe it’ll hit a new equilibrium; maybe it’ll go back to the old. We rarely see something changing without the sorts of limits that tamp the change back down.

Even the growth of infection rates for Covid-19 will not stay exponential forever, even if there were no public health measures responding to it. There can’t be more people infected than there are people in the world. At some point, the curve representing number of infected people versus time would stop growing more and more, and would level out, from a pattern called the logistic equation. But the early stages of this are almost indistinguishable from exponential growth.

Samson’s Dark Side of the Horse for the 29th is a comforting counting-sheep joke, with half-sized sheep counted as fractions of a whole sheep. Comforting little bit of business here.

Sam Hurts’s Eyebeam for the 30th describes one version of Zeno’s most famous paradox, and applies it to an event that already seems endless.

Todd Clark’s Lola for the 30th has a student asking what the end of mathematics is. And learning how after algebra comes geometry, trigonometry, calculus, topology, and more. All fair enough, though I’m surprised to see it put for that that of course someone who does enough mathematics will do topology. (I only have a casual brush with it myself, mostly in service to other topics.) But it’s nice to have it acknowledged that, if you want, you can go on learning new mathematics fields, practically without limit.

Ashleigh Brilliant’s Pot-Shots for the 30th just declares infinity to be a favorite number. Is it a number? … We have to be careful what exactly we mean by number. Allow that we are careful, though. It’s certainly at least number-adjacent.

John Zakour and Scott Roberts’s Maria’s Day for the 31st has Maria hoping to get out of new schoolwork. So she gets a review of fractions instead. Typical.

There were some more mathematically-themed comic strips last week. I’ll get to them in an essay at this link, sometime soon. Thanks for reading.

## Reading the Comics, March 20, 2020: Running from the Quiz Edition

I’m going to again start the week with the comics that casually mentioned mathematics. Later in the week I’ll have ones that open up discussion topics. I just don’t want you to miss a comic where a kid doesn’t want to do a story problem.

John Graziano’s Ripley’s Believe It or Not for the 15th mentions the Swiss mint issuing a tiny commemorative coin of Albert Einstein. I mention just because Einstein is such a good icon for mathematical physics.

Ashleigh Brilliant’s Pot-Shots for the 16th has some wordplay about multiplication and division. I’m not sure it has any real mathematical content besides arithmetic uniting multiplication and division, though.

Mark Pett’s Mr Lowe rerun for the 17th has the students bored during arithmetic class. Fractions; of course it would be fractions.

Justin Boyd’s Invisible Bread for the 18th> has an exhausted student making the calculation of they’ll do better enough after a good night’s sleep to accept a late penalty. This is always a difficult calculation to make, since you make it when your thinking is clouded by fatigue. But: there is no problem you have which sleep deprivation makes better. Put sleep first. Budget the rest of your day around that. Take it from one who knows and regrets a lot of nights cheated of rest. (This seems to be the first time I’ve mentioned Invisible Bread around here. Given the strip’s subject matter that’s a surprise, but only a small one.)

John Deering’s Strange Brew for the 18th is an anthropomorphic-objects strip, featuring talk about mathematics phobia.

One of Gary Larson’s The Far Side reruns for the 19th is set in a mathematics department, and features writing a nasty note “in mathematics”. There are many mathematical jokes, some of them written as equations. A mathematician will recognize them pretty well. None have the connotation of, oh, “Kick Me” or something else that would belong as a prank sign like that. Or at least nobody’s told me about them.

Tauhid Bondia’s Crabgrass for the 20th sees Kevin trying to find luck ahead of the mathematics quiz.

Bob Weber Jr and Jay Stephens’s Oh, Brother! for the 20th similarly sees Bud fearing a mathematics test.

Thanks for reading. And, also, please remember that I’m hosting the Playful Math Education Blog Carnival later this month. Please share with me any mathematics stuff you’ve run across that teaches or entertains or more.

