Reading the Comics, August 5, 2017: Lazy Summer Week Edition

It wasn’t like the week wasn’t busy. Comic Strip Master Command sent out as many mathematically-themed comics as I might be able to use. But they were again ones that don’t leave me much to talk about. I’ll try anyway. It was looking like an anthropomorphic-symboles sort of week, too.

Tom Thaves’s Frank and Ernest for the 30th of July is an anthropomorphic-symbols joke. The tick marks used for counting make an appearance and isn’t that enough? Maybe.

Dan Thompson’s Brevity for the 31st is another entry in the anthropomorphic-symbols joke contest. This one sticks to mathematical symbols, so if the Frank and Ernest makes the cut this week so must this one.

Eric the Circle for the 31st, this installment by “T daug”, gives the slightly anthropomorphic geometric figure a joke that at least mentions a radius, and isn’t that enough? What catches my imagination about this panel particularly is that the “fractured radius” is not just a legitimate pun but also resembles a legitimate geometry drawing. Drawing a diameter line is sensible enough. Drawing some other point on the circle and connecting that to the ends of the diameter is also something we might do.

Scott Hilburn’s The Argyle Sweater for the 1st of August is one of the logical mathematics jokes you could make about snakes. The more canonical one runs like this: God in the Garden of Eden makes all the animals and bids them to be fruitful. And God inspects them all and finds rabbits and doves and oxen and fish and fowl all growing in number. All but a pair of snakes. God asks why they haven’t bred and they say they can’t, not without help. What help? They need some thick tree branches chopped down. The bemused God grants them this. God checks back in some time later and finds an abundance of baby snakes in the Garden. But why the delay? “We’re adders,” explain the snakes, “so we need logs to multiply”. This joke absolutely killed them in the mathematics library up to about 1978. I’m told.

John Deering’s Strange Brew for the 1st is a monkeys-at-typewriters joke. It faintly reminds me that I might have pledged to retire mentions of the monkeys-at-typewriters joke. But I don’t remember so I’ll just have to depend on saying I don’t think I retired the monkeys-at-typewriters jokes and trust that someone will tell me if I’m wrong.

Dana Simpson’s Ozy and Millie rerun for the 2nd name-drops multiplication tables as the sort of thing a nerd child wants to know. They may have fit the available word balloon space better than “know how to diagram sentences” would.

Mark Anderson’s Andertoons for the 3rd is the reassuringly normal appearance of Andertoons for this week. It is a geometry class joke about rays, line segments with one point where there’s an end and … a direction where it just doesn’t. And it riffs on the notion of the existence of mathematical things. At least I can see it that way.

Dad: 'How many library books have you read this summer, Hammie?' Hammie: 'About 47.' Zoe: 'HA!' Dad: 'Hammie ... ' Hammie: 'Okay ... two.' Dad: 'Then why did you say 47?' Hammie: 'I was rounding up.' Zoe: 'NOW he understands math!'
Rick Kirkman and Jerry Scott’s Baby Blues for the 5th of August, 2017. Hammie totally blew it by saying “about forty-seven”. Too specific a number to be a plausible lie. “About forty” or “About fifty”, something you can see as the result of rounding off, yes. He needs to know there are rules about how to cheat.

Rick Kirkman and Jerry Scott’s Baby Blues for the 5th is a rounding-up joke that isn’t about herds of 198 cattle.

Stephen Bentley’s Herb and Jamaal for the 5th tosses off a mention of the New Math as something well out of fashion. There are fashions in mathematics, as in all human endeavors. It startles many to learn this.


Reading the Comics, June 24, 2017: Saturday Morning Breakfast Cereal Edition

Somehow this is not the title of every Reading The Comics review! But it is for this post and we’ll explore why below.

Piers Baker’s Ollie and Quentin for the 18th is a Zeno’s Paradox-based joke. This uses the most familiar of Zeno’s Paradoxes, about the problem of covering any distance needing infinitely many steps to be done in a finite time. Zeno’s Paradoxes are often dismissed these days (probably were then, too), on the grounds that the Ancient Greeks Just Didn’t Understand about convergence. Hardly; they were as smart as we were. Zeno had a set of paradoxes, built on the questions of whether space and time are infinitely divisible or whether they’re not. Any answer to one paradox implies problems in others. There’s things we still don’t really understand about infinity and infinitesimals and continuity. Someday I should do a proper essay about them.

Dave Coverly’s Speed Bump for the 18th is not exactly an anthropomorphic-numerals joke. It is about making symbols manifest in the real world, at least. The greater-than and less-than signs as we know them were created by the English mathematician Thomas Harriot, and introduced to the world in his posthumous Artis Analyticae Praxis (1631). He also had an idea of putting a . between the numerals of an expression and the letters multiplied by them, for example, “4.x” to mean four times x. We mostly do without that now, taking multiplication as assumed if two meaningful quantities are put next to one another. But we will use, now, a vertically-centered dot to separate terms multiplied together when that helps our organization. The equals sign we trace to the 16th century mathematician Robert Recorde, whose 1557 Whetsone of Witte uses long but recognizable equals signs. The = sign went into hibernation after that, though, until the 17th century and it took some time to quite get well-used. So it often is with symbols.