## Reading the Comics, March 26, 2019: March 26, 2019 Edition

And we had another of those peculiar days where a lot of strips are on-topic enough for me to talk about.

Eric the Circle, this one by Kyle, for the 26th has a bit of mathematical physics in it. This is the kind of diagram you’ll see all the time, at least if you do the mathematics that tells you where things will be and when. The particular example is an easy problem, a thing rolling down an inclined plane. But the work done for it applies to more complicated problems. The question it’s for is, “what happens when this thing slides down the plane?” And that depends on the forces at work. There’s gravity, certainly . If there were something else it’d be labelled. Gravity’s represented with that arrow pointing straight down. That gives us the direction. The label (Eric)(g) gives us how strong this force is.

Where the diagram gets interesting, and useful, are those dashed lines ending in arrows. One of those lines is, or at least means to be, parallel to the incline. The other is perpendicular to it. These both reflect gravity. We can represent the force of gravity as a vector. That means, we can represent the force of gravity as the sum of vectors. This is like how we can can write “8” or we can write “3 + 5”, depending on what’s more useful for what we’re doing. (For example, if you wanted to work out “67 + 8”, you might be better off doing “67 + 3 + 5”.) The vector parallel to the plane and the one perpendicular to the plane add up to the original gravity vector.

The force that’s parallel to the plane is the only force that’ll actually accelerate Eric. The force perpendicular to the plane just … keeps it snug against the plane. (Well, it can produce friction. We try not to deal with that in introductory physics because it is so hard. At most we might look at whether there’s enough friction to keep Eric from starting to slide downhill.) The magnitude of the force parallel to the plane, and perpendicular to the plane, are easy enough to work out. These two forces and the original gravity can be put together into a little right triangle. It’s the same shape but different size to the right triangle made by the inclined plane plus a horizontal and a vertical axis. So that’s how the diagram knows the parallel force is the original gravity times the sine of x. And that the perpendicular force is the original gravity times the cosine of x.

The perpendicular force is often called the “normal” force. This because mathematical physicists noticed we had only 2,038 other, unrelated, things called “normal”.

Rick Detorie’s One Big Happy for the 26th sees Ruthie demand to know who this Venn person was. Fair question. Mathematics often gets presented as these things that just are. That someone first thought about these things gets forgotten.

John Venn, who lived from 1834 to 1923 — he died the 4th of April, it happens — was an English mathematician and philosopher and logician and (Anglican) priest. This is not a rare combination of professions. From 1862 he was a lecturer in Moral Science at Cambridge. This included work in logic, yes. But he also worked on probability questions. Wikipedia credits his 1866 Logic Of Chance with advancing the frequentist interpretation of probability. This is one of the major schools of thought about what the “probability of an event” is. It’s the one where you list all the things that could possibly happen, and consider how many of those are the thing you’re interested in. So, when you do a problem like “what’s the probability of rolling two six-sided dice and getting a total of four”? You’re doing a frequentist probability problem.

Venn Diagrams he presented to the world around 1880. These show the relationships between different sets. And the relationships of mathematical logic problems they represent. Venn, if my sources aren’t fibbing, didn’t take these diagrams to be a new invention of his own. He wrote of them as “Euler diagrams”. Venn diagrams, properly, need to show all the possible intersections of all the sets in play. You just mark in some way the intersections that happen to have nothing in them. Euler diagrams don’t require this overlapping. The name “Venn diagram” got attached to these pictures in the early 20th century. Euler here is Leonhard Euler, who created every symbol and notation mathematicians use for everything, and who has a different “Euler’s Theorem” that’s foundational to every field of mathematics, including the ones we don’t yet know exist. I exaggerate by 0.04 percent here.