Mr Tanner: 'Today we'll talk about where numbers come from. Take zero, for instance ... Quincy, do you know who invented the zero?' Quincy: 'I'm not sure, Mr Tanner, but from the grades I get it must have been one of my teachers.'
Ted Shearer’s Quincy for the 25th of April, 1978 and rerun the 19th of June, 2017. The question does make me wonder how far Mr Tanner was going to go with this. The origins of zero and one are great stuff for class discussion. Two, also. But what about three? Five? Ten? Twelve? Minus one? Irrational numbers, if the class has got up to them? How many students are going to be called on to talk about number origins? And how many truly different stories are there?

Ted Shearer’s Quincy for the 25th of April, 1978 and rerun the 19th of June, starts from the history of zero. It’s worth noting there are a couple of threads woven together in the concept of zero. One is the idea of “nothing”, which we’ve had just forever. I mean, the idea that there isn’t something to work with. Another is the idea of the … well, the additive identity, there being some number that’s one less than one and two less than two. That you can add to anything without changing the thing. And then there’s symbols. There’s the placeholder for “there are no examples of this quantity here”. There’s the denotation of … well, the additive identity. All these things are zeroes, and if you listen closely, they are not quite the same thing. Which is not weird. Most words mean a collection of several concepts. We’re lucky the concepts we mean by “zero” are so compatible in meaning. Think of the poor person trying to understand the word “bear”, or “cleave”.

John Deering’s Strange Brew for the 19th is a “New Math” joke, fittingly done with cavemen. Well, numerals were new things once. Amusing to me is that — while I’m not an expert — in quite a few cultures the symbol for “one” was pretty much the same thing, a single slash mark. It’s hard not to suppose that numbers started out with simple tallies, and the first thing to tally might get dressed up a bit with serifs or such but is, at heart, the same thing you’d get jabbing a sharp thing into a soft rock.

Guy Gilchrist’s Today’s Dogg for the 19th I’m sure is a rerun and I think I’ve featured it here before. So be it. It’s silly symbol-play and dog arithmetic. It’s a comic strip about how dogs are cute; embrace it or skip it.

Zach Weinersmith’s Saturday Morning Breakfast Cereal is properly speaking reruns when it appears on For whatever reason Weinersmith ran a patch of mathematics strips there this past week. So let me bundle all that up. On the 19th he did a joke mathematicians get a lot, about how the only small talk anyone has about mathematics is how they hated mathematics. I’m not sure mathematicians have it any better than any other teachers, though. Have you ever known someone to say, “My high school gym class gave me a greater appreciation of the world”? Or talk about how grade school history opened their eyes to the wonders of the subject? It’s a sad thing. But there are a lot of things keeping teachers from making students feel joy in their subjects.

For the 21st Weinersmith makes a statisticians joke. I can wrangle some actual mathematics out of an otherwise correctly-formed joke. How do we ever know that something is true? Well, we gather evidence. But how do we know the evidence is relevant? Even if the evidence is relevant, how do we know we’ve interpreted it correctly? Even if we have interpreted it correctly, how do we know that it shows what we want to know? Statisticians become very familiar with hypothesis testing, which amounts to the question, “does this evidence indicate that some condition is implausibly unlikely”? And they can do great work with that. But “implausibly unlikely” is not the same thing as “false”. A person knowledgeable enough and honest turns out to have few things that can be said for certain.

The June 23rd strip I’ve seen go around Mathematics Twitter several times, as see above tweet, about the ways in which mathematical literacy would destroy modern society. It’s a cute and flattering portrait of mathematics’ power, probably why mathematicians like passing it back and forth. But … well, how would “logic” keep people from being fooled by scams? What makes a scam work is that the premise seems logical. And real-world problems — as opposed to logic-class problems — are rarely completely resolvable by deductive logic. There have to be the assumptions, the logical gaps, and the room for humbuggery that allow hoaxes and scams to slip through. And does anyone need a logic class to not “buy products that do nothing”? And what is “nothing”? I have more keychains than I have keys to chain, even if we allow for emergencies and reasonable unexpected extra needs. This doesn’t stop my buying keychains as souvenirs. Does a Penn Central-logo keychain “do nothing” merely because it sits on the windowsill rather than hold any sort of key? If so, was my love foolish to buy it as a present? Granted that buying a lottery ticket is a foolish use of money; is my life any worse for buying that than, say, a peanut butter cup that I won’t remember having eaten a week afterwards? As for credit cards — It’s not clear to me that people max out their credit cards because they don’t understand they will have to pay it back with interest. My experience has been people max out their credit cards because they have things they must pay for and no alternative but going further into debt. That people need more money is a problem of society, yes, but it’s not clear to me that a failure to understand differential equations is at the heart of it. (Also, really, differential equations are overkill to understand credit card debt. A calculator with a repeat-the-last-operation feature and ten minutes to play is enough.)

Reading the Comics, April 22, 2017: Thought There’d Be Some More Last Week Edition

Allison Barrows’s PreTeena rerun for the 18th is a classic syllogism put into the comic strip’s terms. The thing about these sorts of deductive-logic syllogisms is that whether the argument is valid depends only on the shape of the argument. It has nothing to do with whether the thing being discussed makes any sense. This can be disorienting. It’s hard to ignore the everyday meaning of words when you hear a string of sentences. But it’s also hard to parse a string of sentences if the words don’t make sense in them. This is probably part of why on the mathematics side of things logic courses will skimp on syllogisms, using them to give an antique flavor and sense of style to the introduction of courses. It’s easier to use symbolic representations for logic instead.

Randy Glasbergen’s Glasbergen Cartoons rerun for the 20th is the old joke about arithmetic being different between school, government, and corporate work. I haven’t looked at the comments — the GoComics redesign, whatever else it does, makes it very easy to skip the comments — but I’m guessing by the second one someone’s said the Common Core method means getting the most wrong answer.

Dolly, coming home: 'Rithmetic would be a lot easier if it didn't have all those different numbers.'
Bil Keane and Jeff Keane’s Family Circus for the 21st of April, 2017. In fairness, there aren’t a lot of things we need all of 6, 7, and 8 for and you can just use whatever one of those you’re good at for any calculations with the others. Promise.

Bil Keane and Jeff Keane’s Family Circus for the 21st I don’t know is a rerun. But a lot of them are these days. Anyway, it looks like a silly joke about how nice mathematics would be without numbers; Dolly has no idea. I can sympathize with being intimidated by numerals. At the risk of being all New Math-y, I wonder if she wouldn’t like arithmetic more if it were presented as a game. Like, here’s a couple symbols — let’s say * and | for a start, and then some rules. * and * makes *, but * and | makes |. Also | and * makes |. But | and | makes |*. And so on. This is binary arithmetic, disguised, but I wonder if making it look like something inconsequential would make it more pleasant to learn, and if that would transfer over to arithmetic with 1’s and 0’s. Normal, useful arithmetic would be harder to play like this. You’d need ten symbols that are easy to write that aren’t already numbers, letters, or common symbols. But I wonder if it’d be worth it.

Tom Thaves’s Frank and Ernest for the 22nd is provided for mathematics teachers who need something to tape to their door. You’re welcome.

Reading the Comics, July 16, 2016: More To Life Than Mathematics Edition

I know, it’s impolitic for me to say something like my title. But I noticed a particular rerun in this set of mathematically-themed comics. And it left me wondering if I should drop that from my daily routine. There are strips I read more out of a fear of missing out than anything else. Most of them are in perpetual reruns, though some of them are so delightful I wouldn’t dare drop them. (Here I mean Cul de Sac and Peanuts.) An individual comic takes typically little time to read, but add that up and it does take a while, especially on vacation or the like. I won’t actually change anything; I’m too stubborn in lazy ways for that. But it crosses my mind.

Tim Lachowski’s Get A Life for the 14th is what set me off. Lachowski’s rerun this before, and I’ve mentioned it before, back in March of 2015 and back in November 2012. Given this I wonder if there’s a late-2013 or early-2014 reuse of the strip I failed to note around here. Or just missed, possibly because I was on vacation.

Nicholas Gurewitch’s Perry Bible Fellowship reprint for the 14th gives me the title for this edition. It uses symbols and diagrams of mathematics for their graphical artistry, the sort of thing I’m surprised doesn’t get done more. Back in college the creative-writing-and-arts editor for the unread leftist weekly asked me to do a page of physics calculations as an aesthetic composition and I was glad to do it. Good notation has a beauty to it; I wonder if people would like mathematics more if they got to spend time at play with its shapes.

Morrie Turner’s Wee Pals rerun for the 14th name-checks the New Math. The New Math was this attempt to reform mathematics in the 1970s. It was great for me, and my love remembers only liking or understanding mathematics while in New Math-guided classes. But it was an attempt at educational reform that didn’t promise that people at the cash registers would make change fast enough, and so was doomed to failure. (I am being reductive here. Much about the development of New Math went wrong, and it’s unfair to blame it all on the resistance of parents to new teaching methods. But educational reform always crashes hard against parents’ reasonable question, “Why should my child be your test case?”)

Many of the New Math ideas grew out of the work of Nicholas Bourbaki, and the attempt to explain mathematics on completely rigorous logical foundations, as free from intuition as possible to get. That sounds like an odd thing to do; intuition is a guide to useful ways to spend one’s time and energy. But that supposes the intuition is good.

Much of late 19th and early 20th century mathematics was spent discovering cases in which intuitive understandings of things were wrong. Deterministic systems can be unpredictable. A curve can be continuous at a single point and nowhere else in space. Infinitely large sets can be bigger or smaller than other sets. A line can wriggle around so much that it has a volume, it fills space. In that context wanting to ditch intuition a a once-useful but now-unreliable guide is not a bad idea.