Although we always start Venn diagrams off with circles, they don’t have to be. Circles are good shapes if you have two or three sets. It gets hard to represent all the possible intersections with four circles, though. This is when you start seeing weirder shapes. Wikipedia offers some pictures of Venn diagrams for four, five, and six sets. Meanwhile Mathworld has illustrations for seven- and eleven-set Venn diagrams. At this point, the diagrams are more for aesthetic value than to clarify anything, though. You could draw them with squares. Some people already do. Euler diagrams, particularly, are often squares, sometimes with rounded corners.

Venn had his other projects, too. His biography at St Andrews writes of his composing The Biographical History of Gonville and Caius College (Cambridge). And then he had another history of the whole Cambridge University. It also mentions his skills in building machines, though only cites one, a device for bowling cricket balls. The St Andrews biography says that in 1909 “Venn’s machine clean bowled one of [the Australian Cricket Team’s] top stars four times”. I do not know precisely what it means but I infer it to be a pretty good showing for the machine. His Wikipedia biography calls him a “passionate gardener”. Apparently the Cambridgeshire Horticultural Society awarded him prizes for his roses in July 1885 and for white carrots in September that year. And that he was a supporter of votes for women.

Ashleigh Brilliant’s Pot-Shots for the 26th makes a cute and true claim about percentiles. That a person will usually be in the upper 99% of whatever’s being measured? Hard to dispute. But, measure enough things and eventually you’ll fall out of at least one of them. How many things? This is easy to calculate if we look at different things that are independent of each other. In that case we could look at 69 things before there we’d expect a 50% chance of at least one not being in the upper 99%.

It’s getting that independence that’s hard. There’s often links between things. For example, a person’s height does not tell us much about their weight. But it does tell us something. A person six foot, ten inches tall is almost certainly not also 35 pounds, even though a person could be that size or could be that weight. A person’s scores on a reading comprehension test and their income? But test-taking results and wealth are certainly tied together. Age and income? Most of us have a bigger income at 46 than at 6. This is part of what makes studying populations so hard.

T Shepherd’s Snow Sez for the 26th is finally a strip I can talk about briefly, for a change. Snow does a bit of arithmetic wordplay, toying with what an expression like “1 + 1” might represent.

There were a lot of mathematically-themed comic strips last week. There’ll be another essay soon, and it should appear at this link. And then there’s always Sunday, as long as I stay ahead of deadline. I am never ahead of deadline.

## Reading the Comics, October 24, 2018: Frazz Really Wants To Be My Friend Edition

It’s another week with several on-topic installments of Frazz. Again, Jef Mallet, you and I live in the same metro area. Wave to me at the farmer’s market or something. I’m kind of able to talk to people in real life, if I can keep in view three different paths to escape and know two bathrooms to hide in. Horrock’s is great for that.

Jef Mallet’s Frazz for the 22nd is a bit of wordplay. It’s built on the association between “negative” and “wrong”. And the confusing fact that multiplying a negative number by a negative number results in a positive number. It sounds like a trick. Still, negative numbers are tricky. The name connotes something that’s gone a bit wrong. It took time to understand what they were and how they should work. This weird multiplication rule follows from that. If we don’t suppose this to be true, then we break other ideas we have about multiplication and comparative sizes and such. Mathematicians needed to get comfortable with negative numbers. For a long time, for example, mathematicians would treat $x^2 - 4x + 4 = 0$ and $x^4 + 4x + 4 = 0$ as different kinds of polynomials to solve. Today we see a -4 as no harder than a +4, now that we’re good at multiplying it out. And I have read, but have not seen explained, that there was uncertainty among the philosophers of mathematics about whether we should consider negative numbers, as a group, to be greater than or less than positive numbers. (I have reasons for thinking this a mighty interesting speculation.) There’s reasons to doubt them, is what I have to say.

Bob Weber Jr and Jay Stephens’s Oh Brother for the 22nd reminds me of my childhood. At some point I was pairing up the counting numbers and the letters of the alphabet, and realized that the alphabet ended while the numbers did not. Something about that offended my young sense of justice. I’m not sure how, anymore. But that it was always possible to find a bigger number than whatever you thought was the biggest caught my imagination.