I like the New Math. I suppose we always like the way we first learned things. But I still think it’s got a healthy focus. The idea that mathematics is built on rules we agree to use, and that we are free to change if we find they’re not doing things we need, is true. It’s one easy to forget considering mathematics’ primary job, which has always been making trade, accounting, and record-keeping go smoothly. Changing those systems are perilous. But we should know something about how to pick tools to use.

Zoe Piel’s At The Zoo for the 15th uses the blackboard-full-of-mathematics image to suggest deep thinking. (Toby the lion’s infatuated with the vet, which is why he’s thinking how to get her to visit again.) Really there’s a bunch of iconic cartoon images of deep thinking, including a mid-century-esque big-tin-box computer with reel-to-reel memory tape. Modern computers are vastly more powerful than that sort of 50s/60s contraption, but they’re worthless artistically if you want to suggest any deep thinking going on. You need stuff with moving parts for that, even in a still image.

Scott Adams’s Dilbert Classics for the 16th originally ran the 21st of May, 1993. And it comes back to a practical use for mathematics and the sort of thing we do need to know how to calculate. It also uses the image of mathematics as obscurant nonsense.

That tweet’s interesting in itself, although one of the respondents wonders if William meant astrology, often called “mathematics” at the time. That would be a fairer thing to call magic. But it would be only a century after William of Malmesbury’s death that Arabic numerals would become familiar in Europe. They would bring suspicions that merchants and moneylenders were trying to cheat their customers, by using these exotic specialist notations with unrecognizable rules, instead of the traditional and easy-to-follow Roman numerals. If this particular set of mathematics comics were mostly reruns, that’s all right; sometimes life is like that.

Reading the Comics, May 3, 2016: Lots Of Images Edition

After the heavy pace of March and April I figure to take it easy and settle to about a three-a-week schedule around here. That doesn’t mean that Comic Strip Master Command wants things to be too slow for me. And this time they gave me more comics than usual that have expiring URLs. I don’t think I’ve had this many pictures to include in a long while.

Bill Whitehead’s Free Range for the 28th presents an equation-solving nightmare. From my experience, this would be … a great pain, yes. But it wouldn’t be a career-wrecking mess. Typically a problem that’s hard to solve is hard because you have no idea what to do. Given an expression, you’re allowed to do anything that doesn’t change its truth value. And many approaches might look promising without quite resolving to something useful. The real breakthrough is working out what approach should be used. For an astrophysics problem, there are some classes of key decisions to make. One class is what to include and what to omit in the model. Another class is what to approximate — and how — versus what to treat exactly. Another class is what sorts of substitutions and transformations turn the original expression into one that reveals what you want. Those are the hard parts, and those are unlikely to have been forgotten. Applying those may be tedious, and I don’t doubt it would be anguishing to have the finished work wiped out. But it wouldn’t set one back years either. It would just hurt.

Christopher Grady’s Lunar Babboon for the 29th I classify as the “anthropomorphic numerals” joke for this essay. Boy, have we all been there.

'Numbers are boring!' complains the audience. 'Not so. They contain high drama and narrative. Here's an expense account that was turned in to me last week. Can you create a *story* based on these numbers?' 'Once upon a time, a guy was fired for malfeasance ... ' 'If you skip right to the big finish, sure.'
Bill Holbrook’s On The Fastrack for the 29th of April, 2016. Spoiler: there aren’t any numbers in the second panel.

Bill Holbrook’s On The Fastrack for the 29th continues the storyline about Fi giving her STEM talk. She is right, as I see it, in attributing drama and narrative to numbers. This is most easily seen in the sorts of finance and accounting mathematics which the character does. And the inevitable answer to “numbers are boring” (or “mathematics is boring”) is surely to show how they are about people. Even abstract mathematics is about things (some) people find interesting, and that must be about the people too.

'Look, Grandpa! I got 100% on my math test! Do you know what that means? It means that out of ten questions, I got at least half of them correct!' 'It must be that new, new, new math.' 'So many friendly numbers!'
Rick Detorie’s One Big Happy for the 3rd of May, 2016. Ever notice how many shirt pockets Grandpa has? I’m not saying it’s unrealistic, just that it’s more than the average.

Rick Detorie’s One Big Happy for the 16th is a confused-mathematics joke. Grandpa tosses off a New Math joke that’s reasonably age-appropriate too, which is always nice to see in a comic strip. I don’t know how seriously to take Ruthie’s assertion that a 100% means she only got at least half of the questions correct. It could be a cartoonist grumbling about how kids these days never learn anything, the same way ever past generation of cartoonists had complained. But Ruthie is also the sort of perpetually-confused, perpetually-confusing character who would get the implications of a 100% on a test wrong. Or would state them weirdly, since yes, a 100% does imply getting at least half the test’s questions right.

Border Collies, as we know, are highly intelligent. 'Yup, the math confirms it --- we can't get by without people.'
Niklas Eriksson’s Carpe Diem for the 3rd of May, 2016. I’m a little unnerved there seems to be a multiplication x at the end of the square root vinculum on the third line there.