There is, surely, a largest finite number that anybody will ever use for something, even if it’s just hyperbole. I’m curious what it will be. Surely we can’t have already used it. A number named Skewes’s Number was famous, for a while, as the largest number actually used in a proof of something. The fame came from Isaac Asimov writing an essay about the number, and why someone might care, and how hard it is just describing how big the number is in a comprehensible way. Wikipedia tells me this number’s far been exceeded by, among other things, something called Rayo’s Number. It’s “the smallest number bigger than any finite number named by an expression in the language of set theory with a googol symbols or less” (plus some technical points to keep you from cheating). Which, all right, but I’d like to know if we think the first digit is a 1, maybe a 2? Somehow I don’t demand that of Skewes, perhaps because I read that Asimov essay when I was at an impressionable age.

Jef Mallet’s Frazz for the 23rd has Caulfield talk about a fraction divided by a fraction. And particularly he says “a fraction divided by a fraction is just a fraction times a flipped fraction”. This offends me, somehow. This even though that is how I’d calculate the value of the division, if I needed to know that. But it seems to me like automatically going to that process skips recognizing that, say, $\frac{2}{5} \div \frac{1}{10}$ shouldn’t be surprising if it turns out not to be a fraction. Well, Caulfield’s just looking to cause trouble with a string of wordplay. I can think of how to divide a fraction by a fraction and get zero.

Ashleigh Brilliant’s Pot-Shots for the 23rd promises to recapitulate the whole history of mathematics in a single panel. Ambitious bit of work. It’s easy to picture going from the idea of 1 to any of the positive whole numbers, though. It’s so easy it doesn’t even need humans to do it; animals can count, at least a bit. We just carry on to a greater extent than the crows or the raccoons do, so far as we’ve heard. From those, it takes some squinting, but you can think of negative whole numbers. And from that you get zero pretty quickly. You can also get rational numbers. The western mathematical tradition did this by looking at … er … ratios, that something might be to another thing as two is to five. Circumlocutions like that. Getting to irrational numbers is harder. Can be harder. Some irrational numbers beg you to notice them: the square root of two, for example. Square root of three. Numbers that come up from solving polynomial equations. But there are more number than those. Many more numbers. You might suspect the existence of a transcendental number, that isn’t the root of any polynomial that’s decently behaved. But finding one? Or finding that there are more transcendental number than there are real numbers? This takes a certain brilliance to suspect, and to prove out. But we can get there with rational numbers — which we get to from collections of ones — and the idea of cutting sets of numbers into those smaller than and those bigger than something. Ashleigh Brilliant has more truth than, perhaps, he realized when he drew this panel.

Niklas Eriksson’s Carpe Diem for the 24th has goldfish work out the shape of space. A goldfish in this case has the advantage of being able to go nearly everywhere in the space. But working out what the universe must look like, when you can only run local experiments, is a great geometric problem. It’s akin to working out that the Earth must be a sphere, and about how big a sphere, from the surveying job one can do without travelling more than a few hundred kilometers.

If you’re interested in reading the comics, you might want to see Reading the Comics posts. They’re here. More essays mentioning Frazz should be at this link. Essays that discuss ideas brought up by Oh Brother! should be this link. Essays which talk about Frazz — wait. I said that. This and other appearances by Pot Shots should be at this link. And posts which feature Carpe Diem should be at link. Do please stick around for more of my Fall 2018 Mathematics A-To-Z, too. I’m trying to keep up at two essays a week through the end of the year, which is not precisely fall.

It was another busy week in mathematically-themed comic strips last week. Busy enough I’m comfortable rating some as too minor to include. So it’s another week where I post two of these Reading the Comics roundups, which is fine, as I’m still recuperating from the Summer 2017 A To Z project. This first half of the week includes a lot of rerun comics, and you’ll see why my choice of title makes sense.