Niklas Eriksson’s Carpe Diem for the 3rd uses the traditional board full of mathematical symbols as signifier of intelligence. There’s some interesting mixes of symbols here. The c2, for example, isn’t wrong for mathematics. But it does evoke Einstein and physics. There’s the curious mix of the symbol π and the approximation 3.14. But then I’m not sure how we would get from any of this to a proposition like “whether we can survive without people”.

'What comes after eleven?' 'I can't do it. I don't have enough fingers to count on!' Tiger hands him a baseball glove. 'Use this.'
Bud Blake’s Tiger for the 3rd of May, 2016. How did Punkinhead get up to eleven?

Bud Blake’s Tiger for the 3rd is a cute little kids-learning-to-count thing. I suppose it doesn’t really need to be here. But Punkinhead looks so cute wearing his tie dangling down onto the floor, the way kids wear their ties these days.

Tony Murphy’s It’s All About You for the 3rd name-drops algebra. I think what the author really wanted here was arithmetic, if the goal is to figure out the right time based on four clocks. They seem to be trying to do a simple arithmetic mean of the time on the four clocks, which is fair if we make some assumptions about how clocks drift away from the correct time. Mostly those assumptions are that the clocks all started right and are equally likely to drift backwards or forwards, and do that drifting at the same rate. If some clocks are more reliable than others, then, their claimed time should get more weight than the others. And something like that must be at work here. The mean of 7:56, 8:02, 8:07, and 8:13, uncorrected, is 8:04 and thirty seconds. That’s not close enough to 8:03 “and five-eighths” unless someone’s been calculating wrong, or supposing that 8:02 is more probably right than 8:13 is.

Reading the Comics, April 10, 2016: Four-Digit Prime Number Edition

In today’s installment of Reading The Comics, mathematics gets name-dropped a bunch in strips that aren’t really about my favorite subject other than my love. Also, I reveal the big lie we’ve been fed about who drew the Henry comic strip attributed to Carl Anderson. Finally, I get a question from Queen Victoria. I feel like this should be the start of a podcast.

Todd responds to arithmetic flash cards: 'Tater tots! Sloppy Joes! Mac and Cheese!' 'Todd, what are you doing? These are all math!' 'Sorry ... every day at school we have math right before lunch and you told me to say the first thing that pops into my mind!'
Patrick Roberts’ Todd the Dinosaur for the 6th of April, 2016.

Patrick Roberts’ Todd the Dinosaur for the 6th of April just name-drops mathematics. The flash cards suggest it. They’re almost iconic for learning arithmetic. I’ve seen flash cards for other subjects. But apart from learning the words of other languages I’ve never been able to make myself believe they’d work. On the other hand, I haven’t used flash cards to learn (or teach) things myself.

Mom, taking the mathematics book away from Bad Dad: 'I'll take over now ... fractions and long division aren't `scientifically accepted as unknowable`.'
Joe Martin’s Boffo for the 7th of April, 2016. I bet the link expires in early May.

Joe Martin’s Boffo for the 7th of April is a solid giggle. (I have a pretty watery giggle myself.) There are unknowable, or at least unprovable, things in mathematics. Any logic system with enough rules to be interesting has ideas which would make sense, and which might be true, but which can’t be proven. Arithmetic is such a system. But just fractions and long division by itself? No, I think we need something more abstract for that.

Henry is sent to bed. He can't sleep until he reads from his New Math text.
Carl Anderson’s Henry for the 7th of April, 2016.

Carl Anderson’s Henry for the 7th of April is, of course, a rerun. It’s also a rerun that gives away that the “Carl Anderson” credit is a lie. Anderson turned over drawing the comic strip in 1942 to John Liney, for weekday strips, and Don Trachte for Sundays. There is no possible way the phrase “New Math” appeared on the cover of a textbook Carl Anderson drew. Liney retired in 1979, and Jack Tippit took over until 1983. Then Dick Hodgins, Jr, drew the strip until 1990. So depending on how quickly word of the New Math penetrated Comic Strip Master Command, this was drawn by either Liney, Tippit, or possibly Hodgins. (Peanuts made New Math jokes in the 60s, but it does seem the older the comic strip the longer it takes to mention new stuff.) I don’t know when these reruns date from. I also don’t know why Comics Kingdom is fibbing about the artist. But then they went and cancelled The Katzenjammer Kids without telling anyone either.

Eric the Circle for the 8th, this one by “lolz”, declares that Eric doesn’t like being graphed. This is your traditional sort of graph, one in which points with coordinates x and y are on the plot if their values make some equation true. For a circle, that equation’s something like (x – a)2 + (y – b)2 = r2. Here (a, b) are the coordinates for the point that’s the center of the circle, and r is the radius of the circle. This looks a lot like Eric is centered on the origin, the point with coordinates (0, 0). It’s a popular choice. Any center is as good. Another would just have equations that take longer to work with.

Richard Thompson’s Cul de Sac rerun for the 10th is so much fun to look at that I’m including it even though it just name-drops mathematics. The joke would be the same if it were something besides fractions. Although see Boffo.

Norm Feuti’s Gil rerun for the 10th takes on mathematics’ favorite group theory application, the Rubik’s Cube. It’s the way I solved them best. This approach falls outside the bounds of normal group theory, though.

Mac King and Bill King’s Magic in a Minute for the 10th shows off a magic trick. It’s also a non-Rubik’s-cube problem in group theory. One of the groups that a mathematics major learns, after integers-mod-four and the like, is the permutation group. In this, the act of swapping two (or more) things is a thing. This puzzle restricts the allowed permutations down to swapping one item with the thing next to it. And thanks to that, an astounding result emerges. It’s worth figuring out why the trick would work. If you can figure out the reason the first set of switches have to leave a penny on the far right then you’ve got the gimmick solved.

Pab Sungenis’s New Adventures of Queen Victoria for the 10th made me wonder just how many four-digit prime numbers there are. If I haven’t worked this out wrong, there’s 1,061 of them.

Reading the Comics, March 21, 2016: New Math And The NCAA Edition

Terri Libenson’s The Pajama Diaries for the 20th of March mentions, among “reasons for ice cream”, the stress of having “helped with New Math”. It’s a curious reference, to me. I expect it refers to the stress of how they teach arithmetic differently from how it was when you grew up. I expect that feeds any adult’s natural anxiety about having forgot, or never really been good at, arithmetic. Add to that the anxiety of not being able to help your child when you’re called on. And add to that the ever-present fear of looking like a fool. There’s plenty of reason to be anxious.

Among Mom's Reasons For Ice Cream: 'Helped with New Math'.
Terri Libenson’s The Pajama Diaries for the 20th of March, 2016.

Still, the reference to “New Math” is curious since, at least in the United States, that refers to a specific era. In the 1960s and 70s mathematics education saw a major revision, called the “New Math”. This revision tried many different approaches, but built around the theory that students should know why mathematics looks like it does. The hope was that in this way students wouldn’t just know what eight times seven was, but would agree that it made sense for this to be 56. The movement is, generally, regarded as a well-meant failure. The reasons are diverse, but many of them amount to it being very hard to explain why mathematics looks like it does. And it’s even harder to explain it to parents, who haven’t gone to school for years and aren’t going to go back to learn eight times seven. And it’s hard for many teachers, who often aren’t specialists in mathematics, to learn eight times seven in a new way either.

Still, the New Math was dead and buried in the United States by the 1980s. And more, Libenson is Canadian. I don’t know what educational fashions, and reform fashions, are like in Canada. I’m curious if Canadian parents or teachers could let me know, what is going on in reforming Canadian mathematics education? Is “New Math” a term of art in Canada now? Or did Libenson pick a term that would communicate efficiently “mathematics but not like I learned it”?

Rudolph Dirk’s The Katzenjammer Kids on the 20th reprinted the strip from the 5th of September, 1943. I mention it here because it contains an example of mathematics talk being used as signifier of great intelligence. The kids expound: “Now, der t’eory uf der twerpsicosis iss dot er sum uf circumvegetatium und der horizontal triggernometry iss equal to der … ” and that’s as far as it needs to go. It isn’t quite mathematics, but it is certainly using a painting of mathematics to make one look bright.

'Now der t'eory uf der twerpipsicosis iss dot der sum uf circumvegetatium und der horizontal triggernomery iss equal to der --- ' 'My, how smart you iss to know such big voids!'
Rudolph Dirk’s The Katzenjammer Kids for the 5th of September, 1943, and rerun the 20th of March, 2016. I know it’s a lot of text to read; I’m sorry.

Mark Anderson’s Andertoons got its appearance in here the 20th. It’s got a student resisting the equivalent fractions idea. he kid notes that 1/2 might equal 2/4 and 4/8 and 8/16, but “the ones on the right feel like more bang for your buck”. The kid has a point. These are all the same number. It’s usually easiest to work with the smallest representation that means what you need. But they might convey their meanings differently. I get a different picture, at least, in speaking of “half the class not being done with the assignment” versus “16 of the 32 students aren’t done with the assignment”.

Charlie Podrebarac’s CowTown for the 20th of March claims Charlie could “literally paper the Earth” with losing NCAA brackets. As I make it out, he’s right. There are 263 possible NCAA brackets, because there are 63 matches in the college basketball tournament. All but one of these are losing. If each bracket fits on one sheet of paper — well, how big is a sheet of paper? If each bracket is on a sheet of A4-size paper, then, each page is 1/16th of a square meter. This is easy to work with. Unfortunately, if Charlie cares about the NCAA college basketball tournament, he’s probably in the United States. So he would print out on paper that’s 8 ½ inches by 11 inches. That’s not quite 1/16th of a square meter or any other convenient-to-work-with size. It’s 93.5 square inches but what good is that?