Lincoln Pierce’s Big Nate: First Class for the 1st of October reprints the strip from the 2nd of October, 1993. It’s got a well-formed story problem that, in the time-honored tradition of this setup, is subverted. I admit I kind of miss the days when exams would have problems typed out in monospace like this.

Ashleigh Brilliant’s Pot-Shots for the 1st is a rerun from sometime in 1975. And it’s an example of the time-honored tradition of specifying how many statistics are made up. Here it comes in at 43 percent of statistics being “totally worthless” and I’m curious how the number attached to this form of joke changes over time.

The Joey Alison Sayers Comic for the 2nd uses a blackboard with mathematics — a bit of algebra and a drawing of a sphere — as the designation for genius. That’s all I have to say about this. I remember being set straight about the difference between ponies and horses and it wasn’t by my sister, who’s got a professional interest in the subject.

Mark Pett’s Lucky Cow rerun for the 2nd is a joke about cashiers trying to work out change. As one of the GoComics.com commenters mentions, the probably best way to do this is to count up from the purchase to the amount you have to give change for. That is, work out $12.43 to$12.50 is seven cents, then from $12.50 to$13.00 is fifty more cents (57 cents total), then from $13.00 to$20.00 is seven dollars ($7.57 total) and then from$20 to $50 is thirty dollars ($37.57 total).

It does make me wonder, though: what did Neil enter as the amount tendered, if it wasn’t $50? Maybe he hit “exact change” or whatever the equivalent was. It’s been a long, long time since I worked a cash register job and while I would occasionally type in the wrong amount of money, the kinds of errors I would make would be easy to correct for. (Entering$30 instead of \$20 for the tendered amount, that sort of thing.) But the cash register works however Mark Pett decides it works, so who am I to argue?

Keith Robinson’s Making It rerun for the 2nd includes a fair bit of talk about ratios and percentages, and how to inflate percentages. Also about the underpaying of employees by employers.

Mark Anderson’s Andertoons for the 3rd continues the streak of being Mark Anderson Andertoons for this sort of thing. It has the traditional form of the student explaining why the teacher’s wrong to say the answer was wrong.

Brian Fies’s The Last Mechanical Monster for the 4th includes a bit of legitimate physics in the mad scientist’s captioning. Ballistic arcs are about a thing given an initial speed in a particular direction, moving under constant gravity, without any of the complicating problems of the world involved. No air resistance, no curvature of the Earth, level surfaces to land on, and so on. So, if you start from a given height (‘y0‘) and a given speed (‘v’) at a given angle (‘θ’) when the gravity is a given strength (‘g’), how far will you travel? That’s ‘d’. How long will you travel? That’s ‘t’, as worked out here.

(I should maybe explain the story. The mad scientist here is the one from the first, Fleischer Studios, Superman cartoon. In it the mad scientist sends mechanical monsters out to loot the city’s treasures and whatnot. As the cartoon has passed into the public domain, Brian Fies is telling a story of that mad scientist, finally out of jail, salvaging the one remaining usable robot. Here, training the robot to push aside bank tellers has gone awry. Also, the ground in his lair is not level.)

Tom Toles’s Randolph Itch, 2 am rerun for the 4th uses the time-honored tradition of Albert Einstein needing a bit of help for his work.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th uses the time-honored tradition of little bits of physics equations as designation of many deep thoughts. And then it gets into a bit more pure mathematics along the way. It also reflects the time-honored tradition of people who like mathematics and physics supposing that those are the deepest and most important kinds of thoughts to have. But I suppose we all figure the things we do best are the things it’s important to do best. It’s traditional.

And by the way, if you’d like more of these Reading the Comics posts, I put them all in the category ‘Comic Strips’ and I just now learned the theme I use doesn’t show categories for some reason? This is unsettling and unpleasant. Hm.

## Reading the Comics, July 8, 2017: Mostly Just Pointing Edition

Won’t lie: I was hoping for a busy week. While Comic Strip Master Command did send a healthy number of mathematically-themed comic strips, I can’t say they were a particularly deep set. Most of what I have to say is that here’s a comic strip that mentions mathematics. Well, you’re reading me for that, aren’t you? Maybe. Tell me if you’re not. I’m curious.

Richard Thompson’s Cul de Sac rerun for the 2nd of July is the anthropomorphic numerals joke for the week. And a great one, as I’d expect of Thompson, since it also turns into a little bit about how to create characters.

Ralph Dunagin and Dana Summers’s Middletons for the 2nd uses mathematics as the example of the course a kid might do lousy in. You never see this for Social Studies classes, do you?

Mark Tatulli’s Heart of the City for the 3rd made the most overtly mathematical joke for most of the week at Math Camp. The strip hasn’t got to anything really annoying yet; it’s mostly been average summer-camp jokes. I admit I’ve been distracted trying to figure out if the minor characters are Tatulli redrawing Peanuts characters in his style. I mean, doesn’t Dana (the freckled girl in the third panel, here) look at least a bit like Peppermint Patty? I’ve also seen a Possible Marcie and a Possible Shermy, who’s the Peanuts character people draw when they want an obscure Peanuts character who isn’t 5. (5 is the Boba Fett of the Peanuts character set: an extremely minor one-joke character used for a week in 1963 but who appeared very occasionally in the background until 1983. You can identify him by the ‘5’ on his shirt. He and his sisters 3 and 4 are the ones doing the weird head-sideways dance in A Charlie Brown Christmas.)

Mark Pett’s Lucky Cow rerun for the 4th is another use of mathematics, here algebra, as a default sort of homework assignment.

Brant Parker and Johnny Hart’s Wizard of Id Classics for the 4th reruns the Wizard of Id for the 7th of July, 1967. It’s your typical calculation-error problem, this about the forecasting of eclipses. I admit the forecasting of eclipses is one of those bits of mathematics I’ve never understood, but I’ve never tried to understand either. I’ve just taken for granted that the Moon’s movements are too much tedious work to really enlighten me and maybe I should reevaluate that. Understanding when the Moon or the Sun could be expected to disappear was a major concern for people doing mathematics for centuries.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 5th is a Special Relativity joke, which is plenty of mathematical content for me. I warned you it was a week of not particularly deep discussions.

Ashleigh Brilliant’s Pot-Shots rerun for the 5th is a cute little metric system joke. And I’m going to go ahead and pretend that’s enough mathematical content. I’ve come to quite like Brilliant’s cheerfully despairing tone.

Jason Chatfield’s Ginger Meggs for the 7th mentions fractions, so you can see how loose the standards get around here when the week is slow enough.

John Rose’s Barney Google and Snuffy Smith for the 8th finally gives me a graphic to include this week. It’s about the joke you would expect from the topic of probability being mentioned. And, as might be expected, the comic strip doesn’t precisely accurately describe the state of the law. Any human endeavour has to deal with probabilities. They give us the ability to have reasonable certainty about the confusing and ambiguous information the world presents.

Vic Lee’s Pardon My Planet for the 8th is another Albert Einstein mention. The bundle of symbols don’t mean much of anything, at least not as they’re presented, but of course superstar equation E = mc2 turns up. It could hardly not.

## Reading the Comics, January 7, 2016: Just Before GoComics Breaks Everything Edition

Most of the comics I review here are printed on GoComics.com. Well, most of the comics I read online are from there. But even so I think they have more comic strips that mention mathematical themes. Anyway, they’re unleashing a complete web site redesign on Monday. I don’t know just what the final version will look like. I know that the beta versions included the incredibly useful, that is to say dumb, feature where if a particular comic you do read doesn’t have an update for the day — and many of them don’t, as they’re weekly or three-times-a-week or so — then it’ll show some other comic in its place. I mean, the idea of encouraging people to find new comics is a good one. To some extent that’s what I do here. But the beta made no distinction between “comic you don’t read because you never heard of Microcosm” and “comic you don’t read because glancing at it makes your eyes bleed”. And on an idiosyncratic note, I read a lot of comics. I don’t need to see Dude and Dude reruns in fourteen spots on my daily comics page, even if I didn’t mind it to start.