Well, I will pretend that the 8 ½ by 11 inch paper is close enough to A4. It’s going to turn out not to matter. 263 is 9,223,372,036,854,775,808. Subtract one and we have 9,223,372,036,854,775,807. Big difference. Multiply this by one-sixteenth of a square meter and we have about 576,460,752,000,000,000 square meters of paper. I’m rounding off because it is beyond ridiculous that I didn’t before. The surface area of the Earth is about 510,000,000,000,000 square meters. So if Bob picked every possible losing bracket he could indeed literally paper the Earth a thousand times over and have some paper to spare.

T Shepherd’s gentle and sweet Snow Sez for the 21st of March is a bit of humor about addition and the limits of what it can tell us.

Ruben Bolling’s Super-Fun-Pak Comix for the 21st of March is a Guy Walks Into A Bar that depends on non-base-ten arithmetic for its punch line. I’m amused. I learned about different bases as a kid, in the warm glow of the New Math. The different bases and how they changed what arithmetic looked like enchanted me. Today I know there’s not much need for bases besides ten (normal mathematics), two (used by computers), and sixteen (used by people dealing with computers). (Base sixteen converts easily to base two, so people can understand what the computer is actually doing, while being much more compact, so people don’t have to write out prodigiously long sequences of digits.) But for a while there you can play around with base five or base twelve or, as a horse might, base four. It can help you better appreciate how much thought there is behind something as straightforward as “10”.

Reading the Comics, June 16, 2015: The Carefully Targeted Edition

The past several days produced a good number of comic strips mentioning mathematical topics. Strangely, they seem to be carefully targeted to appeal to me. Here’s how.

Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. (June 12) is your classic resisting-the-world-problems joke. I admit I haven’t done anything at this level of mathematics in a long while. I’m curious if actual teachers, or students, could say whether problems with ridiculous numbers of fruits actually appear in word problems, or if this is one of those motifs that’s popular despite a nearly imaginary base in the real world.

Dan Thompson’s Brevity (June 13) is aimed very precisely at the professional knot theorist. Also, mathematics includes a thing called knot theory which is almost exactly what you imagine. For a while it looked like I might get into knot theory, although ultimately I wasn’t able to find a problem interesting enough to work on that I was able to prove anything interesting about. I’m delighted a field that so many people wouldn’t imagine existed got a comic strip in this manner; I wonder if this is what dinosaur researchers felt when The Far Side was still in production.

Steve Sicula’s Home and Away (June 14) name-drops the New Math, though the term’s taken literally. The joke feels anachronistic to me. Would a kid that age have even heard of a previous generation’s effort to make mathematics about understanding what you’re doing and why? New Math (admittedly, on the way out) was my elementary school thing.

Mark Litzler’s Joe Vanilla (June 15) tickles me with the caption, “the clarity of the equation befuddles”. It’s a funny idea. Ideally, the point of an equation is to provide clarity and insight, maybe by solving it, maybe by forming it. A befuddling equation is usually a signal the problem needs to be thought out some more.

Lincoln Pierce’s Big Nate: First Class (June 16, originally run June 11, 1991) is aimed at the Mathletes out there. It throws in a slide rule mention for good measure. Given Nate’s Dad’s age in the 1991 setting it’s plausible he’d have had a slide rule. (He’s still the same age in the comic strip being produced today, so he wouldn’t have had one if the strip were redrawn.) I don’t remember being on a competitive mathematics team in high school, although I did participate in some physics contests. My recollection is that I was an inconsistent performer, though. I don’t think I had the slightly obsessive competitive urge needed to really excel in high school academic competition.

And Larry Wright’s Motley Classics (June 16, originally run June 16, 1987) is a joke about using algebra in the real world. Or at least in the world of soap operas. Back in 1987 (United States) soap operas were still a thing.

Fish, Counted

A couple months ago I wrote about the problem of counting the number of goldfish in the backyard pond. For those who’d missed it:

  • How To Count Fish, which presented a way to estimate a population by simply doing two samplings of the population.
  • How To Re-Count Fish, which described some of the numerical problems in estimation-based population samples.
  • How Not To Count Fish, which threatened to collapse the entire project under fiddly practical problems.

Spring finally arrived, and about a month ago we finally stopped having nights that touched freezing. So we moved the goldfish which had been wintering over in the basement out to the backyard. This also let us count just how many goldfish we’d caught, and I thought folks might like to know what the population did look like.

The counting didn’t require probabilistic methods this time. Instead we took the fish from the traps and set up a correspondence between them and an ordered subset of positive whole numbers. This is the way you describe “just counting” so that it sounds either ferociously difficult or like a game. Whether it’s difficult or a game depends on whether you were a parent or a student back when the New Math was a thing. My love and I were students.

Altogether then there were fifty goldfish that had wintered over in the stock tank in the basement: eight adults and 42 baby fish. (Possibly nine and 41; one of the darker goldfish is small for an adult, but large for a baby.) Over the spring I identified at least three baby fish that had wintered over outdoors successfully. It was a less harsh winter than the one before. So there are now at least 53 goldfish in the pond. There are surely more on the way, but we haven’t seen any new babies yet.

A rock-lined circular goldfish pond, with goldfish.
53, or possibly more, goldfish are within this pond.