Anyway. I am hoping, desperately hoping, that with the new site all my old links to comics are going to keep working. If they don’t then I suppose I’m just ruined. We’ll see. My suggestion is if you’re at all curious about the comics you read them today (Sunday) just to be safe.

Ashleigh Brilliant’s Pot-Shots is a curious little strip I never knew of until GoComics picked it up a few years ago. Its format is compellingly simple: a little illustration alongside a wry, often despairing, caption. I love it, but I also understand why was the subject of endless queries to the Detroit Free Press (Or Whatever) about why was this thing taking up newspaper space. The strip rerun the 31st of December is a typical example of the strip and amuses me at least. And it uses arithmetic as the way to communicate reasoning, both good and bad. Brilliant’s joke does address something that logicians have to face, too. Whether an argument is logically valid depends entirely on its structure. If the form is correct the reasoning may be excellent. But to be sound an argument has to be correct and must also have its assumptions be true. We can separate whether an argument is right from whether it could ever possibly be right. If you don’t see the value in that, you have never participated in an online debate about where James T Kirk was born and whether Spock was the first Vulcan in Star Fleet.

Thom Bluemel’s Birdbrains for the 2nd of January, 2017, is a loaded-dice joke. Is this truly mathematics? Statistics, at least? Close enough for the start of the year, I suppose. Working out whether a die is loaded is one of the things any gambler would like to know, and that mathematicians might be called upon to identify or exploit. (I had a grandmother unshakably convinced that I would have some natural ability to beat the Atlantic City casinos if she could only sneak the underaged me in. I doubt I could do anything of value there besides see the stage magic show.)

Jack Pullan’s Boomerangs rerun for the 2nd is built on the one bit of statistical mechanics that everybody knows, that something or other about entropy always increasing. It’s not a quantum mechanics rule, but it’s a natural confusion. Quantum mechanics has the reputation as the source of all the most solid, irrefutable laws of the universe’s working. Statistical mechanics and thermodynamics have this musty odor of 19th-century steam engines, no matter how much there is to learn from there. Anyway, the collapse of systems into disorder is not an irrevocable thing. It takes only energy or luck to overcome disorderliness. And in many cases we can substitute time for luck.

Scott Hilburn’s The Argyle Sweater for the 3rd is the anthropomorphic-geometry-figure joke that’s I’ve been waiting for. I had thought Hilburn did this all the time, although a quick review of Reading the Comics posts suggests he’s been more about anthropomorphic numerals the past year. This is why I log even the boring strips: you never know when I’ll need to check the last time Scott Hilburn used “acute” to mean “cute” in reference to triangles.

Mike Thompson’s Grand Avenue uses some arithmetic as the visual cue for “any old kind of schoolwork, really”. Steve Breen’s name seems to have gone entirely from the comic strip. On Usenet group rec.arts.comics.strips Brian Henke found that Breen’s name hasn’t actually been on the comic strip since May, and D D Degg found a July 2014 interview indicating Thompson had mostly taken the strip over from originator Breen.

Mark Anderson’s Andertoons for the 5th is another name-drop that doesn’t have any real mathematics content. But come on, we’re talking Andertoons here. If I skipped it the world might end or something untoward like that.

Ted Shearer’s Quincy for the 14th of November, 1977, doesn’t have any mathematical content really. Just a mention. But I need some kind of visual appeal for this essay and Shearer is usually good for that.

Corey Pandolph, Phil Frank, and Joe Troise’s The Elderberries rerun for the 7th is also a very marginal mention. But, what the heck, it’s got some of your standard wordplay about angles and it’ll get this week’s essay that much closer to 800 words.