Also this spring we finally actually measured the pond. We’d previously estimated it to be about ten feet in diameter and two feet deep, implying a carrying capacity of about 60 goldfish if some other assumptions are made. Now we’ve learned it’s nearer twelve feet in diameter and twenty inches deep. Call that two meters radius and half a meter height. That’s a volume of about 6.3 cubic meters, or 6300 liters, or enough volume of water for about 80 goldfish. We’ll see what next fall brings.

Reading the Comics, March 26, 2015: Kind Of Hanging Around Edition

I’m sorry to have fallen silent the last few days; it’s been a bit busy and I’ve been working on follow-ups to a couple of threads. Fortunately Comic Strip Master Command is still around and working to make sure I don’t disappear altogether, and I have a selection of comic strips which at least include a Jumble world puzzle, which should be a fun little diversion.

Tony Rubino and Gary Markstein’s Daddy’s Home (March 23) asks what seems like a confused question to me, “if you believe in infinity, does that mean anything is possible?” As I say, I’m not sure I understand how belief in infinity comes into play, but that might just reflect my background: I’ve been thoroughly convinced that one can describe collections of things that have infinitely many elements — the counting numbers, rectangles, continuous functions — as well as that one can subdivide things — like segments of a number line — infinitely many times — as well as of quantities that are larger than any finite number and so must be infinitely large; so, what’s to not believe in? (I’m aware that there are philosophical and theological questions that get into things termed “potential” and “actual” infinities, but I don’t understand the questions those terms are meant to address.) The phrasing of “anything is possible” seems obviously flawed to me. But if we take it to mean instead “anything not logically inconsistent or physically prohibited is possible” then we seem to have a reasonable question, if that hasn’t just reduced to “anything not impossible is possible”. I guess ultimately I just wonder if the kid is actually trying to understand anything or if he’s just procrastinating.

Continue reading “Reading the Comics, March 26, 2015: Kind Of Hanging Around Edition”

Reading the Comics, April 1, 2014: Name-Dropping Monkeys Edition

There’s been a little rash of comics that bring up mathematical themes, now, which is ordinarily pretty good news. But when I went back to look at my notes I realized most of them are pretty much name-drops, mentioning stuff that’s mathematical without giving me much to expand upon. The exceptions are what might well be the greatest gift which early 20th century probability could give humor writers. That’s enough for me.

Mark Anderson’s Andertoons (March 27) plays on the double meaning of “fifth” as representing a term in a sequence and as representing a reciprocal fraction. It also makes me realize that I hadn’t paid attention to the fact that English (at least) lets you get away with using the ordinal number for the part fraction, at least apart from “first” and “second”. I can make some guesses about why English allows that, but would like to avoid unnecessarily creating folk etymologies.

Hector D Cantu and Carlos Castellanos’s Baldo (March 27) has Baldo not do as well as he expected in predictive analytics, which I suppose doesn’t explicitly require mathematics, but would be rather hard to do without. Making predictions is one of mathematics’s great applications, and drives much mathematical work, in the extrapolation of curves and the solving of differential equations most obviously.

Dave Whamond’s Reality Check (March 27) name-drops the New Math, in the service of the increasingly popular sayings that suggest Baby Boomers aren’t quite as old as they actually are.

Rick Stromoski’s Soup To Nutz (March 29) name-drops the metric system, as Royboy notices his ten fingers and ten toes and concludes that he is indeed metric. The metric system is built around base ten, of course, and the idea that changing units should be as easy as multiplying and dividing by powers of ten, and powers of ten are easy to multiply and divide by because we use base ten for ordinary calculations. And why do we use base ten? Almost certainly because most people have ten fingers and ten toes, and it’s so easy to make the connection between counting fingers, counting objects, and then to the abstract idea of counting. There are cultures that used other numerical bases; for example, the Maya used base 20, but it’s hard not to notice that that’s just using fingers and toes together.

Greg Cravens’s The Buckets (March 30) brings out a perennial mathematics topic, the infinite monkeys. Here Toby figures he could be the greatest playwright by simply getting infinite monkeys and typewriters to match, letting them work, and harvesting the best results. He hopes that he doesn’t have to buy many of them, to spoil the joke, but the remarkable thing about the infinite monkeys problem is that you don’t actually need that many monkeys. You’ll get the same result — that, eventually, all the works of Shakespeare will be typed — with one monkey or with a million or with infinitely many monkeys; with fewer monkeys you just have to wait longer to expect success. Tim Rickard’s Brewster Rockit (April 1) manages with a mere hundred monkeys, although he doesn’t reach Shakespearean levels.

But making do with fewer monkeys is a surprisingly common tradeoff in random processes. You can often get the same results with many agents running for a shorter while, or a few agents running for a longer while. Processes that allow you to do this are called “ergodic”, and being able to prove that a process is ergodic is good news because it means a complicated system can be represented with a simple one. Unfortunately it’s often difficult to prove that something is ergodic, so you might instead just warn that you are assuming the ergodic hypothesis or ergodicity, and if nothing else you can probably get a good fight going about the validity of “ergodicity” next time you play Scrabble or Boggle.